299 lines
8.7 KiB
Go
299 lines
8.7 KiB
Go
package olmo
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
|
|
"github.com/ollama/ollama/fs"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/ml/nn/rope"
|
|
"github.com/ollama/ollama/model"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
const (
|
|
cacheTypeSWA = iota
|
|
cacheTypeCausal
|
|
)
|
|
|
|
type Options struct {
|
|
hiddenSize, numHeads, numKVHeads int
|
|
// headDim, ropeDim int
|
|
eps, ropeBase, ropeScale float32
|
|
|
|
originalContextLength int
|
|
attnFactor float32
|
|
|
|
ropeType string
|
|
ropeExtrapolation float32
|
|
|
|
ropeBetaFast float32
|
|
ropeBetaSlow float32
|
|
|
|
slidingWindowPattern []bool
|
|
}
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.TextProcessor
|
|
|
|
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
Layers []Layer `gguf:"blk"`
|
|
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
|
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
|
|
|
Options
|
|
}
|
|
|
|
func New(c fs.Config) (model.Model, error) {
|
|
vocabulary := model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Scores: c.Floats("tokenizer.ggml.scores"),
|
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
|
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
EOS: append(
|
|
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
|
),
|
|
}
|
|
|
|
if c.String("tokenizer.ggml.model") != "gpt2" {
|
|
return nil, model.ErrUnsupportedTokenizer
|
|
}
|
|
|
|
var pretokenizers []string
|
|
if c.String("tokenizer.ggml.pre") != "default" {
|
|
pretokenizers = []string{
|
|
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
|
}
|
|
}
|
|
processor := model.NewBytePairEncoding(&vocabulary, pretokenizers...)
|
|
|
|
hiddenSize := int(c.Uint("embedding_length"))
|
|
numHeads := int(c.Uint("attention.head_count"))
|
|
numKVHeads := int(c.Uint("attention.head_count_kv"))
|
|
eps := c.Float("attention.layer_norm_rms_epsilon")
|
|
ropeBase := c.Float("rope.freq_base", 1e4)
|
|
ropeScale := c.Float("rope.scaling.factor", 1)
|
|
originalContextLength := int(c.Uint("rope.scaling.original_context_length"))
|
|
attnFactor := c.Float("rope.scaling.attn_factor", 1)
|
|
ropeType := c.String("rope.scaling.type")
|
|
ropeExtrapolation := c.Float("rope.scaling.extrapolation_factor", 1.0)
|
|
|
|
fmt.Printf("hiddenSize: %d\n", hiddenSize)
|
|
fmt.Printf("numHeads: %d\n", numHeads)
|
|
fmt.Printf("numKVHeads: %d\n", numKVHeads)
|
|
fmt.Printf("eps: %f\n", eps)
|
|
fmt.Printf("ropeBase: %f\n", ropeBase)
|
|
fmt.Printf("ropeScale: %f\n", ropeScale)
|
|
fmt.Printf("originalContextLength: %d\n", originalContextLength)
|
|
fmt.Printf("attnFactor: %f\n", attnFactor)
|
|
fmt.Printf("ropeType: %s\n", ropeType)
|
|
fmt.Printf("ropeExtrapolation: %f\n", ropeExtrapolation)
|
|
fmt.Printf("sliding_window_pattern: %v\n", c.Bools("attention.sliding_window_pattern"))
|
|
|
|
m := Model{
|
|
TextProcessor: processor,
|
|
Layers: make([]Layer, c.Uint("block_count")),
|
|
Options: Options{
|
|
hiddenSize: hiddenSize,
|
|
numHeads: numHeads,
|
|
numKVHeads: numKVHeads,
|
|
eps: eps,
|
|
ropeBase: ropeBase,
|
|
ropeScale: ropeScale,
|
|
originalContextLength: originalContextLength,
|
|
attnFactor: attnFactor,
|
|
ropeType: ropeType,
|
|
ropeExtrapolation: ropeExtrapolation,
|
|
ropeBetaFast: 32.0,
|
|
ropeBetaSlow: 1.0,
|
|
slidingWindowPattern: c.Bools("attention.sliding_window_pattern"),
|
|
},
|
|
}
|
|
|
|
m.Cache = kvcache.NewWrapperCache(
|
|
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
|
|
kvcache.NewCausalCache(m.Shift),
|
|
)
|
|
|
|
return &m, nil
|
|
}
|
|
|
|
type SelfAttention struct {
|
|
Query *nn.Linear `gguf:"attn_q"`
|
|
Key *nn.Linear `gguf:"attn_k"`
|
|
Value *nn.Linear `gguf:"attn_v"`
|
|
Output *nn.Linear `gguf:"attn_output"`
|
|
QNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
|
KNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
|
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
|
}
|
|
|
|
func (m *Model) applyRoPE(ctx ml.Context, states, positions ml.Tensor, ropeDim int, isSWA bool) ml.Tensor {
|
|
|
|
var ropeOpts []func(*rope.Options)
|
|
|
|
ropeOpts = append(ropeOpts, rope.WithTypeNeoX())
|
|
|
|
// Both SWA and non-SWA use beta_fast and beta_slow
|
|
// defaults
|
|
ropeOpts = append(ropeOpts,
|
|
rope.WithBetaFast(m.ropeBetaFast),
|
|
rope.WithBetaSlow(m.ropeBetaSlow),
|
|
)
|
|
|
|
// SWA uses freq_scale=1.0, ext_factor=0.0, attn_factor=1.0
|
|
// Non-SWA uses full yarn parameters
|
|
if m.originalContextLength > 0 {
|
|
ropeOpts = append(ropeOpts,
|
|
rope.WithOriginalContextLength(m.originalContextLength),
|
|
)
|
|
|
|
// no yarn for swa
|
|
if isSWA {
|
|
ropeOpts = append(ropeOpts,
|
|
rope.WithExtrapolationFactor(0),
|
|
rope.WithAttentionFactor(1.),
|
|
)
|
|
} else {
|
|
ropeOpts = append(ropeOpts,
|
|
rope.WithExtrapolationFactor(m.ropeExtrapolation),
|
|
rope.WithAttentionFactor(m.attnFactor),
|
|
)
|
|
}
|
|
}
|
|
|
|
freqScale := float32(1.0)
|
|
if !isSWA {
|
|
freqScale = 1. / m.ropeScale
|
|
}
|
|
|
|
return nn.RoPE(ctx, states, positions, ropeDim, m.ropeBase, freqScale, ropeOpts...)
