Compare commits

..

47 Commits

Author SHA1 Message Date
Roy Han
e210f8763f merge conflicts 2024-07-12 15:09:05 -07:00
royjhan
3971c2333f Merge branch 'main' into royh-precision 2024-07-12 15:07:36 -07:00
Michael Yang
e5c65a85df Merge pull request #5653 from ollama/mxyng/collect-system
template: preprocess message and collect system
2024-07-12 12:32:34 -07:00
Jeffrey Morgan
33627331a3 app: also clean up tempdir runners on install (#5646) 2024-07-12 12:29:23 -07:00
Michael Yang
36c87c433b template: preprocess message and collect system 2024-07-12 12:26:43 -07:00
Jeffrey Morgan
179737feb7 Clean up old files when installing on Windows (#5645)
* app: always clean up install dir; force close applications

* remove wildcard

* revert `CloseApplications`

* whitespace

* update `LOCALAPPDATA` var
2024-07-11 22:53:46 -07:00
Michael Yang
47353f5ee4 Merge pull request #5639 from ollama/mxyng/unaggregated-system 2024-07-11 17:48:50 -07:00
Josh
10e768826c fix: quant err message (#5616) 2024-07-11 17:24:29 -07:00
Michael Yang
5056bb9c01 rename aggregate to contents 2024-07-11 17:00:26 -07:00
Jeffrey Morgan
c4cf8ad559 llm: avoid loading model if system memory is too small (#5637)
* llm: avoid loading model if system memory is too small

* update log

* Instrument swap free space

On linux and windows, expose how much swap space is available
so we can take that into consideration when scheduling models

* use `systemSwapFreeMemory` in check

---------

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2024-07-11 16:42:57 -07:00
Michael Yang
57ec6901eb revert embedded templates to use prompt/response
This reverts commit 19753c18c0.

for compat. messages will be added at a later date
2024-07-11 14:49:35 -07:00
Michael Yang
e64f9ebb44 do no automatically aggregate system messages 2024-07-11 14:49:35 -07:00
Jeffrey Morgan
791650ddef sched: only error when over-allocating system memory (#5626) 2024-07-11 00:53:12 -07:00
Jeffrey Morgan
efbf41ed81 llm: dont link cuda with compat libs (#5621) 2024-07-10 20:01:52 -07:00
Michael Yang
cf15589851 Merge pull request #5620 from ollama/mxyng/templates
update embedded templates
2024-07-10 17:16:24 -07:00
Michael Yang
19753c18c0 update embedded templates 2024-07-10 17:03:08 -07:00
Michael Yang
41be28096a add system prompt to first legacy template 2024-07-10 17:03:08 -07:00
Michael Yang
37a570f962 Merge pull request #5612 from ollama/mxyng/mem
chatglm graph
2024-07-10 14:18:33 -07:00
Michael Yang
5a739ff4cb chatglm graph 2024-07-10 13:43:47 -07:00
Jeffrey Morgan
4e262eb2a8 remove GGML_CUDA_FORCE_MMQ=on from build (#5588) 2024-07-10 13:17:13 -07:00
Daniel Hiltgen
4cfcbc328f Merge pull request #5124 from dhiltgen/amd_windows
Wire up windows AMD driver reporting
2024-07-10 12:50:23 -07:00
Daniel Hiltgen
79292ff3e0 Merge pull request #5555 from dhiltgen/msvc_deps
Bundle missing CRT libraries
2024-07-10 12:50:02 -07:00
Daniel Hiltgen
8ea500441d Merge pull request #5580 from dhiltgen/cuda_overhead
Detect CUDA OS overhead
2024-07-10 12:47:31 -07:00
Daniel Hiltgen
b50c818623 Merge pull request #5607 from dhiltgen/win_rocm_v6
Bump ROCm on windows to 6.1.2
2024-07-10 12:47:10 -07:00
Daniel Hiltgen
b99e750b62 Merge pull request #5605 from dhiltgen/merge_glitch
Remove duplicate merge glitch
2024-07-10 11:47:08 -07:00
Daniel Hiltgen
1f50356e8e Bump ROCm on windows to 6.1.2
This also adjusts our algorithm to favor our bundled ROCm.
I've confirmed VRAM reporting still doesn't work properly so we
can't yet enable concurrency by default.
2024-07-10 11:01:22 -07:00
Daniel Hiltgen
22c81f62ec Remove duplicate merge glitch 2024-07-10 09:01:33 -07:00
Daniel Hiltgen
2d1e3c3229 Merge pull request #5503 from dhiltgen/dual_rocm
Workaround broken ROCm p2p copy
2024-07-09 15:44:16 -07:00
royjhan
4918fae535 OpenAI v1/completions: allow stop token list (#5551)
* stop token parsing fix

* add stop test
2024-07-09 14:01:26 -07:00
royjhan
0aff67877e separate request tests (#5578) 2024-07-09 13:48:31 -07:00
Daniel Hiltgen
f6f759fc5f Detect CUDA OS Overhead
This adds logic to detect skew between the driver and
management library which can be attributed to OS overhead
and records that so we can adjust subsequent management
library free VRAM updates and avoid OOM scenarios.
2024-07-09 12:21:50 -07:00
Daniel Hiltgen
9544a57ee4 Merge pull request #5579 from dhiltgen/win_static_deps
Statically link c++ and thread lib on windows
2024-07-09 12:21:13 -07:00
Daniel Hiltgen
b51e3b63ac Statically link c++ and thread lib
This makes sure we statically link the c++ and thread library on windows
to avoid unnecessary runtime dependencies on non-standard DLLs
2024-07-09 11:34:30 -07:00
Michael Yang
6bbbc50f10 Merge pull request #5440 from ollama/mxyng/messages-templates
update named templates
2024-07-09 09:36:32 -07:00
Michael Yang
9bbddc37a7 Merge pull request #5126 from ollama/mxyng/messages
update message processing
2024-07-09 09:20:44 -07:00
Jeffrey Morgan
e4ff73297d server: fix model reloads when setting OLLAMA_NUM_PARALLEL (#5560)
* server: fix unneeded model reloads when setting `OLLAMA_NUM_PARALLEL`

* remove whitespace change

* undo some changes
2024-07-08 22:32:15 -07:00
Daniel Hiltgen
b44320db13 Bundle missing CRT libraries
Some users are experienging runner startup errors due
to not having these msvc redist libraries on their host
2024-07-08 18:24:21 -07:00
Daniel Hiltgen
0bacb30007 Workaround broken ROCm p2p copy
Enable the build flag for llama.cpp to use CPU copy for multi-GPU scenarios.
2024-07-08 09:40:52 -07:00
Michael Yang
fb6cbc02fb update named templates 2024-07-05 16:29:32 -07:00
Michael Yang
326363b3a7 no funcs 2024-07-05 13:17:25 -07:00
Michael Yang
ac7a842e55 fix model reloading
ensure runtime model changes (template, system prompt, messages,
options) are captured on model updates without needing to reload the
server
2024-07-05 13:17:25 -07:00
Michael Yang
2c3fe1fd97 comments 2024-07-05 13:17:24 -07:00
Michael Yang
269ed6e6a2 update message processing 2024-07-05 13:16:58 -07:00
Roy Han
c71698426c Separate Rounding Functions 2024-06-24 11:09:08 -07:00
Roy Han
f93cdfdfae Standardize with ollama.com 2024-06-24 10:53:15 -07:00
Roy Han
af370ac178 Parameter Precision 2024-06-20 10:38:31 -07:00
Daniel Hiltgen
784bf88b0d Wire up windows AMD driver reporting
This seems to be ROCm version, not actually driver version, but
it may be useful for toggling logic for VRAM reporting in the future
2024-06-18 16:22:47 -07:00
132 changed files with 3111 additions and 3969 deletions

View File

@@ -147,7 +147,7 @@ jobs:
run: |
$ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP"
@@ -304,11 +304,6 @@ jobs:
write-host "Installing plugin"
& "${env:RUNNER_TEMP}\plugin\*\kmscng.msi" /quiet
write-host "plugin installed"
- name: remove unwanted mingw dll.a files
run: |
Get-ChildItem -Path "C:\mingw64" -Recurse -Filter "libpthread.dll.a" -File | Remove-Item -Force
Get-ChildItem -Path "C:\mingw64" -Recurse -Filter "libwinpthread.dll.a" -File | Remove-Item -Force
Get-ChildItem -Path "C:\mingw64" -Recurse -Filter "libstdc++.dll.a" -File | Remove-Item -Force
- uses: actions/setup-go@v5
with:
go-version-file: go.mod

View File

@@ -169,7 +169,7 @@ jobs:
run: |
$ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP"

View File

@@ -127,6 +127,10 @@ Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\models"
Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\history"
; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved
[InstallDelete]
Type: filesandordirs; Name: "{%TEMP}\ollama*"
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
[Messages]
WizardReady=Ollama Windows Preview
ReadyLabel1=%nLet's get you up and running with your own large language models.

View File

@@ -657,7 +657,7 @@ func showInfo(resp *api.ShowResponse) {
modelData := [][]string{
{"arch", arch},
{"parameters", resp.Details.ParameterSize},
{"parameters", format.Parameters(uint64(resp.ModelInfo["general.parameter_count"].(float64)))},
{"quantization", resp.Details.QuantizationLevel},
{"context length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64))},
{"embedding length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64))},
@@ -671,7 +671,7 @@ func showInfo(resp *api.ShowResponse) {
if resp.ProjectorInfo != nil {
projectorData := [][]string{
{"arch", "clip"},
{"parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))},
{"parameters", format.Parameters(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))},
}
if projectorType, ok := resp.ProjectorInfo["clip.projector_type"]; ok {

View File

@@ -1,134 +1,200 @@
package convert
import (
"cmp"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"slices"
"strings"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
"github.com/ollama/ollama/llm"
)
type Parameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
const (
_ int32 = iota
tokenTypeNormal
tokenTypeUnknown
tokenTypeControl
tokenTypeUserDefined
tokenTypeUnused
tokenTypeByte
)
type Params struct {
Architectures []string `json:"architectures"`
VocabSize int `json:"vocab_size"`
HiddenSize int `json:"hidden_size"` // n_embd
HiddenLayers int `json:"num_hidden_layers"` // n_layer
ContextSize int `json:"max_position_embeddings"`
IntermediateSize int `json:"intermediate_size"`
AttentionHeads int `json:"num_attention_heads"` // n_head
KeyValHeads int `json:"num_key_value_heads"`
NormEPS float64 `json:"rms_norm_eps"`
BoSTokenID int `json:"bos_token_id"`
EoSTokenID int `json:"eos_token_id"`
HeadDimension int `json:"head_dim"`
PaddingTokenID int `json:"pad_token_id"`
RopeFrequencyBase float64 `json:"rope_theta"`
Experts int `json:"num_local_experts"`
ExpertsUsed int `json:"num_experts_per_tok"`
PreTokenizer string
ByteOrder
}
func (Parameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
"tokenizer.ggml.model": t.Vocabulary.Model,
"tokenizer.ggml.tokens": t.Vocabulary.Tokens,
"tokenizer.ggml.scores": t.Vocabulary.Scores,
"tokenizer.ggml.token_type": t.Vocabulary.Types,
}
if t.Template != "" {
kv["tokenizer.chat_template"] = t.Template
}
for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
}
return kv
type ByteOrder interface {
binary.ByteOrder
binary.AppendByteOrder
}
func (Parameters) specialTypes() []string {
return []string{
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
}
type ModelArch interface {
GetTensors() error
LoadVocab() error
WriteGGUF(io.WriteSeeker) error
}
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []*llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
type ModelFormat interface {
GetLayerName(string) (string, error)
GetTensors(string, *Params) ([]llm.Tensor, error)
GetParams(string) (*Params, error)
GetModelArch(string, string, *Params) (ModelArch, error)
}
type Converter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []*llm.Tensor
// tensorName returns the LLM tensor name for a specific input name
tensorName(string) string
// specialTypes returns any special token types the model uses
specialTypes() []string
writeFile(io.WriteSeeker, llm.KV, []*llm.Tensor) error
type ModelData struct {
Path string
Name string
Params *Params
Vocab *Vocab
Tensors []llm.Tensor
Format ModelFormat
}
func ConvertAdapter(d string, ws io.WriteSeeker) error {
c := &adapter{}
ts, err := parseNPZ(d)
func GetModelFormat(dirname string) (ModelFormat, error) {
files, err := filepath.Glob(filepath.Join(dirname, "*"))
if err != nil {
return err
return nil, err
}
return c.writeFile(ws, c.KV(nil), c.Tensors(ts))
}
func Convert(d string, ws io.WriteSeeker) error {
f, err := os.Open(filepath.Join(d, "config.json"))
if err != nil {
return err
}
defer f.Close()
var p Parameters
if err := json.NewDecoder(f).Decode(&p); err != nil {
return err
}
if len(p.Architectures) < 1 {
return errors.New("unknown architecture")
}
var c Converter
switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM":
c = &llama{}
case "MixtralForCausalLM":
c = &mixtral{}
case "GemmaForCausalLM":
c = &gemma{}
default:
return errors.New("unsupported architecture")
}
bts, err := os.ReadFile(filepath.Join(d, "config.json"))
if err != nil {
return err
}
if err := json.Unmarshal(bts, c); err != nil {
return err
}
t, err := parseTokenizer(d, c.specialTypes())
if err != nil {
return err
}
if vocabSize := int(p.VocabSize); vocabSize > len(t.Vocabulary.Tokens) {
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", p.VocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
for _, fn := range files {
if strings.HasSuffix(fn, ".safetensors") {
return &SafetensorFormat{}, nil
} else if strings.HasSuffix(fn, ".bin") || strings.HasSuffix(fn, ".pth") {
slog.Debug("model is torch")
return &TorchFormat{}, nil
}
}
ts, err := parseTensors(d)
return nil, fmt.Errorf("couldn't determine model format")
}
// Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
type Vocab struct {
Tokens []string
Scores []float32
Types []int32
Merges []string
}
func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) {
slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
if err != nil {
return err
return nil, err
}
return c.writeFile(ws, c.KV(t), c.Tensors(ts))
// To regenerate sentencepiece from the protobufs use:
// protoc -I=./ --go_out=./ sentencepiece_model.proto
modelProto := &sentencepiece.ModelProto{}
if err := proto.Unmarshal(in, modelProto); err != nil {
return nil, err
}
v := &Vocab{
Tokens: make([]string, 0),
Scores: make([]float32, 0),
Types: make([]int32, 0),
}
pieces := modelProto.GetPieces()
for _, p := range pieces {
v.Tokens = append(v.Tokens, p.GetPiece())
v.Scores = append(v.Scores, p.GetScore())
t := p.GetType()
switch t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
case sentencepiece.ModelProto_SentencePiece_CONTROL:
case sentencepiece.ModelProto_SentencePiece_UNUSED:
case sentencepiece.ModelProto_SentencePiece_BYTE:
default:
t = sentencepiece.ModelProto_SentencePiece_NORMAL
}
v.Types = append(v.Types, int32(t))
}
slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))
// add any additional tokens
addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
if os.IsNotExist(err) {
return v, nil
} else if err != nil {
return nil, err
}
slog.Info("reading user defined tokens")
var extraTokenData map[string]int
if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
return nil, err
}
type token struct {
key string
pos int
}
extraTokens := make([]token, 0)
for k, id := range extraTokenData {
extraTokens = append(extraTokens, token{k, id})
}
slices.SortFunc(extraTokens, func(a, b token) int {
return cmp.Compare(a.pos, b.pos)
})
numToks := len(v.Tokens)
for cnt, t := range extraTokens {
// the token id should match the specific index for the total number of tokens
if t.pos != cnt+numToks {
return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
}
v.Tokens = append(v.Tokens, t.key)
v.Scores = append(v.Scores, -1000.0)
v.Types = append(v.Types, tokenTypeUserDefined)
}
slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))
if params.VocabSize > len(v.Tokens) {
missingTokens := params.VocabSize - len(v.Tokens)
slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
for cnt := range missingTokens {
v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
v.Scores = append(v.Scores, -1)
v.Types = append(v.Types, tokenTypeUserDefined)
}
}
return v, nil
}

