We prefer the nvcuda library, which reports driver versions. When we
dropped cuda v11, we added a safety check for too-old drivers. What
we missed was the cudart fallback discovery logic didn't have driver
version wired up. This fixes cudart discovery to expose the driver
version as well so we no longer reject all GPUs if nvcuda didn't work.
Prior to this change our official binaries contained both JIT PTX code and
the cubin binary code for our chosen compute capabilities. This change
switches to only compile the PTX code and rely on JIT at runtime for
generating the cubin specific to the users GPU. The cubins are cached
on the users system, so they should only see a small lag on the very
first model load for a given Ollama release. This also adds the first
generation of Blackwell GPUs so they aren't reliant on the Hopper PTX.
This change reduces the ggml-cuda.dll from 1.2G to 460M
Some AMD GPUs do not provide UUIDs and report only "XX". In these
cases, we should use the ordinal ID as an alternate identifier.
This is the same as we always need to do on Windows for AMD.
In addition, this prints out the ID for each GPU when enumerating
them for easier debugging in the future.
This patch modifies Ollama to allow grouping GPUs to memory-fit to the requested model, instead of the former algorithm of using one GPU distributing over all available GPUs.
Benefits:
- Lower amount of (PCIe-)bus communication between GPUs - especially when they are not very high speed
- Allowing unallocated GPUs to get into power-saving mode.
- Significantly reduce VRAM allocation when using more than 2 GPUs in a system
- Due to the reduced memory allocation, you can run more models simultaneously.
Callers can set a backend buffer type to be no-alloc, meaning that
it does not allocate memory for tensors or operations. This can
be used for calculating memory requirements. Tensors and graphs
must be recreated with no-alloc set to false before loading data.
Defaults to false for newly created backend buffer types.
For many backend data structures, GGML defines a typedef of a pointer
type and returns these from functions. In most cases, CGo understands
that these are interchangable but some parts of Go (such as generics)
think they are two different types. We should prefer the form that
GGML uses.
gpt-oss works best with a context length of at least 8k. However,
for GPUs with limited amount of VRAM, there is a significant
performance hit to this increased context. In these cases, we
switch to the Ollama default of 4k
We were missing passing along thinking if content was nil (as opposed
to empty string)
Also added a test for content not being passed, which was the real cause
of <https://github.com/ollama/ollama/issues/11704>, since with the way
`Content` is typed, not passing it and empty string are distinct