|
|
}
|
|
|
|
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor {
|
|
batchSize := hiddenState.Dim(1)
|
|
headDim := m.hiddenSize / m.numHeads
|
|
ropeDim := headDim
|
|
|
|
query := sa.Query.Forward(ctx, hiddenState)
|
|
// double check type
|
|
query = sa.QNorm.Forward(ctx, query, m.eps)
|
|
query = query.Reshape(ctx, headDim, m.numHeads, batchSize)
|
|
//check here
|
|
|
|
query = m.applyRoPE(ctx, query, positions, ropeDim, isSWA)
|
|
|
|
key := sa.Key.Forward(ctx, hiddenState)
|
|
key = sa.KNorm.Forward(ctx, key, m.eps)
|
|
key = key.Reshape(ctx, headDim, m.numKVHeads, batchSize)
|
|
key = m.applyRoPE(ctx, key, positions, ropeDim, isSWA)
|
|
|
|
value := sa.Value.Forward(ctx, hiddenState)
|
|
value = value.Reshape(ctx, headDim, m.numKVHeads, batchSize)
|
|
|
|
// check attention scaling as well
|
|
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
|
|
attention = attention.Reshape(ctx, m.hiddenSize, batchSize)
|
|
|
|
return sa.Output.Forward(ctx, attention)
|
|
}
|
|
|
|
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
ropeDim := m.hiddenSize / m.numHeads
|
|
isSWA := m.isSWALayer(layer)
|
|
return m.applyRoPE(ctx, key, shift, ropeDim, isSWA), nil
|
|
}
|
|
|
|
type MLP struct {
|
|
Up *nn.Linear `gguf:"ffn_up"`
|
|
Down *nn.Linear `gguf:"ffn_down"`
|
|
Gate *nn.Linear `gguf:"ffn_gate"`
|
|
}
|
|
|
|
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, m *Model) ml.Tensor {
|
|
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
|
|
return mlp.Down.Forward(ctx, hiddenState)
|
|
}
|
|
|
|
type Layer struct {
|
|
SelfAttention *SelfAttention
|
|
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
|
MLP *MLP
|
|
PostFFWNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
|
}
|
|
|
|
func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor {
|
|
residual := hiddenState
|
|
|
|
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, m, isSWA)
|
|
|
|
// return hiddenState
|
|
|
|
if outputs != nil {
|
|
hiddenState = hiddenState.Rows(ctx, outputs)
|
|
residual = residual.Rows(ctx, outputs)
|
|
}
|
|
// i think this should be after getting the rows?
|
|
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
|
hiddenState = hiddenState.Add(ctx, residual)
|
|
residual = hiddenState
|
|
|
|
hiddenState = l.MLP.Forward(ctx, hiddenState, m)
|
|
hiddenState = l.PostFFWNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
|
return hiddenState.Add(ctx, residual)
|
|
}
|
|
|
|
// Olmo3 has Sliding Window Attention (SWA) 3 out of 4 layers.
|
|
func (m *Model) isSWALayer(layerIdx int) bool {
|
|
return m.Options.slidingWindowPattern[layerIdx]
|
|
}
|
|
|
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
|
|
|
|
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
|
|
|
for i, layer := range m.Layers {
|
|
m.Cache.SetLayer(i)
|
|
cacheType := cacheTypeSWA
|
|
|
|
isSWA := m.isSWALayer(i)
|
|
if !isSWA {
|
|
cacheType = cacheTypeCausal
|
|
}
|
|
|
|
wc := m.Cache.(*kvcache.WrapperCache)
|
|
wc.SetLayerType(cacheType)
|
|
// would need to check the cache at the layer instead
|
|
if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok {
|
|
// TODO: not sure about the index here
|
|
causal.SetCausal(ctx, kvcache.CausalOptions{Except: []int{}})
|
|
}
|
|
|
|
var outputs ml.Tensor
|
|
if i == len(m.Layers)-1 {
|
|
outputs = batch.Outputs
|
|
}
|
|
|
|
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m, isSWA)
|
|
|
|
// return hiddenState, nil
|
|
}
|
|
|
|
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
|
return m.Output.Forward(ctx, hiddenState), nil
|
|
}
|
|
|
|
func init() {
|
|
model.Register("olmo2", New)
|
|
}
|