View File

@@ -1,56 +0,0 @@
package convert
import (
"io"
"strings"
"github.com/ollama/ollama/llm"
)
type adapter struct {
Parameters
}
var _ Converter = (*adapter)(nil)
func (p *adapter) writeFile(ws io.WriteSeeker, kv llm.KV, ts []*llm.Tensor) error {
return llm.WriteGGLA(ws, kv, ts)
}
func (p *adapter) KV(t *Tokenizer) llm.KV {
// todo - need a way to pass these in
kv := llm.KV{
"r": uint32(8),
"alpha": uint32(160),
}
return kv
}
func (p *adapter) Tensors(ts []Tensor) []*llm.Tensor {
var out []*llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
out = append(out, &llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *adapter) tensorName(n string) string {
return strings.NewReplacer(
"model.layers", "blk",
"self_attn.q_proj", "attn_q.weight",
"self_attn.k_proj", "attn_k.weight",
"self_attn.v_proj", "attn_v.weight",
"self_attn.o_proj", "attn_output.weight",
"lora_a", "loraA",
"lora_b", "loraB",
".npy", "",
).Replace(n)
}

View File

@@ -1,103 +0,0 @@
package convert
import (
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type gemma struct {
Parameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
}
var _ Converter = (*gemma)(nil)
func (p *gemma) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "gemma"
kv["general.name"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
kv["gemma.embedding_length"] = p.HiddenSize
kv["gemma.block_count"] = p.HiddenLayers
kv["gemma.feed_forward_length"] = p.IntermediateSize
kv["gemma.attention.head_count"] = p.NumAttentionHeads
kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads
kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma.attention.key_length"] = p.HeadDim
kv["gemma.attention.value_length"] = p.HeadDim
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
return kv
}
func (p *gemma) Tensors(ts []Tensor) []*llm.Tensor {
var out []*llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, &llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *gemma) tensorName(n string) string {
return strings.NewReplacer(
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
"block_sparse_moe.gate", "ffn_inp",
).Replace(n)
}
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, int(shape[0]))
n, err := n.Add(ones)
if err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 0)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -1,176 +0,0 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/ollama/ollama/llm"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type llama struct {
Parameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NCtx uint32 `json:"n_ctx"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NInner uint32 `json:"n_inner"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
Factor float32 `json:"factor"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
}
var _ Converter = (*llama)(nil)
func (p *llama) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "llama"
kv["general.name"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
kv["llama.context_length"] = contextLength
}
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
}
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
}
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
}
if p.RopeTheta > 0 {
kv["llama.rope.freq_base"] = p.RopeTheta
}
if p.RopeScaling.Type == "linear" {
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
}
if p.NumKeyValueHeads > 0 {
kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
}
if p.RMSNormEPS > 0 {
kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
}
if len(t.Merges) > 0 {
kv["tokenizer.ggml.merges"] = t.Merges
}
return kv
}
func (p *llama) Tensors(ts []Tensor) []*llm.Tensor {
var out []*llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "attn_q.weight") ||
strings.HasSuffix(name, "attn_k.weight") {
t.SetRepacker(p.repack)
}
out = append(out, &llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *llama) tensorName(n string) string {
return strings.NewReplacer(
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
// mixtral
"block_sparse_moe.gate", "ffn_gate_inp",
).Replace(n)
}
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, "q_proj.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "k_proj.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -1,89 +0,0 @@
package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/llm"
)
type mixtral struct {
llama
NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
var _ Converter = (*mixtral)(nil)
func (p *mixtral) KV(t *Tokenizer) llm.KV {
kv := p.llama.KV(t)
if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts
}
if p.NumExpertsPerToken > 0 {
kv["llama.expert_used_count"] = p.NumExpertsPerToken
}
return kv
}
func (p *mixtral) Tensors(ts []Tensor) []*llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []*llm.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, &llm.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
})
}
return append(out, p.llama.Tensors(ts)...)
}
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

View File

@@ -1,34 +1,48 @@
//go:build slow
package convert
import (
"bytes"
"crypto/sha256"
"encoding/json"
"errors"
"flag"
"fmt"
"io"
"log/slog"
"math"
"os"
"path/filepath"
"slices"
"testing"
"github.com/ollama/ollama/llm"
"golang.org/x/exp/maps"
)
func convertFull(t *testing.T, d string) (*os.File, llm.KV, llm.Tensors) {
func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) {
t.Helper()
mf, err := GetModelFormat(p)
if err != nil {
t.Fatal(err)
}
params, err := mf.GetParams(p)
if err != nil {
t.Fatal(err)
}
arch, err := mf.GetModelArch("", p, params)
if err != nil {
t.Fatal(err)
}
if err := arch.LoadVocab(); err != nil {
t.Fatal(err)
}
if err := arch.GetTensors(); err != nil {
t.Fatal(err)
}
f, err := os.CreateTemp(t.TempDir(), "f16")
if err != nil {
t.Fatal(err)
}
defer f.Close()
if err := Convert(d, f); err != nil {
if err := arch.WriteGGUF(f); err != nil {
t.Fatal(err)
}
@@ -36,200 +50,54 @@ func convertFull(t *testing.T, d string) (*os.File, llm.KV, llm.Tensors) {
if err != nil {
t.Fatal(err)
}
t.Cleanup(func() { r.Close() })
defer r.Close()
m, _, err := llm.DecodeGGML(r, math.MaxInt)
m, _, err := llm.DecodeGGML(r)
if err != nil {
t.Fatal(err)
}
if _, err := r.Seek(0, io.SeekStart); err != nil {
t.Fatal(err)
}
return r, m.KV(), m.Tensors()
}
func TestMain(m *testing.M) {
var level slog.Level
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
flag.Parse()
slog.SetLogLoggerLevel(level)
os.Exit(m.Run())
return m.KV(), m.Tensors()
}
func TestConvertFull(t *testing.T) {
cases := []string{
"Meta-Llama-3-8B-Instruct",
"Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it",
cases := []struct {
path string
arch string
tensors int
layers int
}{
{"Meta-Llama-3-8B-Instruct", "llama", 291, 35},
{"Mistral-7B-Instruct-v0.2", "llama", 291, 35},
{"Mixtral-8x7B-Instruct-v0.1", "llama", 291, 35},
{"gemma-2b-it", "gemma", 164, 20},
}
for i := range cases {
tt := cases[i]
t.Run(tt, func(t *testing.T) {
t.Parallel()
p := filepath.Join("testdata", tt)
if testing.Short() {
t.Skip("skipping in short mode")
} else if _, err := os.Stat(p); err != nil {
for _, tt := range cases {
t.Run(tt.path, func(t *testing.T) {
p := filepath.Join("testdata", tt.path)
if _, err := os.Stat(p); err != nil {
t.Skipf("%s not found", p)
}
f, kv, tensors := convertFull(t, p)
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
kv, tensors := convertFull(t, p)
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
if kv.Architecture() != tt.arch {
t.Fatalf("expected llama, got %s", kv.Architecture())
}
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = fmt.Sprintf("%x", sha256sum.Sum(nil))
if kv.FileType().String() != "F16" {
t.Fatalf("expected F16, got %s", kv.FileType())
}
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
if err != nil {
t.Fatal(err)
if len(tensors) != tt.tensors {
t.Fatalf("expected %d tensors, got %d", tt.tensors, len(tensors))
}
var expect map[string]string
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
t.Fatal(err)
}
keys := maps.Keys(expect)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != expect[k] {
t.Errorf("unexpected %s: want %s, got %s", k, expect[k], v)
}
layers := tensors.Layers()
if len(layers) != tt.layers {
t.Fatalf("expected %d layers, got %d", tt.layers, len(layers))
}
})
}
}
func TestConvertNPZ(t *testing.T) {
cases := []string{
"adapters.npz",
}
for _, fn := range cases {
ts, err := parseNPZ(filepath.Join("testdata", fn))
if err != nil {
t.Fatal(err)
}
if len(ts) != 16*2*2 {
t.Errorf("got: %d want: %d total layers", len(ts), 16*2*2)
}
a := adapter{}
for _, m := range ts {
at := m.(adapterTensor)
if at.path != filepath.Join("testdata", fn) {
t.Errorf("got: %s want: %s", at.path, filepath.Join("testdata", fn))
}
if at.dtype != "F32" {
t.Errorf("got: %s but only F32s are currently supported", at.dtype)
}
if len(at.tensorBase.shape) != 2 {
t.Errorf("got: %d want: %d tensor shape", at.tensorBase.shape, 2)
}
}
var ws io.WriteSeeker = &memWriter{}
err = llm.WriteGGLA(ws, a.KV(nil), a.Tensors(ts))
if err != nil {
t.Fatal(err)
}
mw := ws.(*memWriter)
slog.Info(fmt.Sprintf("buffer len = %d", len(mw.buf)))
if len(mw.buf) == 0 {
t.Errorf("ggla layer not written correctly")
}
rs := bytes.NewReader(mw.buf)
ggml, _, err := llm.DecodeGGML(rs, len(mw.buf))
if err != nil {
t.Fatal(err)
}
if ggml == nil {
t.Fatalf("ggla didn't convert to ggml correctly")
}
kv := ggml.KV()
if kv == nil {
t.Fatalf("no lora KVs were set")
}
r, ok := kv["r"]
if !ok || r != uint32(8) {
t.Errorf("lora rank was not set correctly")
}
alpha, ok := kv["alpha"]
if !ok || alpha != uint32(160) {
t.Errorf("lora alpha was not set correctly")
}
gts := ggml.Tensors()
if len(ts) != len(gts.Items) {
t.Fatalf("got: %d want: %d tensors in ggla", len(gts.Items), len(ts))
}
}
}
type memWriter struct {
buf []byte
pos int
}
func (m *memWriter) Write(p []byte) (n int, err error) {
minCap := m.pos + len(p)
if minCap > cap(m.buf) {
buf2 := make([]byte, len(m.buf), minCap+len(p)) // add some extra
copy(buf2, m.buf)
m.buf = buf2
}
if minCap > len(m.buf) {
m.buf = m.buf[:minCap]
}
copy(m.buf[m.pos:], p)
m.pos += len(p)
return len(p), nil
}
func (m *memWriter) Seek(offset int64, whence int) (int64, error) {
newPos, offs := 0, int(offset)
switch whence {
case io.SeekStart:
newPos = offs
case io.SeekCurrent:
newPos = m.pos + offs
case io.SeekEnd:
newPos = len(m.buf) + offs
}
if newPos < 0 {
return 0, errors.New("negative result pos")
}
m.pos = newPos
return int64(newPos), nil
}

102
convert/gemma.go Normal file
View File

@@ -0,0 +1,102 @@
package convert
import (
"fmt"
"io"
"log/slog"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type GemmaModel struct {
ModelData
}
func addOnes(data []float32, vectorSize int) ([]float32, error) {
n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, vectorSize)
n, err := n.Add(ones)
if err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 0)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}
func (m *GemmaModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
slog.Debug(fmt.Sprintf("Total tensors: %d", len(t)))
for _, l := range t {
if strings.HasSuffix(l.Name, "norm.weight") {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *GemmaModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *GemmaModel) Repack(_ string, data []float32, shape []uint64) ([]float32, error) {
return addOnes(data, int(shape[0]))
}
func (m *GemmaModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "gemma",
"general.name": m.Name,
"gemma.context_length": uint32(m.Params.ContextSize),
"gemma.embedding_length": uint32(m.Params.HiddenSize),
"gemma.block_count": uint32(m.Params.HiddenLayers),
"gemma.feed_forward_length": uint32(m.Params.IntermediateSize),
"gemma.attention.head_count": uint32(m.Params.AttentionHeads),
"gemma.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"gemma.attention.key_length": uint32(m.Params.HeadDimension),
"gemma.attention.value_length": uint32(m.Params.HeadDimension),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID),
"tokenizer.ggml.unknown_token_id": uint32(3),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}

159
convert/llama.go Normal file
View File

@@ -0,0 +1,159 @@
package convert
import (
"cmp"
"errors"
"fmt"
"io"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type LlamaModel struct {
ModelData
}
func (m *LlamaModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
switch m.Format.(type) {
case *TorchFormat:
wt := l.WriterTo.(torchWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
case *SafetensorFormat:
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *LlamaModel) LoadVocab() (err error) {
pre, ts, merges, err := parseTokens(filepath.Join(m.Path, "tokenizer.json"))
if errors.Is(err, os.ErrNotExist) {
return nil
} else if err != nil {
return err
}
m.Vocab = &Vocab{}
for _, t := range ts {
m.Vocab.Tokens = append(m.Vocab.Tokens, t.Content)
m.Vocab.Types = append(m.Vocab.Types, t.Type())
}
m.Vocab.Merges = merges
m.Params.PreTokenizer = pre
return nil
}
func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": m.Params.PreTokenizer,
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.unknown_token_id": uint32(0),
}
if len(m.Vocab.Merges) > 0 {
kv["tokenizer.ggml.merges"] = m.Vocab.Merges
} else {
kv["tokenizer.ggml.scores"] = m.Vocab.Scores
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}
func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
if dim != 0 {
dims = append(dims, int(dim))
}
}
var heads int
switch {
case strings.HasSuffix(name, "attn_q.weight"):
heads = params.AttentionHeads
case strings.HasSuffix(name, "attn_k.weight"):
heads = cmp.Or(params.KeyValHeads, params.AttentionHeads)
default:
return nil, fmt.Errorf("unknown tensor name: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

