package olmo import ( "fmt" "math" "github.com/ollama/ollama/fs" "github.com/ollama/ollama/kvcache" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/ml/nn/rope" "github.com/ollama/ollama/model" "github.com/ollama/ollama/model/input" ) const ( cacheTypeSWA = iota cacheTypeCausal ) type Options struct { hiddenSize, numHeads, numKVHeads int // headDim, ropeDim int eps, ropeBase, ropeScale float32 originalContextLength int attnFactor float32 ropeType string ropeExtrapolation float32 ropeBetaFast float32 ropeBetaSlow float32 slidingWindowPattern []bool } type Model struct { model.Base model.TextProcessor TokenEmbedding *nn.Embedding `gguf:"token_embd"` Layers []Layer `gguf:"blk"` OutputNorm *nn.RMSNorm `gguf:"output_norm"` Output *nn.Linear `gguf:"output,alt:token_embd"` Options } func New(c fs.Config) (model.Model, error) { vocabulary := model.Vocabulary{ Values: c.Strings("tokenizer.ggml.tokens"), Scores: c.Floats("tokenizer.ggml.scores"), Types: c.Ints("tokenizer.ggml.token_type"), Merges: c.Strings("tokenizer.ggml.merges"), AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false), BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))}, AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false), EOS: append( []int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))}, c.Ints("tokenizer.ggml.eos_token_ids")..., ), } if c.String("tokenizer.ggml.model") != "gpt2" { return nil, model.ErrUnsupportedTokenizer } var pretokenizers []string if c.String("tokenizer.ggml.pre") != "default" { pretokenizers = []string{ "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", } } processor := model.NewBytePairEncoding(&vocabulary, pretokenizers...) hiddenSize := int(c.Uint("embedding_length")) numHeads := int(c.Uint("attention.head_count")) numKVHeads := int(c.Uint("attention.head_count_kv")) eps := c.Float("attention.layer_norm_rms_epsilon") ropeBase := c.Float("rope.freq_base", 1e4) ropeScale := c.Float("rope.scaling.factor", 1) originalContextLength := int(c.Uint("rope.scaling.original_context_length")) attnFactor := c.Float("rope.scaling.attn_factor", 1) ropeType := c.String("rope.scaling.type") ropeExtrapolation := c.Float("rope.scaling.extrapolation_factor", 1.0) fmt.Printf("hiddenSize: %d\n", hiddenSize) fmt.Printf("numHeads: %d\n", numHeads) fmt.Printf("numKVHeads: %d\n", numKVHeads) fmt.Printf("eps: %f\n", eps) fmt.Printf("ropeBase: %f\n", ropeBase) fmt.Printf("ropeScale: %f\n", ropeScale) fmt.Printf("originalContextLength: %d\n", originalContextLength) fmt.Printf("attnFactor: %f\n", attnFactor) fmt.Printf("ropeType: %s\n", ropeType) fmt.Printf("ropeExtrapolation: %f\n", ropeExtrapolation) fmt.Printf("sliding_window_pattern: %v\n", c.Bools("attention.sliding_window_pattern")) m := Model{ TextProcessor: processor, Layers: make([]Layer, c.Uint("block_count")), Options: Options{ hiddenSize: hiddenSize, numHeads: numHeads, numKVHeads: numKVHeads, eps: eps, ropeBase: ropeBase, ropeScale: ropeScale, originalContextLength: originalContextLength, attnFactor: attnFactor, ropeType: ropeType, ropeExtrapolation: ropeExtrapolation, ropeBetaFast: 32.0, ropeBetaSlow: 1.0, slidingWindowPattern: c.Bools("attention.sliding_window_pattern"), }, } m.Cache = kvcache.NewWrapperCache( kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift), kvcache.NewCausalCache(m.Shift), ) return &m, nil } type SelfAttention struct { Query *nn.Linear `gguf:"attn_q"` Key *nn.Linear `gguf:"attn_k"` Value *nn.Linear `gguf:"attn_v"` Output *nn.Linear `gguf:"attn_output"` QNorm *nn.RMSNorm `gguf:"attn_q_norm"` KNorm *nn.RMSNorm `gguf:"attn_k_norm"` RopeFactors ml.Tensor `gguf:"rope_freqs.weight"` } func (m *Model) applyRoPE(ctx ml.Context, states, positions ml.Tensor, ropeDim int, isSWA bool) ml.Tensor { var ropeOpts []func(*rope.Options) ropeOpts = append(ropeOpts, rope.WithTypeNeoX()) // Both SWA and non-SWA use beta_fast and beta_slow // defaults ropeOpts = append(ropeOpts, rope.WithBetaFast(m.ropeBetaFast), rope.WithBetaSlow(m.ropeBetaSlow), ) // SWA uses freq_scale=1.0, ext_factor=0.0, attn_factor=1.0 // Non-SWA uses full yarn parameters if m.originalContextLength > 0 { ropeOpts = append(ropeOpts, rope.WithOriginalContextLength(m.originalContextLength), ) // no yarn for swa if isSWA { ropeOpts = append(ropeOpts, rope.WithExtrapolationFactor(0), rope.WithAttentionFactor(1.), ) } else { ropeOpts = append(ropeOpts, rope.WithExtrapolationFactor(m.ropeExtrapolation), rope.WithAttentionFactor(m.attnFactor), ) } } freqScale := float32(1.0) if !isSWA { freqScale = 1. / m.ropeScale } return nn.RoPE(ctx, states, positions, ropeDim, m.ropeBase, freqScale, ropeOpts...) } func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor { batchSize := hiddenState.Dim(1) headDim := m.hiddenSize / m.numHeads ropeDim := headDim query := sa.Query.Forward(ctx, hiddenState) // double check type query = sa.QNorm.Forward(ctx, query, m.eps) query = query.Reshape(ctx, headDim, m.numHeads, batchSize) //check here query = m.applyRoPE(ctx, query, positions, ropeDim, isSWA) key := sa.Key.Forward(ctx, hiddenState) key = sa.KNorm.Forward(ctx, key, m.eps) key = key.Reshape(ctx, headDim, m.numKVHeads, batchSize) key = m.applyRoPE(ctx, key, positions, ropeDim, isSWA) value := sa.Value.Forward(ctx, hiddenState) value = value.Reshape(ctx, headDim, m.numKVHeads, batchSize) // check attention scaling as well attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache) attention = attention.Reshape(ctx, m.hiddenSize, batchSize) return sa.Output.Forward(ctx, attention) } func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { ropeDim := m.hiddenSize / m.numHeads isSWA := m.isSWALayer(layer) return m.applyRoPE(ctx, key, shift, ropeDim, isSWA), nil } type MLP struct { Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` Gate *nn.Linear `gguf:"ffn_gate"` } func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, m *Model) ml.Tensor { hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState)) return mlp.Down.Forward(ctx, hiddenState) } type Layer struct { SelfAttention *SelfAttention PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"` MLP *MLP PostFFWNorm *nn.RMSNorm `gguf:"post_ffw_norm"` } func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor { residual := hiddenState hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, m, isSWA) // return hiddenState if outputs != nil { hiddenState = hiddenState.Rows(ctx, outputs) residual = residual.Rows(ctx, outputs) } // i think this should be after getting the rows? hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, m.eps) hiddenState = hiddenState.Add(ctx, residual) residual = hiddenState hiddenState = l.MLP.Forward(ctx, hiddenState, m) hiddenState = l.PostFFWNorm.Forward(ctx, hiddenState, m.eps) return hiddenState.Add(ctx, residual) } // Olmo3 has Sliding Window Attention (SWA) 3 out of 4 layers. func (m *Model) isSWALayer(layerIdx int) bool { return m.Options.slidingWindowPattern[layerIdx] } func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) { positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions)) hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs) for i, layer := range m.Layers { m.Cache.SetLayer(i) cacheType := cacheTypeSWA isSWA := m.isSWALayer(i) if !isSWA { cacheType = cacheTypeCausal } wc := m.Cache.(*kvcache.WrapperCache) wc.SetLayerType(cacheType) // would need to check the cache at the layer instead if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok { // TODO: not sure about the index here causal.SetCausal(ctx, kvcache.CausalOptions{Except: []int{}}) } var outputs ml.Tensor if i == len(m.Layers)-1 { outputs = batch.Outputs } hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m, isSWA) // return hiddenState, nil } hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps) return m.Output.Forward(ctx, hiddenState), nil } func init() { model.Register("olmo2", New) }