79
convert/mistral.go Normal file
View File

@@ -0,0 +1,79 @@
package convert
import (
"io"
"regexp"
"github.com/ollama/ollama/llm"
)
type MistralModel struct {
ModelData
}
func (m *MistralModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *MistralModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
"tokenizer.ggml.unknown_token_id": uint32(0),
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *MistralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}

87
convert/mixtral.go Normal file
View File

@@ -0,0 +1,87 @@
package convert
import (
"io"
"regexp"
"github.com/ollama/ollama/llm"
)
type MixtralModel struct {
ModelData
}
func (m *MixtralModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *MixtralModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *MixtralModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"llama.expert_count": uint32(m.Params.Experts),
"llama.expert_used_count": uint32(m.Params.ExpertsUsed),
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.unknown_token_id": uint32(0),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *MixtralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}

View File

@@ -1,74 +0,0 @@
package convert
import (
"errors"
"io"
"path/filepath"
"strings"
)
type Tensor interface {
Name() string
Shape() []uint64
Kind() uint32
SetRepacker(repacker)
WriteTo(io.Writer) (int64, error)
}
type tensorBase struct {
name string
shape []uint64
repacker
}
func (t tensorBase) Name() string {
return t.name
}
func (t tensorBase) Shape() []uint64 {
return t.shape
}
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
return 0
}
switch len(t.shape) {
case 0:
panic("invalid tensor shape")
case 1:
return 0
default:
return 1
}
}
func (t *tensorBase) SetRepacker(fn repacker) {
t.repacker = fn
}
type repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(d string) ([]Tensor, error) {
patterns := map[string]func(...string) ([]Tensor, error){
"model-*-of-*.safetensors": parseSafetensors,
"model.safetensors": parseSafetensors,
"pytorch_model-*-of-*.bin": parseTorch,
"pytorch_model.bin": parseTorch,
"consolidated.*.pth": parseTorch,
}
for pattern, parseFn := range patterns {
matches, err := filepath.Glob(filepath.Join(d, pattern))
if err != nil {
return nil, err
}
if len(matches) > 0 {
return parseFn(matches...)
}
}
return nil, errors.New("unknown tensor format")
}

View File

@@ -1,140 +0,0 @@
package convert
import (
"encoding/binary"
"fmt"
"io"
"log/slog"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/sbinet/npyio/npz"
)
type adapterTensor struct {
path string
dtype string
*tensorBase
}
func DetectNPZ(fn string) (bool, error) {
f, err := npz.Open(fn)
if err != nil {
return false, err
}
defer f.Close()
if len(f.Keys()) > 0 && strings.HasSuffix(f.Keys()[0], ".npy") {
return true, nil
}
return false, nil
}
func parseNPZ(fn string) ([]Tensor, error) {
var ts []Tensor
f, err := npz.Open(fn)
if err != nil {
return nil, err
}
defer f.Close()
for _, name := range f.Keys() {
slog.Info(fmt.Sprintf("reading layer '%s'", name))
h := f.Header(name)
shape := make([]uint64, 2)
for cnt, v := range h.Descr.Shape {
// llamacpp expects the loraB layer to be reversed
if strings.Contains(name, "lora_b") {
shape[len(shape)-cnt-1] = uint64(v)
} else {
shape[cnt] = uint64(v)
}
}
dtypeMap := map[string]string{
"<f2": "F16",
"<f4": "F32",
}
dtype, ok := dtypeMap[h.Descr.Type]
if !ok {
return nil, fmt.Errorf("Unknown type '%s' for '%s'", h.Descr.Type, name)
}
ts = append(ts, adapterTensor{
path: fn,
dtype: dtype,
tensorBase: &tensorBase{
name: name,
shape: shape,
},
})
}
return ts, nil
}
func (t adapterTensor) Kind() uint32 {
switch t.dtype {
case "F32":
return 0
case "F16":
return 1
}
return 0
}
func (t adapterTensor) WriteTo(w io.Writer) (int64, error) {
f, err := npz.Open(t.path)
if err != nil {
return 0, err
}
defer f.Close()
switch t.dtype {
case "F32":
var f32s []float32
err = f.Read(t.tensorBase.name, &f32s)
if err != nil {
return 0, err
}
// ggla expects the loraB to be transposed
if strings.Contains(t.tensorBase.name, "lora_b") {
f32s, err = transpose(f32s, t.tensorBase.shape)
if err != nil {
return 0, err
}
}
return 0, binary.Write(w, binary.LittleEndian, f32s)
}
return 0, fmt.Errorf("unknown data type: %s", t.dtype)
}
func transpose(f32s []float32, shape []uint64) ([]float32, error) {
if len(shape) != 2 {
return nil, fmt.Errorf("only 2 dimensions supported for transpose")
}
// the shape is already backward
n := tensor.New(tensor.WithShape(int(shape[1]), int(shape[0])), tensor.WithBacking(f32s))
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
f32s = make([]float32, 0)
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -1,140 +0,0 @@
package convert
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"os"
"slices"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"golang.org/x/exp/maps"
)
type safetensorMetadata struct {
Type string `json:"dtype"`
Shape []uint64 `json:"shape"`
Offsets []int64 `json:"data_offsets"`
}
func parseSafetensors(ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
f, err := os.Open(p)
if err != nil {
return nil, err
}
defer f.Close()
var n int64
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
return nil, err
}
b := bytes.NewBuffer(make([]byte, 0, n))
if _, err = io.CopyN(b, f, n); err != nil {
return nil, err
}
var headers map[string]safetensorMetadata
if err := json.NewDecoder(b).Decode(&headers); err != nil {
return nil, err
}
keys := maps.Keys(headers)
slices.Sort(keys)
for _, key := range keys {
if value := headers[key]; value.Type != "" {
ts = append(ts, safetensor{
path: p,
dtype: value.Type,
offset: safetensorsPad(n, value.Offsets[0]),
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
tensorBase: &tensorBase{
name: key,
shape: value.Shape,
},
})
}
}
}
return ts, nil
}
func safetensorsPad(n, s int64) int64 {
return 8 + n + s
}
type safetensor struct {
path string
dtype string
offset int64
size int64
*tensorBase
}
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
f, err := os.Open(st.path)
if err != nil {
return 0, err
}
defer f.Close()
if _, err = f.Seek(st.offset, io.SeekStart); err != nil {
return 0, err
}
var f32s []float32
switch st.dtype {
case "F32":
f32s = make([]float32, st.size/4)
if err = binary.Read(f, binary.LittleEndian, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, st.size/2)
if err = binary.Read(f, binary.LittleEndian, u16s); err != nil {
return 0, err
}
for _, b := range u16s {
f32s = append(f32s, float16.Frombits(b).Float32())
}
case "BF16":
u8s := make([]uint8, st.size)
if err = binary.Read(f, binary.LittleEndian, u8s); err != nil {
return 0, err
}
f32s = bfloat16.DecodeFloat32(u8s)
default:
return 0, fmt.Errorf("unknown data type: %s", st.dtype)
}
if st.repacker != nil {
f32s, err = st.repacker(st.Name(), f32s, st.Shape())
if err != nil {
return 0, err
}
}
switch st.Kind() {
case 0:
return 0, binary.Write(w, binary.LittleEndian, f32s)
case 1:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, binary.LittleEndian, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
}
}

View File

@@ -1,46 +0,0 @@
package convert
import (
"io"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
)
func parseTorch(ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
pt, err := pytorch.Load(p)
if err != nil {
return nil, err
}
for _, k := range pt.(*types.Dict).Keys() {
t := pt.(*types.Dict).MustGet(k)
var shape []uint64
for dim := range t.(*pytorch.Tensor).Size {
shape = append(shape, uint64(dim))
}
ts = append(ts, torch{
storage: t.(*pytorch.Tensor).Source,
tensorBase: &tensorBase{
name: k.(string),
shape: shape,
},
})
}
}
return ts, nil
}
type torch struct {
storage pytorch.StorageInterface
*tensorBase
}
func (pt torch) WriteTo(w io.Writer) (int64, error) {
return 0, nil
}

309
convert/safetensors.go Normal file
View File

@@ -0,0 +1,309 @@
package convert
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"os"
"path/filepath"
"regexp"
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
type safetensorWriterTo struct {
t *llm.Tensor
params *Params
bo ByteOrder
filename string
dtype string
offset, size int64
repacker func(string, []float32, []uint64) ([]float32, error)
}
type safetensorMetadata struct {
Type string `json:"dtype"`
Shape []uint64 `json:"shape"`
Offsets []int64 `json:"data_offsets"`
}
type SafetensorFormat struct{}
func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
var tensors []llm.Tensor
matches, err := filepath.Glob(filepath.Join(dirpath, "*.safetensors"))
if err != nil {
return nil, err
}
var offset uint64
for _, f := range matches {
var t []llm.Tensor
var err error
t, offset, err = m.readTensors(f, offset, params)
if err != nil {
return nil, err
}
tensors = append(tensors, t...)
}
return tensors, nil
}
func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
f, err := os.Open(fn)
if err != nil {
return nil, 0, err
}
defer f.Close()
var n int64
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
return nil, 0, err
}
b := bytes.NewBuffer(make([]byte, 0, n))
if _, err = io.CopyN(b, f, n); err != nil {
return nil, 0, err
}
var headers map[string]safetensorMetadata
if err := json.NewDecoder(b).Decode(&headers); err != nil {
return nil, 0, err
}
var keys []string
for key := range headers {
if !strings.HasSuffix(key, "self_attn.rotary_embd.inv_freq") {
keys = append(keys, key)
}
}
slices.Sort(keys)
var tensors []llm.Tensor
for _, key := range keys {
value := headers[key]
var kind uint32
switch len(value.Shape) {
case 0:
// valuedata
continue
case 2:
kind = 1
}
name, err := m.GetLayerName(key)
if err != nil {
return nil, 0, err
}
shape := make([]uint64, len(value.Shape))
copy(shape, value.Shape)
pad := func(s int64) int64 {
return 8 + n + s
}
t := llm.Tensor{
Name: name,
Kind: kind,
Offset: offset,
Shape: shape,
}
t.WriterTo = safetensorWriterTo{
t: &t,
params: params,
bo: params.ByteOrder,
filename: fn,
dtype: value.Type,
offset: pad(value.Offsets[0]),
size: pad(value.Offsets[1]) - pad(value.Offsets[0]),
}
offset += t.Size()
tensors = append(tensors, t)
}
return tensors, offset, nil
}
func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "config.json"))
if err != nil {
return nil, err
}
defer f.Close()
var params Params
if err := json.NewDecoder(f).Decode(&params); err != nil {
return nil, err
}
params.ByteOrder = binary.LittleEndian
return &params, nil
}
func (m *SafetensorFormat) GetLayerName(n string) (string, error) {
directMap := map[string]string{
"model.embed_tokens.weight": "token_embd.weight",
"lm_head.weight": "output.weight",
"model.norm.weight": "output_norm.weight",
}
tMap := map[string]string{
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
"model.layers.(\\d+).block_sparse_moe.gate.weight": "blk.$1.ffn_gate_inp.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w1.weight": "blk.$1.ffn_gate.$2.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w2.weight": "blk.$1.ffn_down.$2.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w3.weight": "blk.$1.ffn_up.$2.weight",
}
v, ok := directMap[n]
if ok {
return v, nil
}
// quick hack to rename the layers to gguf format
for k, v := range tMap {
re := regexp.MustCompile(k)
newName := re.ReplaceAllString(n, v)
if newName != n {
return newName, nil
}
}
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}
func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
f, err := os.Open(r.filename)
if err != nil {
return 0, err
}
defer f.Close()
if _, err = f.Seek(r.offset, io.SeekStart); err != nil {
return 0, err
}
var f32s []float32
switch r.dtype {
case "F32":
f32s = make([]float32, r.size/4)
if err = binary.Read(f, r.bo, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, r.size/2)
if err = binary.Read(f, r.bo, u16s); err != nil {
return 0, err
}
for _, b := range u16s {
f32s = append(f32s, float16.Frombits(b).Float32())
}
case "BF16":
u8s := make([]uint8, r.size)
if err = binary.Read(f, r.bo, u8s); err != nil {
return 0, err
}
f32s = bfloat16.DecodeFloat32(u8s)
default:
return 0, fmt.Errorf("unknown data type: %s", r.dtype)
}
if r.repacker != nil {
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
if err != nil {
return 0, err
}
}
switch r.t.Kind {
case 0:
return 0, binary.Write(w, r.bo, f32s)
case 1:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, r.bo, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
}
}
func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
switch len(params.Architectures) {
case 0:
return nil, fmt.Errorf("No architecture specified to convert")
case 1:
switch params.Architectures[0] {
case "LlamaForCausalLM":
return &LlamaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "MistralForCausalLM":
return &MistralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "MixtralForCausalLM":
return &MixtralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "GemmaForCausalLM":
return &GemmaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
default:
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
}
}
return nil, fmt.Errorf("Unknown error")
}

View File

@@ -1,313 +0,0 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "8192",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.rope.dimension_count": "128",
"llama.rope.freq_base": "500000",
"llama.vocab_size": "128256",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.bos_token_id": "128000",
"tokenizer.ggml.eos_token_id": "128009",
"tokenizer.ggml.merges": "d0cbac1fcc9dcf03724b8db5c9bfb593ae1cf68fb9bc72eb1d15274dcbbf618b",
"tokenizer.ggml.token_type": "d70a88809fd7da6f1f028622685cd64268a7a922c5d343c96f25b66327358978",
"tokenizer.ggml.tokens": "765b529dbcbc42dd202ce657341c63807b51f3b07e09898f6aa6196326865d5a",
"token_embd.weight": "b53102a11d9064bbd404833e3464b1b13e08ce73300b442312cccde2f19b2698",
"blk.0.attn_norm.weight": "7318df3cca9e8d153ff0a503026a1265e63d20b2a8c1dd7a2769585082b5d1ee",
"blk.0.ffn_down.weight": "b950806a1fc722c9fad7fd0b20c3c0a7fb50f14395e1e7663a590bfd62e20900",
"blk.0.ffn_gate.weight": "e73e580af6d4f08e060a74a3c25efdf5d3bed99e183d95a5a85ae859014839fd",
"blk.0.ffn_up.weight": "c8158af679ef99746da1befb67eebb19489e0bbe6ce7d97e13e348508244e516",
"blk.0.ffn_norm.weight": "7ec69c3c31e95e49a3359003b0033f6b9e85561a3e3fd83e7476661ecdd756bb",
"blk.0.attn_k.weight": "2732303257bac969b4964e0e32ec08b5a7f5c031bb02bf6ac4467b3ea0ebcf1e",
"blk.0.attn_output.weight": "ecda1d43b4ccc91cd5b366d7e7a275353990ac78561a07c83d9c77031aba12dc",
"blk.0.attn_q.weight": "569b1f5faf92b6f00910cf7effb2d5862f91038ce5c3b0019fc10e5d79fbd5e1",
"blk.0.attn_v.weight": "aa8416c5ef7e32fb54a1f20d6ac651656845d4af240564b397c39bd83e06e3b8",
"blk.1.attn_norm.weight": "03327e02862908c2a44b2f52decdb924bf4201f400b46f8037a9cb2e1d7a61ff",
"blk.1.ffn_down.weight": "5a83a87603f38c99f8e1e370a2d5f967bb45ac51d881a609304a7811027321e0",
"blk.1.ffn_gate.weight": "31da0572c79e655186c721c231376f85e56cdcc6257c28d08c8c5b40d5c22b40",
"blk.1.ffn_up.weight": "e0c811d64ca155c8de10a868e72015d43888834804614ee1aa2953129ffbc90f",
"blk.1.ffn_norm.weight": "5861f313d6137d6f0f904d423df47fffc6069e224ff746e1b637ac9c7f0af862",
"blk.1.attn_k.weight": "5fbbec0acca6457b9416ebdcd90e526885d0224537b7628f6be376a7f275313d",
"blk.1.attn_output.weight": "b237c9763fa3f75166a6f70b70f1566e77d0d89dfa164ed1b3137393e90575c3",
"blk.1.attn_q.weight": "c0a9cf4a98b4882b16f3eb2b49d933793dcc5357abb246fd3fe3134ed2b12e1c",
"blk.1.attn_v.weight": "96867111727200cac1af7865189dd41fd62b47584e5e5f33a91f1d34509cbd40",
"blk.2.attn_norm.weight": "f392f8a88ee3a95b1cc19c40dd4ef66317037b0faaa1800f610779e129ee0539",
"blk.2.ffn_down.weight": "73823eef46632aedcc8c1cb08a736b6aa97ca97842cd1fdfc5567d8dec459662",
"blk.2.ffn_gate.weight": "f4909ae19fc3848b00bb8b9050122e74f8e903b89e22937036f4cc9fea20a718",
"blk.2.ffn_up.weight": "16f4904a3d814ea68f00519724fc4943e48444a84c786bda39aa5efc298a7d84",
"blk.2.ffn_norm.weight": "e3ccdf56e75cb969f6f69c39caf6daf7c4e70e89e25df0f4d2e4bc60e159aafe",
"blk.2.attn_k.weight": "c3beb1e0a11bcf007ef0f0d8f6bdd3082d8b29090cd29597846b5d51e308a8e5",
"blk.2.attn_output.weight": "bb9f66c32cff51154fea92933c2cd62549236f8cb1a767f9ef28d3f99809b343",
"blk.2.attn_q.weight": "8eba394132eef2a05c5a92d62d2376000f7948448d7a2dc74e6b608203add20d",
"blk.2.attn_v.weight": "88f61f77c53567c617db3eef8f30621109a750e679f6784f7911739bd42c2f02",
"blk.3.attn_norm.weight": "7b996675b7ca75fa24107b3ebe0788653ede0f49ac83b8659d71ff54d591f81a",
"blk.3.ffn_down.weight": "2cb332bc05e4821962fdc9dcbcc7cc12630f32117711b687d18fb53c0bc4fbf4",
"blk.3.ffn_gate.weight": "340b387c7f208c8f0a6db904ef8d87c1e84b7d6ad57177abd32d86c8d18b760f",
"blk.3.ffn_up.weight": "07484433f8a7ee061c55aa0de2ecc009f769b0617c9c0ec096e9bb2946df9f0e",
"blk.3.ffn_norm.weight": "4f1a4ade36b393af341240bc894a2aab09cff7e4d56dc4658445deb107f9371b",
"blk.3.attn_k.weight": "483dcd96acb4528df84b9842970994630dbd82b8715ace394aa8b39fcf8d6291",
"blk.3.attn_output.weight": "beaff0810687923585642ee11d929cbf3b43dc6f87f30ddb552c222ab57bdbb3",
"blk.3.attn_q.weight": "0739355002f6fce520863add697e0ff25fc88215322dc3f993be7bb68dcce7e8",
"blk.3.attn_v.weight": "c216d17b6d90ee3e07f82598b8161fae34de2f392dbb0f745b682b578c324767",
"blk.4.attn_norm.weight": "91ab405bc4ba15bf63af233f266aa43aaab43789a9e6596e14a357c2ac7df217",
"blk.4.ffn_down.weight": "620f34ee75cdc73aecb8949af5fbb0d2437fd81422b6d8eb7acfc52addb9fc68",
"blk.4.ffn_gate.weight": "f6feec7bc9acadf35ec22532f8998d8e50f31afedabb19263590dcf8b9a92eee",
"blk.4.ffn_up.weight": "4a72af7cd28fd07b038f6cc4406678d120517280236ea85d9e76eff40ab2cc22",
"blk.4.ffn_norm.weight": "1805b37b44d5d682bdbd2fadeafb763ee001617d7870848cc487079ee34b21f9",
"blk.4.attn_k.weight": "a1e4f9d97cdf4c1b0d177cf00c4e32d1be30c1984a239b3c9bd73f8848888853",
"blk.4.attn_output.weight": "a1547e2497c423b0aff0eee71d9300d6fdf4e4986679418b6e637b69a9a6720b",
"blk.4.attn_q.weight": "0677483a9264ea6803d03d304d87a54632242cb516e8b76b6e3e8284c2f4de04",
"blk.4.attn_v.weight": "02691ba3af344fcc1969428ab0df811ac94aaa2fd91b0dc4ec1ac0a58806980d",
"blk.5.attn_norm.weight": "ba9c028335e5c895b87a5bd1448ca429248f9746ed97bdcb8679923206117156",
"blk.5.ffn_down.weight": "ccfdc9006acad1940a6bc05042a3947f1066acd671e0bb53b7684e9eea9ef5c9",
"blk.5.ffn_gate.weight": "623157679f1e742ccc3807c0b0153ddc8450104de75ec62f1370ec3807c09cf4",
"blk.5.ffn_up.weight": "05748804c65091f963729b58b085f58351891cac8a2861f5eae26b06aa60b2a0",
"blk.5.ffn_norm.weight": "84bae55af2efc8b8429f09056c8c04990c466dae31cb3f9356038b8957f1b406",
"blk.5.attn_k.weight": "8c766180c726b037d587fc52371de6e3307140c52409011609d1225624b6a3eb",
"blk.5.attn_output.weight": "490b582b3b1dc151ae55aee8b6743dad6c01fb49e43afefb6e68394b74be3d73",
"blk.5.attn_q.weight": "6f7b8ca4d9025ec836a44bbcca46be30c66b471a9fb62943ddff8288b3731409",
"blk.5.attn_v.weight": "9f70df3ba00c9e723214b3da83ff435a2163fff5915f75515c9664c05c866c27",
"blk.6.attn_norm.weight": "1a4a66613a682df6f061fc7c4d986f9f7e9175b62f0c42fc1ef31db536bd5942",
"blk.6.ffn_down.weight": "c56f25e4e49b443dbc82d88311ee63bc1f5002cc67e52f4787fd5f003aedeac1",
"blk.6.ffn_gate.weight": "31a5cf1aa9b831a81588d508550f51fc425f9517c43254d4ef7096d38029cf04",
"blk.6.ffn_up.weight": "ce135f3a1163e0c9297a615bdbe68a67ead21edce8debbfa9f6e15e6af8d4c94",
"blk.6.ffn_norm.weight": "4e328ce0648c94e732bc40501858ef6262ad1161e2e407b0cdcf4813fa9d45d8",
"blk.6.attn_k.weight": "1eb1c4c9f9c4c7ff7f5429075e0dc6a7782bed55109fa88df209a817dd8ef960",
"blk.6.attn_output.weight": "3d32986b56873b88655ee1edabdd413fdd9ab18b82108c9ce90bdbc2d3a6f3a3",
"blk.6.attn_q.weight": "8432f583b3a2809c99c393f9beb077cb0534dd5d247c17108f2986cadc6651f6",
"blk.6.attn_v.weight": "5045381513815bb91839dbac8335ffe49bbc7b0008369de7ea97eb676c5e2b36",
"blk.7.attn_norm.weight": "3dabd003638ec2499bfc8a48c49eef34276caab4fe76894eb963207848c2fdaf",
"blk.7.ffn_down.weight": "194fae858608bdcffd235be59ab119d0b91c8549f864ea06dae69249e099935f",
"blk.7.ffn_gate.weight": "00b24c29c30246892bce0791be804a89701d4c1332777e0bcdad5d9d5666604f",
"blk.7.ffn_up.weight": "44d7082a5280080c90cef9e19d410391de34f212ca0736377769b8ddd0c82d5e",
"blk.7.ffn_norm.weight": "21fe8a7fd6911c64e0d15a788b3b4cb6d71dd6ec51de65f760ee89afbb6ae53e",
"blk.7.attn_k.weight": "57a149eec5f6744a9526cd3925ac073f9d12db0fbcb5afe042ef4dc846458c44",
"blk.7.attn_output.weight": "0e9c28a3e81a2880251ce5eed77bcb8be8aaa1a51c9cb6de820b47ed83849fc2",
"blk.7.attn_q.weight": "15ee75263ee4e2a43eb322bc159ae004bb7d77e3a7e63ee4ddab700430693fff",
"blk.7.attn_v.weight": "440aa970bba4bff429fd7b7b1de21f2ad14fb2952b776cfa4acee68d7c6e9b8f",
"blk.8.attn_norm.weight": "af5b44825633c42c1ae964c82bb2be6a242d3a751f0a91f1bae4f593e8f5b6ec",
"blk.8.ffn_down.weight": "b11c14c76adca94fa200496dd2c10743becb23aab6642443ef1ae6d8710edbc1",
"blk.8.ffn_gate.weight": "7bb03d3325bf8637ae2fa1296b0651356515578d46a7c5ca65c7a923d7de27bc",
"blk.8.ffn_up.weight": "b956ef0a0669b5a9c9bf3a8da2d1c24f52d331cfb7354f6d7c51bd65be355e30",
"blk.8.ffn_norm.weight": "c78c3d748302edfef76f71ea5cb2055c94352122eee8b9b1173779a1814d224e",
"blk.8.attn_k.weight": "c0fba6a596ed9c1c32a7055c31a935a8b31e42b77282ee47c1f03ee3bde736b5",
"blk.8.attn_output.weight": "83cf9947080c5d8d571f04a842bc3dcfe7bbb0195fb25b346e22635e8649f2d4",
"blk.8.attn_q.weight": "47409350a576b333d97b7c877d69f47f46df504f3765102dfc0be9e521c7ecd6",
"blk.8.attn_v.weight": "1999dff91404fdcf1ecb34d9eaaaa9244ec7658a74dec8feb7cfd1fddba0347e",
"blk.9.attn_norm.weight": "1e6e29d5c3889ab4e1b0a5b9998cba60179b0f1fca133515df49cbc19d092593",
"blk.9.ffn_down.weight": "acb898a6490adff592e10b4c62d70edc5941661ee6da44658500e9205357c8e9",
"blk.9.ffn_gate.weight": "4cff63013593aadc3ffbaaa6ed70ffdba1224cd43c3644bf6f4162b5ac1ab542",
"blk.9.ffn_up.weight": "f985b5a2d6cf4fe32c7256301c3c89b8ad22b59e516342c52da42d8110766a4e",
"blk.9.ffn_norm.weight": "0d659c538bc6b21ed0018f107ab674a7424a00a42946c80e07208b479b21918f",
"blk.9.attn_k.weight": "f67611d888780d1b38c1c146b361c65310c8183bdf64fd73e2259985c6e8517f",
"blk.9.attn_output.weight": "f12ca1fa62a02ddc3f77f798bfb5707e0c50bf18ee0eaa67025521a98355f26b",
"blk.9.attn_q.weight": "3865185f4361a645b086ad47b72904c095313fb1c624e511647bf1a7dfc1c476",
"blk.9.attn_v.weight": "92125bbfed63544ab56052bd1e4aa453bbf34c795249ee54cde54907c8c6d1d3",
"blk.10.attn_norm.weight": "5d6bfbe545bcc2fcb2fc75c68f64b1f4c918badaf53e0156fe2d88aa977b2f94",
"blk.10.ffn_down.weight": "1dd9da8b0d2696ab5531fbca8a29c7d67567620a9d3e5fc2a19ec5d7e4c6cc8a",
"blk.10.ffn_gate.weight": "6e55e7f014edaebda0ac6819a426221d3b025c27312a2e18cc5806f31e3db226",
"blk.10.ffn_up.weight": "d80dde54af5db51241345ee8d64c1972608644f4deeac1e8195dc423bf27474a",
"blk.10.ffn_norm.weight": "f6ca65951d58ae3379eee8247bec34ebd0db05674cc9295593573841b8a55df3",
"blk.10.attn_k.weight": "b58e350bd6b49aba0fba4e4dd6865de3a2a0651ab865dbf2419b627b53ffc187",
"blk.10.attn_output.weight": "6b26a986e12fe66ec286a21d7d5af5eaa1bfe6f2bf502165d270e4497235a54a",
"blk.10.attn_q.weight": "3440e0e5b7e0d1e426424ae5a33f4e057be623249e9035ea12e57dbe5d3893c4",
"blk.10.attn_v.weight": "ebfadcfe14bcd6dee933053df0a67e12e7a196d5cc45728c1ffb2a2daedd5ca2",
"blk.11.attn_norm.weight": "3ed057b9576cd2de84507ef64c7646dc478c651efca4c2024cbe91a4f3fbf0bc",
"blk.11.ffn_down.weight": "8ff1c2487d22f5c499761e4eb721418f141f960160d0bab779595a34e4d68898",
"blk.11.ffn_gate.weight": "9c74e4507c7e45bf39b7cc7402198cd1dd77e3fff8c625b0413acaeb16efeb9f",
"blk.11.ffn_up.weight": "4367158007161d29939e00a322bb6776016e43f648a94f9b08a96a477aae75be",
"blk.11.ffn_norm.weight": "1cc0288c1491072121f4c9a0af20be0e13af49895696a3320e4fcac608768de3",
"blk.11.attn_k.weight": "066f5b3c144fce1366835e1ebf376f768b333b8ae29f5b478c42d1d0c809c855",
"blk.11.attn_output.weight": "e0d9f3d3f2c54aed59c02713ea4fb562799ddbacbe67ca3998dfc887bc44e47b",
"blk.11.attn_q.weight": "28d3ecc8a88cb3815e89a7f7a7d043da7a71f702b337a126e4d3a2ac1cd6370f",
"blk.11.attn_v.weight": "7c5cdef10ee73bca0a3b9f6ece5f0a0155664e0ce3d8de90ccdccfab5545e5e7",
"blk.12.attn_norm.weight": "973b133301a1af760cd7b3a7955371ea0a750808b442deb6adaf7b98482bd0c6",
"blk.12.ffn_down.weight": "d6c87b4b4ca03f75546ddd6a9e7fca720585a309188723c1ace8122438d4b200",
"blk.12.ffn_gate.weight": "2189a6e0cab1540bd05d6089b922aa8fd694be51255654933c165f302a0c955f",
"blk.12.ffn_up.weight": "5affbec19b58d092b9305721e3552481fe2eff51269ea3ed91cda3b9ef84d4df",
"blk.12.ffn_norm.weight": "f650fd42a34e950f758b4a130e7b8b1a712b1dcbede0291bb8edde47aaed0ef6",
"blk.12.attn_k.weight": "59b1e86f10450a7cc188beefc0856d2dcf44e8d7fdd9cd8859c30ec1ebaf24b6",
"blk.12.attn_output.weight": "446b0d36b2f66bd72a2323f4f4e9d85a0f621e9a58872e89a27248d6b1123238",
"blk.12.attn_q.weight": "3ed6bfd39f040301ed99fad882d3e569769d594259f9948445bef0e44ec881fb",
"blk.12.attn_v.weight": "e73652cd5d0029b1931be3ba9d82508f6696dce5a29d085476a54fb7a2ddbabc",
"blk.13.attn_norm.weight": "491b85278c0bd67bd31b9b8a9720902c244bd067e53a4a03641b7c0994782e82",
"blk.13.ffn_down.weight": "ad71cc248a85e9ced49307a24a9bfae01d387e979a7689c82ff59998e09741f3",
"blk.13.ffn_gate.weight": "0a55984d53971fab97575ee0ef5882013be7fdecfa76e3fbebb5dc85a07a14d4",
"blk.13.ffn_up.weight": "378b697b35e2e53c0de98e8e29b73d42ae3ec112ec16129aa5997a9e2f3b5943",
"blk.13.ffn_norm.weight": "f8aff2f69ab286210fad45a62b03f8d10b38f96a420d7baadf6b95d7b0b0bcd2",
"blk.13.attn_k.weight": "25ceb841afb1034831bea7f4d6a6c578def2ce4d4c412c780ef147dc9a598360",
"blk.13.attn_output.weight": "a242b322889c6bdaa14b67a7bab593db39df8eea3721638ef639abbb74d482e3",
"blk.13.attn_q.weight": "d80be9945a369439e835c55cfb0e97828b8a66bb7ced534d9059c92487bf20a9",
"blk.13.attn_v.weight": "ac33274cf9b67979d9ecdc967a55175afe0c9c4aeeff6391433cd9840c818706",
"blk.14.attn_norm.weight": "12a1e1091de5b2da12c9e7c0b1c8e6f09ce2a749733cf7d5240445b8e21cd093",
"blk.14.ffn_down.weight": "cfd41965c88266e32bc2dcdadda512499c35519e8686fefb9a7f249ab2291eb5",
"blk.14.ffn_gate.weight": "8dcfe774f07a095c7c6cf0a901c9df70d938bad7b5ba347fbc8f694e7603c0d1",
"blk.14.ffn_up.weight": "c7995577fe4a72ea0fb17c4a7b6b87b959072bbfdd5edacc6c367d43465809ae",
"blk.14.ffn_norm.weight": "81c41ebde41739e7016ffec31d2256217b825dc3cae049a935f5f61a60d22003",
"blk.14.attn_k.weight": "fb708bdebe4384f5c4b479c110028554f4d122f166b8091eda7d8d65e6780eb8",
"blk.14.attn_output.weight": "f5295caf2dfdc60553dcabe17537a80577e8b153c902247daac058df23542514",
"blk.14.attn_q.weight": "c12b7a3601c68c63ab5dc9d2599ebf3f3a10abc2c59d3a2126fffd5818f2763b",
"blk.14.attn_v.weight": "1ce968d9149bf0d5e237d52cc6d6433565b4bbf03252a736262bb00a2b34a687",
"blk.15.attn_norm.weight": "266fd2c36d7dcefc6b6bb7f1c9374c41f2bab5d6c84a063b6f91c4f682dad3c4",
"blk.15.ffn_down.weight": "6154886e9ef0a6cc08ab0d264a35f497e6f0987efdac992ed04e87088bea7801",
"blk.15.ffn_gate.weight": "183d9fd3c1b5657840099053d2fd3f72ad953b1de523296159b7761f20491a76",
"blk.15.ffn_up.weight": "51546d4498842ae2340ee226a0888d5f61e7d2ca4d052dfa06a77b0451242d3d",
"blk.15.ffn_norm.weight": "ef7378091a41a25a5f58bf1bf9d3bc64ea562e7f421e1c232b1f177c30fd3500",
"blk.15.attn_k.weight": "8d556ab8d9639324141774999b6eed0e91d7ee645bf3e7a3dcd200b2e7a00751",
"blk.15.attn_output.weight": "54aa6ba87def7cbe18b0c6ab3aff5c351cb3b6ca4a0d7b2cd5f75a1312991429",
"blk.15.attn_q.weight": "10731b0dc031ea8e0ef37bd7f010e0a78518a10a6df05a8bae48e3148b73ef3e",
"blk.15.attn_v.weight": "cbbe50c2ed7224866d3cf9b489c599f3ec41a4ea1aa3181e9f4e87e1fa0cefec",
"blk.16.attn_norm.weight": "387058eb39d4b28c04cf1368247417f1faeae8ae79d894c9f293457e0eaa00b0",
"blk.16.ffn_down.weight": "2cb26ccee585e933401ad5c82ed36ddacb3289efa0b28f8cf91b020ffbd9c333",
"blk.16.ffn_gate.weight": "d745985efb5bab42304e5d509024631efe35f92f2b2ec4931ead6db97ca9727e",
"blk.16.ffn_up.weight": "7a67bd195e0642828ca36eb7818149bb70c2c25f82de07e2b5807c520daf540e",
"blk.16.ffn_norm.weight": "7cefd061c8182482a89272f8a4e88a954b12609a62716923ca1cb3593b1c1651",
"blk.16.attn_k.weight": "d7968a2de67e755b4533e061aaad1cb62f8882af92dcad67f99d6d5112513439",
"blk.16.attn_output.weight": "9e9ab5788272ca3394ea89eadbce8c86ecc3fd75b7899184d6191c134ad9aae0",
"blk.16.attn_q.weight": "ef81c261b536c1a3a093b33f44cf2d42b86e5aa2d821674f07a0c80e992ed925",
"blk.16.attn_v.weight": "aef38e7958301b4a437cbdd2fbae6197f677b09269ec1eaf63188cd5da428d25",
"blk.17.attn_norm.weight": "28f6b289f1bc3131041e9f791b7a2a3a48baee0dfea27bf7051ebbb7ed364d80",
"blk.17.ffn_down.weight": "1a502829aafc6a9bd6bc81f12573bf8632d5c8c659f0dfb13c8b2411f3b1ec05",
"blk.17.ffn_gate.weight": "ddfd8aa0eb98846ebc9afe31366249159f46ae9815199dd70161527ed241ac4d",
"blk.17.ffn_up.weight": "4211a3cc247071bd361b30de2131d02382f552855062bf3b3e004c17992e5d09",
"blk.17.ffn_norm.weight": "647e5fa99a5b0d232af36d15816539f4d27e60a50a341b00aa88bb6e4474f8b9",
"blk.17.attn_k.weight": "d9125ff33a19c502c0f8846433ffc24395048582fc2f463d34a0301a82156f02",
"blk.17.attn_output.weight": "3d64fbb1cfef04444827f37c35fd9ad3413eb2165094d339ef89f00503f09de4",
"blk.17.attn_q.weight": "e5b29424028f578beca385fd82e29f37adedf3037cd51e5889d5a1ffb0428ca7",
"blk.17.attn_v.weight": "1809c5aaf2ac04c5d65539097564ad62796e87d24bb8b9ce5b095561a61d908a",
"blk.18.attn_norm.weight": "99daca58d001c627523d3adfbca1d95f04e590382a326866544d57989d5f4835",
"blk.18.ffn_down.weight": "84f30231ce6ca0f10227541dfc602d6418c1a210386b0c4926ef1656e7d4635c",
"blk.18.ffn_gate.weight": "ca5bbe4468b541740e54f69b9e08fcc8e478c344b70551dab21b1206acfbaadb",
"blk.18.ffn_up.weight": "0b3067b9dded31686dcfdc1e247eae3974a28a61ac59e9862758dbfaad64e8f7",
"blk.18.ffn_norm.weight": "8154a102232dbc0f90ce77ae5c1ff8f26f8b6e4dcf326e9ec1645749669e7960",
"blk.18.attn_k.weight": "25abb26021ccc481471a30e0d4cbeb7e1db29828417ec5136edeb93fecf09ac4",
"blk.18.attn_output.weight": "d87d481d9b046b68efa06ccdd4ed8cbf61e692d61114b75b7fad5ed75f5d87b2",
"blk.18.attn_q.weight": "cc6400379e15766992ff1293be79dc67682c28e9e15155a78109f4b64653b164",
"blk.18.attn_v.weight": "45c75cb1dd496aea3173aafe2575b841dd1d02cbe010b3198099731eb98f531c",
"blk.19.attn_norm.weight": "65389efc75297684773284ef8e5f8789a4504b636c9f33b8a32e0ee42499fa72",
"blk.19.ffn_down.weight": "4eefab7e939f64a17e4a214ca3c77a6fa110d94f677e2d6401086f70fc538b04",
"blk.19.ffn_gate.weight": "f1c0a59cafda66f466ab585b0b8b4861b58abe87a67cea1f6a488492242edfdf",
"blk.19.ffn_up.weight": "c42d045eef588db4a0e56960a57e110e1ff92eb8041107d19899165fd3b90f17",
"blk.19.ffn_norm.weight": "a8f33eda6d5d62ff5f333ad9771783caff556641f4e7df713451385676f441fa",
"blk.19.attn_k.weight": "0bab5d9e9083492bfb05a5a3bb23b79c0e7b99ef6a6644817b4d57d5c453b8a5",
"blk.19.attn_output.weight": "c99c551d70eafad0f7aea98fb6f9251635897168eb3895f76abf0d4ea3b3aa6f",
"blk.19.attn_q.weight": "c98bde95627c3b54c9443813ca50b4e14f518319681db6bbf7b2332ba26e9a60",
"blk.19.attn_v.weight": "ff3a490518cf64904db89ce0dc7d6eb89e870f1440e41883c6b55a221f82de84",
"blk.20.ffn_gate.weight": "761f0e317229cafe9d3754048ab038a0a84e9a287b196ab65f633139f2d29aba",
"blk.20.attn_k.weight": "45d13439b41066d282e8490a726785abf513605f46c79bd0c840f6419d27e790",
"blk.20.attn_output.weight": "a3b958d84b4a097844179b7d55c18fd0e4f319cb15e918c6fde33b68de1bcac6",
"blk.20.attn_q.weight": "127ab8e7d8c3f882874904196a02712bab42e6744fde45871b67350609d19f5e",
"blk.20.attn_v.weight": "5f0ad2d14a8ae42dd3bbeccfb33295687a14055fa92c54bc946249373c1c9f17",
"blk.20.attn_norm.weight": "77300b1755edc8c70089e0f45efa646056b9add7d8568b2324d2f3e62b64971a",
"blk.20.ffn_down.weight": "ab93d0e075b42e9017b701a070d561e698050d90aac4b4b9919256fbe50c3204",
"blk.20.ffn_up.weight": "4fd6628a07acc57a48d1ef83f81b7d7aa0bce569c1160a99d307284f8821322c",
"blk.20.ffn_norm.weight": "2a9e46b9e48e8e55215de56592e1f189530037c1c94a1428e3d6f106c7f26fb2",
"blk.21.attn_norm.weight": "4b3b5912c7bc61eb9da8e47d4651f896e85d9e59c4ecaa65df7acf3c21737298",
"blk.21.ffn_down.weight": "7146f931663d93b8771cd84405cd4802ea6560d0729b0d6d44588203c095bc53",
"blk.21.ffn_gate.weight": "b44ec5d64388fa40b90b3e9976d97a8b6800fa3b97584f32e64b03daffb8601f",
"blk.21.ffn_up.weight": "0cf3643fd23c685e17062cd11e116e17ce57a405e5e78953bab94cd62fe48789",
"blk.21.ffn_norm.weight": "4ef2cdb53da166df70b39f3e6b17af51848cfa5ea3c27ad6a1ae2a1bb1da1ce9",
"blk.21.attn_k.weight": "5d40f32a706f670c19972b14176bf660d5b045e3637b110dbf8d7de4ff32101a",
"blk.21.attn_output.weight": "18afaa916752ce16c9653ec0ec7e2fe60be55faa2aa5025d147be184adb75cac",
"blk.21.attn_q.weight": "2621daa5f858931514a4b2f0fe8d81cf9b96f541e6af99bfa7539e9bde8e34ee",
"blk.21.attn_v.weight": "63226dafc54c899bbce4aa49efceeedd8908e94faa613450fdda91f332b62864",
"blk.22.attn_norm.weight": "cf3058daab4d2c04387e7d169d1553bb8e7358eea66285ec067703f6ce62043a",
"blk.22.ffn_down.weight": "6a58d5fd220abdbac6cee7ba048abab794731af318f04982c2506df59413d0b3",
"blk.22.ffn_gate.weight": "d5614535324b03c7b91727a903b2a72f8d07ad17f7aa8b61ea173cf9b895069e",
"blk.22.ffn_up.weight": "ec20da3949566e93f66cabb67f8cd7eab399047ec6ebf5d43edfaf3669b82296",
"blk.22.ffn_norm.weight": "84c82f38f53a649972a44466fc476bf764e064ce18de870291edc302f3700e28",
"blk.22.attn_k.weight": "a3d2ecc37fde7c201176bb8abadf27f0d8ede9679a6034913e03d9db924fda12",
"blk.22.attn_output.weight": "5a3b8bb433f43a387df43dd371bdf80ddfac986dfeaf38e9bac1d7a0ec6628de",
"blk.22.attn_q.weight": "3a875cec661b4859f30a8fd2c866811184b25b68c9e36fe2663d299caf8b59c6",
"blk.22.attn_v.weight": "8717a83b79035058dcfd3ef6f8e5b36e71d77379e5a239e1899eef8766fb7703",
"blk.23.attn_norm.weight": "2b4a68a0a2f023dd646e4755c9bef17c2f631901154afd839edac7ac006ec99c",
"blk.23.ffn_down.weight": "29499b1586c6fc4883c9b7a9c8cf388035146b5aecf90c5c4c8c8e082c71e7d7",
"blk.23.ffn_gate.weight": "7d6554036d21c587b9b556428054f9c15cbef96d24b257f906fcef4ae38bd9c8",
"blk.23.ffn_up.weight": "19761ecb288d6ebd44b681c4535661583b1e19dc29e96d0c007333cd8f00aacf",
"blk.23.ffn_norm.weight": "37dc35500790a4ca33807b39cf7af65065e535dc25b9e94f3ed2759f61887ac9",
"blk.23.attn_k.weight": "717547d00323817b0cb40a72ec5f8cf42ecd1f9e3e42715c2cc5e38f07fffffe",
"blk.23.attn_output.weight": "a24786feb6a905fdf166d7500133757cbe494779d4ebcba9eb03046b319557df",
"blk.23.attn_q.weight": "6a2c4a98f138b928d22136efa163562691d3b4ed526d52d46a2fa2694a8f3965",
"blk.23.attn_v.weight": "c6e6081eb9c38a7fda023085957b460e9ea321e1fff408b38c2b58595c39979c",
"blk.24.attn_norm.weight": "5e6283f891e538670425f3e244b08dc6f96f33dfa4aefa913f8eb17212421850",
"blk.24.ffn_down.weight": "e09eb170f389deea0a4a1cbfdb52c12490768a2c60491b7bef8a4c445e2a08f5",
"blk.24.ffn_gate.weight": "af29d815cf49a38fc2ebd0bf9b2dd9933d023a29f2d766981acb9a1b53f09117",
"blk.24.ffn_up.weight": "36ccd9333426666de9d3088bd4dcdf5b624b09dca9e3a83a22fc0383f2d950fa",
"blk.24.ffn_norm.weight": "a88e1692318826db6ac42582d182e51a3c698c655d0e21e04fa086318832d07b",
"blk.24.attn_k.weight": "f7d61d6d1225289bcc502e3bbb0168b4584add0253218c1b77ac92ccef9a1c2e",
"blk.24.attn_output.weight": "85a1363b3ccc87312094c2195022687c16b0dad7fafb9e80bb4ec474d53c29ac",
"blk.24.attn_q.weight": "53482a2c008f42f4fad779ca323addc3712040149dfc12f782417756388a72bb",
"blk.24.attn_v.weight": "67498272369af7dd10097c73b07f731b565cfc9a559e711cc0d526389e7b44e2",
"blk.25.attn_norm.weight": "98dd617def5cb7825ee4833132ca2da2121245921585e1d9e36b93344adc321b",
"blk.25.ffn_down.weight": "7fd477d6c50aed5f424a878dd284343379cffbee8a34c0b6e55100c8305fa13f",
"blk.25.ffn_gate.weight": "f892c9806c8ec22e8aa746734ac9213428c534921cf161239e1d249fdb5d1ec0",
"blk.25.ffn_up.weight": "528bed14c9bf9762f790525ee40412545221f4321d2a2323fa8e73c58b7643c5",
"blk.25.ffn_norm.weight": "ca5831966672e7be6a578feeb631ec3570d3b5afe12860819ccb96e896ffc346",
"blk.25.attn_k.weight": "610d3068cc9b20401f0c3a0efea39a279dd9f564fde19baf3403b2ec2319e4c4",
"blk.25.attn_output.weight": "798aaf702e53b657265ac3b5e6caf3a0ab515bdadfeb1a3a156b4f3bfba76666",
"blk.25.attn_q.weight": "8a7fa25248de83029fb97b51d036a01baebe31fcb4be121ab00dd8b7de209b10",
"blk.25.attn_v.weight": "2a53d5e9f8a1218c66958c6388d3b37400a9af7956c785024ca44bfbc3c7d371",
"blk.26.attn_norm.weight": "5f44fc043481eb0771f3e6d2420bcbcf73140afb9a9feb8eddb6575452acebee",
"blk.26.ffn_down.weight": "944a60a409d0d5b6a851e33c69aca152454b691711a8b96f5bcc488772ab2833",
"blk.26.ffn_gate.weight": "2a0ca4abb3de5593e6693d8be69b63d6d1a639855ac8332a75f520353f030c62",
"blk.26.ffn_up.weight": "0b1df496163f9ac07bf89375d3eb441b51a81d41b47d769a04a61efc18dbe35b",
"blk.26.ffn_norm.weight": "56b8dd046e9be6ea71f7efd80dbd14e7fb1aa020d3cd38e063275f3873fd12f8",
"blk.26.attn_k.weight": "b1dabfabb970e6971c7ea6e53c63cf7ef56341e6a2edd9cf177785cad9af2f9a",
"blk.26.attn_output.weight": "39532c7e836baad164a655fb97ec5114ea4da37ffba9fdea2684f6e4450e6f84",
"blk.26.attn_q.weight": "8f48bf6aaa1252bc149e98af2be1777a5c0d2c3274c6d314171ea9344a41b604",
"blk.26.attn_v.weight": "02fb145f7fd905133750e90571effacadddfd3f4966552dc59982ac3900ab8c4",
"blk.27.attn_norm.weight": "654d168fc3cab716d91261f5719f180b7d697218401633b4878a759f1b5283f2",
"blk.27.ffn_down.weight": "2823272bec3a1c12f02cc4cb24aa4031abd7e9dbe0b02676e2305b21671818f0",
"blk.27.ffn_gate.weight": "b1a1d40cd02f97182cac17a79971d1934ee0daf3aa0bf11303568c636e208a64",
"blk.27.ffn_up.weight": "ed62ec72a020d070e64eb7b50237b32213944727b5b2427f45d989f50df5fb2a",
"blk.27.ffn_norm.weight": "c69649ac65d694b306a905dee8b03b89eec1ed188b1eaaf38f8e29d4b12e38a0",
"blk.27.attn_k.weight": "cc57bbf413f1fd227128dc66efc8590c73634cbd6f96d01ec4878b5e7ca6a925",
"blk.27.attn_output.weight": "cac407ad02361d53207b3c7e25ceab84dcb4347b8087055162e2efe14d11d84a",
"blk.27.attn_q.weight": "0af18e07cee12015761c07c94407024f4f4d77d97bdb24163db0e16669e2cef3",
"blk.27.attn_v.weight": "a1d08fbdfa40af773c5adcf93bd68b78a44ed144e3fc6bbeb8af02e937527eb6",
"blk.28.attn_norm.weight": "f39a51f814512b040a1082143150e4a49ff730f85cef49d7f77fc79d83e91f40",
"blk.28.ffn_down.weight": "74f29ed51055d1c1adb8f0660bbe538a27e016c65650f2d67efc6f1c84fa1b45",
"blk.28.ffn_gate.weight": "ae48bb16487ded6781c60aafc0bf738fb4ae15729952906f247d216592ce249a",
"blk.28.ffn_up.weight": "543009727718ac22f11ee4b17815f68ea6f15ba1f3e7ed5ecdb755cf6417565b",
"blk.28.ffn_norm.weight": "b8f9e54c322079ff20a82b88948cdc2916c22c7db40b9a9ed6d3cbe89efb727e",
"blk.28.attn_k.weight": "55d055ba653b728d6e784f9e013786fed07115c9fdf23367e3941386d5e77db8",
"blk.28.attn_output.weight": "155101c03ddbf18f4fd0694bfc982f33c7bae25c9b087d6f5273c2bfbffcf2c9",
"blk.28.attn_q.weight": "1ed19bfdd22e9c14eca014739982492e9516d411515a8585f65cf754d849e53f",
"blk.28.attn_v.weight": "11ba854dd575c025d37256eee9041f6d1bd2b549a083d6409a09bfc1542913f3",
"blk.29.attn_norm.weight": "02b0bf5e2fcefd11a153cc988c81ba672682e4844fcf6442423e21a0e10d566d",
"blk.29.ffn_down.weight": "594bb692ec2779938721ff4748666ca8370e0e4fe85229503f616438b8884f5f",
"blk.29.ffn_gate.weight": "8bedcf47e91dcb2cf4093de56b048ee411faab6ff472f89ab2c9c113a08e6967",
"blk.29.ffn_up.weight": "e241a547b5fd6dfca8200b8141e21c1c487a96cbc4e5855f181a7ed1be91b642",
"blk.29.ffn_norm.weight": "e63eba5e4c6b288bfd9f15e46e236086456c8b7f1f9c732c0b5de84962a2e7cc",
"blk.29.attn_k.weight": "afe5979d5bcf211aebb526620f5974bcb0a2c39c8be71e815575c55d6385e3aa",
"blk.29.attn_output.weight": "9c944ed44b124b014906fc240afd3b90aed56bbd9567f2eddfd5b7a685b3cb48",
"blk.29.attn_q.weight": "e234e08e5c1bd9245a2edc8d63e9933b6b879f97c01392209cad4f55f05f3ada",
"blk.29.attn_v.weight": "5cb8e3e5f954e775c5a5e4de7a9a62b17e9c6931bb0ff0e2f82c4126fd3e1a1c",
"blk.30.attn_norm.weight": "a65483ee51a0b214144ec8a14f28ea5437586e9e12ebe342a57d1f8627ee12af",
"blk.30.ffn_down.weight": "417959da77ceb33ead4271cbb9428b195196173a893c44e52880a7ec61b4856b",
"blk.30.ffn_gate.weight": "a0d503ffcbe45dc927600bb98c9f6082487e65cb577ab545add400d666a87638",
"blk.30.ffn_up.weight": "f8ab957b82ffcd10b21303cb5e866209b6fe95f827b1b94e9a949207952d12c0",
"blk.30.ffn_norm.weight": "210c7ceb0514a9ef27b5d4d1b3aff6dde43f1af0345a050d71097940e0e73e03",
"blk.30.attn_k.weight": "16861b9abcf5a3fe73c93d977ca45a1e6daa65be0fd85c2cff53486ce2033afa",
"blk.30.attn_output.weight": "ca541fb2e57e2257118c35784845b0c731278af8db3036ac53d71aa1681fdbdc",
"blk.30.attn_q.weight": "f7834917748e26bb456b945e230bc926c228e93696bc01fbc2b134bdeeac71a1",
"blk.30.attn_v.weight": "9292783171dbe5eb689d17c9bda11e537f0e9b328fced6986c938d61ed590e81",
"blk.31.ffn_gate.weight": "e4766a04bcd8f937ba883c6a144101e546747804ca66c35c97281d6ccb47b566",
"blk.31.ffn_up.weight": "cc1e666116f7e6b06736db4aa4b81003c583f54f4d9200bfa48842249940e16a",
"blk.31.attn_k.weight": "fc80b57557687504efae7d24265cb7dc39b8f826bb3d897a11783012dbedc44f",
"blk.31.attn_output.weight": "215617f50a1f5d9b2250b82f3652b35a9e9aa0ad9ef2b485d73965a14b2b872a",
"blk.31.attn_q.weight": "274b4f1dfb0bdec28632705677049fb3e327ce6d9e1f3baaad1560439039982f",
"blk.31.attn_v.weight": "e641b8b926f9dfcbbf6b6da1c02555525ac4b1c306d96f20cfbba7d6662c4e56",
"blk.31.attn_norm.weight": "b3243c361d4041ddb892ce6862dd5091f57d87357e3c67e177451b85d8baf34d",
"blk.31.ffn_down.weight": "0a00cd3ecd5e91624a27f9e239b1de425d5ba3cfff82c256a11a4ad434abf3c2",
"blk.31.ffn_norm.weight": "2a0d67ea2bb1303975712243f07273c92fce83baa11b1cd6d8e42e74ea3c810b",
"output.weight": "768615f077fb797967844571c58b94d7c399d884d115be3ab4b0154504cae892",
"output_norm.weight": "7cc5b7ce10e5082000fa00bfa68af8c7c5da218e59e2c41cf2f1499d40ca229e"
}

View File

@@ -1,313 +0,0 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "32768",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"llama.rope.dimension_count": "128",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "1",
"tokenizer.ggml.eos_token_id": "2",
"tokenizer.ggml.unknown_token_id": "0",
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
"token_embd.weight": "cde834ccac5e94324b25cb81b02d27312cac0c551b55a7e1d555d90bf6cb6e81",
"blk.0.attn_k.weight": "458bfdd9715c66e017c2447b1ed3c582963a3111479314e664faad8c914f42be",
"blk.0.attn_norm.weight": "e1fd60b95f713bae7b7e3ca933c64ae6c9cd1e8d808000204bbfdc19f0ba635b",
"blk.0.attn_output.weight": "df13b6a157d9d4f96c53b012b3b9bcd207d0c94144cbd22ae3ec13bb07d6c373",
"blk.0.attn_q.weight": "13b4126b4245bf06c915a93317c42b8174e05053535ec99dc576541e4cec7c25",
"blk.0.attn_v.weight": "5b1781d3a341214511b27eb4e268674ea3ea829dbdf8ae5a6bb89b3c0b33fafd",
"blk.0.ffn_down.weight": "49186f5d8148d316b07458841d13a2e66587f4af69b776188a809591ed9c070d",
"blk.0.ffn_gate.weight": "4397e30ece09136f00f4ff84ff49e5241b765a374deb8c5a12e897e2bf73473e",
"blk.0.ffn_norm.weight": "43260589aac3850a779bca3f9649f793bbfbe5db538361cb743b3830217f8287",
"blk.0.ffn_up.weight": "fd7ac918240a07566f6967527ffca58fcf433a30b78fdd6d84b2136d4ebd9987",
"blk.1.attn_k.weight": "209839566c7d235bdc20565a4766378b6ee8553133a5a3315abe8a85baa80712",
"blk.1.attn_norm.weight": "58c52986f7c69784ba327cb7f350923420782bee17fa39b1fbd13839d4005357",
"blk.1.attn_output.weight": "5067cc628449682665dfcf59b16e58fe2a9d2a81cb099f0fcd42f4f8670c6740",
"blk.1.attn_q.weight": "f410f9f0dd5edc09401af597d02e2a4c727f1502ec3ec3898321617b36c6df6b",
"blk.1.attn_v.weight": "d40fa49e07c102c0644e130e7909eaa93ed0d54e2edddc0759e721d58a4e4f5e",
"blk.1.ffn_down.weight": "594b1eff6ed4defbdd819fabbe2d48764984f08878a860bdb808511d5a25b8db",
"blk.1.ffn_gate.weight": "4cda97541e388a5bb607ce4cc8b3db1da7045830a630e7ba4d17807befcff346",
"blk.1.ffn_norm.weight": "66c13d7481be65b97aa474735ddc9674f33d512ddda76fa6fb45c7464b09f1ed",
"blk.1.ffn_up.weight": "1adc6de288ba4cc1237833ca8b4eb81107149842e38bc452e18e5cfe284338a2",
"blk.2.attn_k.weight": "5420423559f236ab22d85a00849f31e0cc6e9c7dd879de724393d8cd2b379153",
"blk.2.attn_norm.weight": "495fe1ab40cc52aa054ddd4f0c2d2790f4326c8d103296b1b38f3b1060db2a24",
"blk.2.attn_output.weight": "ccb83e7085381f558bfd65588c525ad2671feddcbc3887afb4038ad9c7aac348",
"blk.2.attn_q.weight": "2e8f77478392bc93c2a391f2e0f4a173a952bbab88a7aca099c6ee909726409a",
"blk.2.attn_v.weight": "d64512590f3b7ebbb9e77c2eb97fbda90b00d45c944f2b174f03a2cb11007567",
"blk.2.ffn_down.weight": "1de5084a05dcaa6b1bd926e83517dbe9ebe7fde79235fe56018b3028b1aa6397",
"blk.2.ffn_gate.weight": "cbea526b557f49aad8c976973cf367fcd12175b900f551984f498b9e07e4b7fd",
"blk.2.ffn_norm.weight": "530aa49b10c7eae08899d143409240deb95dae4e1d5bf78cea3b26393cff3ba1",
"blk.2.ffn_up.weight": "13a5fc19b96b4dcc1e9bd01998c8272ebe52034c1933ed123a506b711fae9a5c",
"blk.3.attn_k.weight": "1913b63a73305941d8cdc472e7f101c633d3357a78602eac0a4b49a744261075",
"blk.3.attn_norm.weight": "9c11bed5ab41f4adbfdae4ead65b525c8f19443e656a8c61ba412a4e1ad1193b",
"blk.3.attn_output.weight": "bb0b42c1d34779c5943272ed71f1dbb31ad8edd75f8bcd5c868f88505ac3a610",
"blk.3.attn_q.weight": "3461a1fe4e49f5319ea047cae98ccdb46528a3ec23831183fe87610b48c94948",
"blk.3.attn_v.weight": "82aa30be6a61526a41fb79bb28a2617416f5909f0477aa9e95e16be9370fcb38",
"blk.3.ffn_down.weight": "68521011ae03f5e3b0966127111afa8ee9f2eaeeef8d3a0b86b633e0332e9fbf",
"blk.3.ffn_gate.weight": "1e89e26338fd364bb679695968c65106382f15ad55c95cbb5ec9bdfeb766f432",
"blk.3.ffn_norm.weight": "c81932529a5a8c417c27b888dbe95fff8b447c2ea5f6f560444ec5d50b93832c",
"blk.3.ffn_up.weight": "305021735afd8669afefd713f56137248d5e817e60471a112ad06b7fa07ffe88",
"blk.4.attn_k.weight": "cc26ba5c5c28082a79e6abfe61186029e80b145252ca6a7924c437f0bcf2d51b",
"blk.4.attn_norm.weight": "302d251fdcc91f7468cf33f80b49484251d8917d7018ad264ab3a85c8ecf9ddd",
"blk.4.attn_output.weight": "a012f5bee3520cd4ce51f0076c132ebc3653309f304032ad051aa308f55f36de",
"blk.4.attn_q.weight": "3c8d607e447f5ef21e73af71e3c0d32fae16f91f31faae34ff06912cf9cb68fa",
"blk.4.attn_v.weight": "49f6c81a634ce46d71c2350206ecbd231b1732af96e4e4e67693c41a07e007d8",
"blk.4.ffn_down.weight": "e89504f311a4a34dc819a67b761022f14d71c43df3ead4f892c87aaa8e9f0adf",
"blk.4.ffn_gate.weight": "18b22f079a2fbaefe3572eec61fdcd996fd747724e2f0ff4f08cfcb43eb7bfb6",
"blk.4.ffn_norm.weight": "22415a492c168a0878912b05c854a631228b01c3ea8842e1d75989ec46c18a65",
"blk.4.ffn_up.weight": "f57379eae2874d8853f14ddf0f0fcc4ff1338574d5ed5d7e88331d5fb84f5642",
"blk.5.attn_k.weight": "d627af853c40bddf9762ce3988008c1ff17f2686fa8f73a0b5da38010147c316",
"blk.5.attn_norm.weight": "9ce01092c7f7f1c3ef72d6b794da12d77aa1f6a24fb96ba1b9bd5a0bcc3e2443",
"blk.5.attn_output.weight": "0388da8064c4b6b795ce2d8079e8a36535e82b2c9cf794e38ce8ae460aae726d",
"blk.5.attn_q.weight": "039b7ce1c909761fdf475c06cf14cabe5a90199282c89e4dcf460e95a4b6275d",
"blk.5.attn_v.weight": "c47bfd8d2496bdb6e00e03b903e15fd0ee806a515094ec257e43cc433147ab7e",
"blk.5.ffn_down.weight": "1d62e6708974bae318cbf00a8bf621d9ba0537e549ce4710a536520a8d14168e",
"blk.5.ffn_gate.weight": "8b42b1b11c92db19985094cbb50434e3a7c9cfea71ee6f21ea79eae7c49284a5",
"blk.5.ffn_norm.weight": "e0bc520f1505e687ec391d632a381d38d8ebcdec19f614a11a2000ab573e8b7b",
"blk.5.ffn_up.weight": "8cdcd17d2ea89bb9ab902dbc6bf3f827fa4ee029c6bf19eecbdefd146d8b6f2f",
"blk.6.attn_k.weight": "5dc6bcff89794d1756bf57ec665b58622d9352130d31082a6c66e1a079f99932",
"blk.6.attn_norm.weight": "13b26008abe0f119b5104b9d78ebd5e797d3cdd68122b93d73a3b4831a54d085",
"blk.6.attn_output.weight": "f5a49917ea70c3fb311ccfffbfafa63ab18416a5d55e5429b70ce8bfba57c075",
"blk.6.attn_q.weight": "d9c2f652c87dbd09ec3822e12876648fa32e86553ac25afab723b1cd9f8cef90",
"blk.6.attn_v.weight": "5ecc5fe67609a35151011cb526f45c56fc0a999079ae0ff37c755ca03c68c555",
"blk.6.ffn_down.weight": "0ec125ae0ecb2d9277fdb1b04f17efee94e37d0ae37311057c212ca2db3fe6d1",
"blk.6.ffn_gate.weight": "fa4d6d38355ee8aa3b80b476d65ae7e343c9b7770d7b097fc848ee8a6e091d1f",
"blk.6.ffn_norm.weight": "30e8f7defc627532e1739dc76d31223d45767391a431f925b63dabe334b0f392",
"blk.6.ffn_up.weight": "6b97cc32b290fa9087806b5d65aa6dc1760737730c8c71394cc4f30c2157f9ab",
"blk.7.attn_k.weight": "0231cb127cb7c3714cd72b8f39343891d7715a9bab2237ade9e7bc5f4ed2e68a",
"blk.7.attn_norm.weight": "7c3187f07eead7d219d98ab2daf87905e88d5f1ace109b6f5fa55dce3914981f",
"blk.7.attn_output.weight": "2f30ad972c284ae7c8eb0482053433495ebe8fe9c5ee2c28b4bc4ed1f33050fe",
"blk.7.attn_q.weight": "3a2b4b8d61cc9956d304fa9f82a9e65b4bb9fda2196670b16df7e0d8c43eff2c",
"blk.7.attn_v.weight": "d2aab97d0dcf0f61dd2f32848f7a8a99c423a4948a660a660a03a546972b8db8",
"blk.7.ffn_down.weight": "2270d520468c5549cd30023ff9c452a277058310104c4239a616373fc5a94387",
"blk.7.ffn_gate.weight": "4134a3ef71b3eac8f76b6f1a2e58625b3bae48081f175994bc3ed7d8b0d4f2d0",
"blk.7.ffn_norm.weight": "42df4abd4b8769b16f3930068f96960af1b061f1aeb7505384f272233b2badff",
"blk.7.ffn_up.weight": "c920549054ec16ff8c73a72f5d837cf4e11885e44db57c1c1c584c18fbd7a9a5",
"blk.8.attn_k.weight": "01c609bd3bf31ce65688f1f640ee413740e821330134d4ed1877a3065d1527d5",
"blk.8.attn_norm.weight": "48857411f769b00290f4e4f2e593e092781fdc2503f80c1e3eeda1b85a20f74d",
"blk.8.attn_output.weight": "90fb273f8df83744554bd59236515c16c5a5a698ca3fbedc17cc89ddcee354ff",
"blk.8.attn_q.weight": "ade617ac4653c7f00593dbb51837a468afef20a14eaab3780fb96ac3d6714369",
"blk.8.attn_v.weight": "c2c37496494864fee5c527d1fe1f88529d31c73f9cbd02ef9b2e9b23611ea50f",
"blk.8.ffn_down.weight": "2da58572e9ad79087c03cbb0c23c9ef69f93ec221fd5fe4ed92fb93871d23ffa",
"blk.8.ffn_gate.weight": "4483294e628edaa4901708e73e92c917bdd93b780fa01aa74aed57166f2bbf0a",
"blk.8.ffn_norm.weight": "c0cbb7a4f8123b62f0c4652a687f3b394802bc32870dc446eefb709e42043a7f",
"blk.8.ffn_up.weight": "9eaf8a2060cb9224cd585997cd671866c4051ad885c2c6d9fdc7056c2a5c0d89",
"blk.9.attn_k.weight": "5dd36c45fbc9c50fd35c36cd75576288506971eac5c5311d4f5c16ef60099645",
"blk.9.attn_norm.weight": "3c8ca64f2f75ed7c8fc1da010c23be787648139a96ca0ef3ad10be7b14942b8d",
"blk.9.attn_output.weight": "6277e1f833024f53c409be919ec76d34464a78b278c8f9dbf79e777746e3b995",
"blk.9.attn_q.weight": "87352b70d9e328c2d51d59090cf5ea5a046529864a890d0bc8986447a0a5c006",
"blk.9.attn_v.weight": "2efdf01161d7a82a9117cc2d87d37dba5ffefcf730781cb94fcc95130e48ff9e",
"blk.9.ffn_down.weight": "e7658a2ca984961c7ace16acb679387bedb1fef656b5330bbbf588db19673a75",
"blk.9.ffn_gate.weight": "773cd330d4ff5d64be8af00adf2e2722fae4e33fc26bb9d03549f6f4b3b0fe57",
"blk.9.ffn_norm.weight": "c8b86cd5c43b332f72060b807091c33a258e5dac01358ff4733b916cd34c9c97",
"blk.9.ffn_up.weight": "d8cc3bcff18bd46124ba2aa7caacc71220b44eeef6fccb993b4c6cb53e8f2c3a",
"blk.10.attn_k.weight": "964bdf3b4e77b915a216f750ff7b0f2eb1dd6bfa071358aef21010b90111044d",
"blk.10.attn_norm.weight": "59ed411d91d14775764eb514acb0895a75a10cbbfbc1c15d453bc50f8046cb7f",
"blk.10.attn_output.weight": "4d35a2a44cfe4ac0a83fd3ab0dcf1f5a0bf54cdb3b7be9fc353ed32c8a3eb81c",
"blk.10.attn_q.weight": "defff5339450dd881ac352f5c459293f39e07b9619ebd10ed632d79a3f310278",
"blk.10.attn_v.weight": "b9803e8d6a54acea58f662d4c0a5c8ebdf986676de7dfe12d4b288937881ce93",
"blk.10.ffn_down.weight": "eba856be64e4be20b92fb4639a783454dd92427250759df92a337e39f1971c08",
"blk.10.ffn_gate.weight": "2d5c509b066584db4de3632b01234e86edcde35409c5ebce18957dc80fe465e3",
"blk.10.ffn_norm.weight": "ecb9a8679945ff0273856624ce435dd250ffe5a440ea0861a5c84f0e4c44d2c6",
"blk.10.ffn_up.weight": "e76ec7e993f399af02958778c643aa78368e3067846714165eb5aba9d5f547f5",
"blk.11.attn_k.weight": "29c6d1f34bd3ba2f0904e57b32a5bf8dcb2834d439159a33edf234ce0b775677",
"blk.11.attn_norm.weight": "b5817b275149cd2abe18a6a10e19854605fc58fd364666744362ceee8cfe49f4",
"blk.11.attn_output.weight": "1e05653220e237cbe0cc770033e183c9a0eed5680510997409b16186c6691950",
"blk.11.attn_q.weight": "03db725ae669151e4d536e50285b3b047ad097f52475df208ed3e790e31a44be",
"blk.11.attn_v.weight": "27cdf1d4e971326c451a4615a0b79a8c7fe9508f9b76c0d52fa01971fc7eb403",
"blk.11.ffn_down.weight": "176938cd7c2966094f614cace8ba568b10532e45a0d438f80eccd19b6c2a7f87",
"blk.11.ffn_gate.weight": "9782339915dd6fa70013628a01524ee1d01ad8beab04068da7ac6a5ee7603a60",
"blk.11.ffn_norm.weight": "8245f6391e3be97811c0ff27f0d8f484ecc82a468a837c893f059745bfcd95eb",
"blk.11.ffn_up.weight": "15616ddde096d0d25e906375c548b6de4bd5576d1f6b68eefdc29f14e183af42",
"blk.12.attn_k.weight": "66dd21604993edd1b1fe547bcaa06f5bb7e31c9204902d147a227e4badf7feec",
"blk.12.attn_norm.weight": "23a69f85dd8a0904b9839cc5d0afcda299b74e82ae2642106224a1c820f2b761",
"blk.12.attn_output.weight": "4a98d132e376beb274a39d4ea9b6a1b870ad5c66625439d7ff6f45c229c3ca04",
"blk.12.attn_q.weight": "1c6c309d63afcfde32fe37257e300a78e25d01117e33490801107c0e75d1ea66",
"blk.12.attn_v.weight": "723d9e4ebe4e2b1974afa01d8f512b52933698fa36717dd47b37b07760c50a10",
"blk.12.ffn_down.weight": "00e0fb09e1f1fbbf3803f1dee373eaae7a93756b6e13063ab77f9927bc6f996a",
"blk.12.ffn_gate.weight": "89159f7f97aefb1e100107e3ac2d694e1008ad873f79bb953d60c2c1bb22724d",
"blk.12.ffn_norm.weight": "5f70aebd0e43a39d6373d8658cc670c13aadd7818831d3d84f761d5f688442f0",
"blk.12.ffn_up.weight": "faec21b446f061eb4dca561a3180712724347b77a71eb312e7afe9be9e89fa04",
"blk.13.attn_k.weight": "3d440825d19eac3b1753b34d94fee2b3a3cb6636c10b2703ffcf688d3c1eded3",
"blk.13.attn_norm.weight": "47b575e57e410738ad13fd3c74bb49c06b3d31030910834ece509cd1a5c6d9be",
"blk.13.attn_output.weight": "05436d8e613f4475741c1798a7c371b53d61b229507fa04fe23c504ba1f0e12a",
"blk.13.attn_q.weight": "002b5024ce520da41256e3ded5cdc60e5ae07ad9b202cb19d76ab511efd02b1b",
"blk.13.attn_v.weight": "c1f2d6763587c50312cee0d7140fa2c7ee326f5b172bc99b2d8946e08329cabd",
"blk.13.ffn_down.weight": "b5c4e0d8a3ff96cd76a135e415b89f02d28c28f7f3c16a36af31ef0ab8773da5",
"blk.13.ffn_gate.weight": "ae06e9e3d2e1f64c7ad23a4009dc904c2eccd7241f9f91c4974ab2504f116be0",
"blk.13.ffn_norm.weight": "e44a22321bcbcb4a3c345b504e939e8071370f54a8cd702fabdb40b97e0d7683",
"blk.13.ffn_up.weight": "7e6f366d538e21ad431264b12c011892d0be9dfe4c4da9f730af677f920641ba",
"blk.14.attn_k.weight": "95492d6417952ec24b2cab87bceb750fc7e95ac6b1944fc328a3852d980164be",
"blk.14.attn_norm.weight": "6b7b09e1c51addcdbb160ea59edf032531421c520ec5645fe1ff9ca4180cef54",
"blk.14.attn_output.weight": "75887474e4d72c218e6ab0f69f1bf3ec3dc414d51b36fc59df00cdb23421bb6a",
"blk.14.attn_q.weight": "940e33f76e48c21215d19e8a21234c8246d4d084381a7d9806aecb24b071d5bd",
"blk.14.attn_v.weight": "c58601cf5a9833f80f7f9a5b2656e8eab5eb133211446ebd48f8be15fed4ebb9",
"blk.14.ffn_down.weight": "f9f886e7f9b2a54d717b08947a25a0a93e8c2a5b8bcd5a907c06817c8ee3ac11",
"blk.14.ffn_gate.weight": "727ed0ee68594a3f59d704ed3240b6929f083b9c36650fb848d182315737245c",
"blk.14.ffn_norm.weight": "bd2471008ff1b2bae9aa26bea019393fb2bbc5b9493b8cec3ebd2c280fca24ca",
"blk.14.ffn_up.weight": "b006446769f51e4f93b503c4727deae897bc1fc7f4fad49f85024b63c4548d38",
"blk.15.attn_k.weight": "23bb70f9035356624039547a603e46be7d1e4403616eafc2451cc09c5373d522",
"blk.15.attn_norm.weight": "718cb371ca052eeb3bfac6ac506abb887df125271821fd171797a7f2d8dd6313",
"blk.15.attn_output.weight": "c76a2695a204b43a8e5acfa5720590b5d449a9ad9e082cbe3e80fab5903ea16a",
"blk.15.attn_q.weight": "2b3e4037b9e91bdd26d6e8d904cf39f948192dcf09bb6445cb55ca058d4f4626",
"blk.15.attn_v.weight": "7c15e89b6acafc8619e86aa9d412f5893ab17843ff2cfaf40eea9637b24910c6",
"blk.15.ffn_down.weight": "e16fd4bdc6d1c1209c6b633454df4992870c8cefb2cb0e8c92a7e489e9fb5d19",
"blk.15.ffn_gate.weight": "95a46bea366c260337c537fde06b4cbeaeec52484a69c3390bb1d178eb0525c9",
"blk.15.ffn_norm.weight": "37730293f704da265dc6d1896b3be00c39c0a41dab07f573af39dc30a481d623",
"blk.15.ffn_up.weight": "ba74a199da2d0875d7410824238c4ffafbda3993568812284a72b8800df91f15",
"blk.16.attn_k.weight": "f58f79a2a91c9a763adefce0c53a71eb5ce6bd8442f4af554b04b58083bff27e",
"blk.16.attn_norm.weight": "0c16e41b95e81978e0e0e3b338e2afe2d297426578cacee94de15df74e94eaad",
"blk.16.attn_output.weight": "ead22fc337514e4add49aee19720008558e52090466866e849671953a1fccba4",
"blk.16.attn_q.weight": "ef59c4e8fe8918c1add43d7e9c6fb3ef799dd3e1bdd731ec7b6a4a6f97c86048",
"blk.16.attn_v.weight": "902e6b84c2b64241470b13e6f412f859f66b4b223bcfb9c15d5cb1106b07ef3b",
"blk.16.ffn_down.weight": "2ad6e9eb4d8372c32a554395d460d17cfb02d6dbcb757cc962b6bfa36db4f5ee",
"blk.16.ffn_gate.weight": "825b2d50fcce3dbe6a5d8d8a50a95466f83ca4a10343efe67894c20b4628fb15",
"blk.16.ffn_norm.weight": "3bf6ac90befb0e17e077c8ea9454a8485a30f89f2d761ec7751b60c90aed1af9",
"blk.16.ffn_up.weight": "9fbdd08739b32411f5ab0252174d386bab19eb0b17884862f760429b7d41d78c",
"blk.17.attn_k.weight": "4033398718bf3674830ed1b73071ed8482b6dd4ef27f31a6c5fbb998321b6c07",
"blk.17.attn_norm.weight": "714f2e8ac9592966a0f1c02ee979eee8f84586405b992e8ee9543e840199ffa1",
"blk.17.attn_output.weight": "b6bbb618597d767b8f535117be68f92911e4a71d4eb4d8b5d943444151445ece",
"blk.17.attn_q.weight": "b84a0dc00ceb515faa2628125dcec502eed923077b21cfe900a4ff16c2e5f9ed",
"blk.17.attn_v.weight": "4387c7d6a17da9cc7a6bca8f4a75618b20407d570792056283a8e93b6ec65f18",
"blk.17.ffn_down.weight": "47db95c6f1e12b399c3eaf9ddba261782dd71173dd163b52af96541cf87b5196",
"blk.17.ffn_gate.weight": "59abaded0aedfd12f01df81f7a811e84db6a227f51b60abe9a247ca726e87392",
"blk.17.ffn_norm.weight": "b7e86445be5c7b722e01ddb98d5c7527ca86cb827ce0354f2c269e0f2558751e",
"blk.17.ffn_up.weight": "8e31c293bac649d2f60da4b3fc4a3acdce1111ec6058d8805eeeb242443011de",
"blk.18.attn_k.weight": "5ce762ab7b032511c131df81093b587871718c7097f79d8e07d707571f18a47b",
"blk.18.attn_norm.weight": "1f52cdc7af1f4dc1f0ef6ad1ad02e18cda32133654e57cfa9c72ada9c0b1d995",
"blk.18.attn_output.weight": "6486957f30bf8a88516e25772c6650f98b13923f490a2865a8752e36439d1cfa",
"blk.18.attn_q.weight": "93621c8abf69d2ca29c5207180eb628fb2b544d89de6c4a7fb0699be95534899",
"blk.18.attn_v.weight": "11604083b5a74828ac1d226af015ad5dc0215a1fdca44fa7131c2163c02d8156",
"blk.18.ffn_down.weight": "8f9997feb94385f106915df810239c9753b31efda2bf14bdf18a9fbbeec8233d",
"blk.18.ffn_gate.weight": "427c213b3a4e94af703429daf2f65766f70424d8230c123e7e712a18bceb5ecb",
"blk.18.ffn_norm.weight": "c45d305c4ea6a54013ba112f12dafaade064a32cf01317373464a3618d8ba44a",
"blk.18.ffn_up.weight": "a2811f2e73ac9eb9cce91a21a454e84e230a155244e2cd73f2c12aad3c9b8cfd",
"blk.19.attn_k.weight": "b2daed159925eac58c291e2f1e2000beed21002b03c9e1bc7e7a52e22240666c",
"blk.19.attn_norm.weight": "6307306ede2ab5bffa1bcac3f8b139354678c0376b1d9f5530c1fcb4268cfeb4",
"blk.19.attn_output.weight": "ebb98218b2a9c84d3fb6baeb02c5df264b7ab80d994d1098ba1cd47aa398effe",
"blk.19.attn_q.weight": "4f10df2ad09177e7528e9456039b670d07db22940a49417101b725d239c16724",
"blk.19.attn_v.weight": "30f1efc5114badaeaafa91fa466dc7fa14b1616db433c6f563ab851f7333a5dd",
"blk.19.ffn_down.weight": "be5ec7fe6b48855cd0015b0e430d1b70c620de87a7ff188c7c1afef546d7b6bd",
"blk.19.ffn_gate.weight": "10dffea4213881f8a9b583ee0fd370e033756d32255ed15053f794375b9400e9",
"blk.19.ffn_norm.weight": "e75cd24ade45dca78fdb0cbcaaa2d4a17d83a5a73dcc94ce0ec2d68fbdb2a881",
"blk.19.ffn_up.weight": "63e81bdb951410ffa81bcfba1b94a679ec9ebae59cd1623ce2651ed5d4c78bfd",
"blk.20.attn_k.weight": "c2fc5ad39e9bdd45e73c6e54aecc474388d944c4be1ee1921b7fcd035bad02e0",
"blk.20.attn_norm.weight": "aaa9169171937bdce20c1f057e94e9252f221cabacf1ced12e11b9586f23d308",
"blk.20.attn_output.weight": "a9f4fb496e4bc053e3f6cf2e72e22d4cd2b545ef6c32f7e782c2ef6ebcc21d4b",
"blk.20.attn_q.weight": "5a07ac619ed251494170b213921ef3fcc4c2712839da262516d9d5b8ea1ff185",
"blk.20.attn_v.weight": "d6689473105d241eacb17f09f06000ee237336916cf5ec4f48271c5b41bcb8e7",
"blk.20.ffn_down.weight": "74be38db51df736f26ede7c6b52ea787e385f181cb66231e2cced4556a25c9b8",
"blk.20.ffn_gate.weight": "ea91e06dc3d051c0ba0243b5a8bb40edbf254eadfb54fda7247e05cfdd88cbe2",
"blk.20.ffn_norm.weight": "5fbd357b3d6f44a7a91e8a4fc246b24303891b7957e0f3c32818ae5dc16ddd8d",
"blk.20.ffn_up.weight": "fe3290333e056af4ed12942ac72aeba97a6b562e2db05e79cd35dd07eab5b101",
"blk.21.attn_k.weight": "201ec6ee95f06ea5eb80fe86fd07bd016d3ae9ab6abd25d631834414e14a010e",
"blk.21.attn_norm.weight": "ea8154f93e06485828475a00b98cc397ac84768dd70e06ecc0c075b5712d7276",
"blk.21.attn_output.weight": "9f8af74d531478fd304723fd8e4e01578db598441b80dc7c960cb801dbbc501e",
"blk.21.attn_q.weight": "277de9953a8d3cff894ffd06c15ad0ee1407e319df0c1a693d4f45fa9c74ac7f",
"blk.21.attn_v.weight": "6bfdc16cfb898909b7788ddd39dd04b928f31d6732772195d53c558004638dca",
"blk.21.ffn_down.weight": "173877146cb94801157796ee9e5eecf3f46acb3b5e797f90b83a3fc22395eb30",
"blk.21.ffn_gate.weight": "53146713e2ca1be80496024077a028f6b6d749b02e71003c349e113b436f48f4",
"blk.21.ffn_norm.weight": "b28b97e18ab20a5c553ba422f7d7f6014f5902f1d62a69abd20d9fe19a5f9462",
"blk.21.ffn_up.weight": "5c39d0ac4d602b8ec8909dade93b2efcd6b6d9d84a19b252d76bb66dcfaab87c",
"blk.22.attn_k.weight": "01f26272c82917a87a3ccf922fa1d521a952b05de878241b7efe3525b617ac87",
"blk.22.attn_norm.weight": "5ffc96249d8873b506e9eb7158bdfd07fa1429e53c1951430ca7505d25f11c76",
"blk.22.attn_output.weight": "9c2201569358f720244b9c9497e4da02585a167b1414c8a506b85ad75ba990d0",
"blk.22.attn_q.weight": "906036eb4ddf027f6d920f9356a6a2a5e529b96f4e1231a0496d46b4434a5842",
"blk.22.attn_v.weight": "30ede8b0d166003a4b8a81fc99437f557719fc36e5c4dd510c9f161f36a47e73",
"blk.22.ffn_down.weight": "d04c164beabab30e1837b843e18852260efccfbb9d96a34ddd816e6fb3ba23c5",
"blk.22.ffn_gate.weight": "19c889db6b19179f0a62d5981a1506592c65de83760d67afbe00d202202750a8",
"blk.22.ffn_norm.weight": "4885eff2d851b32dbd306bd632c725857e6d164f0fa8b3d5857e572e6ef98ee9",
"blk.22.ffn_up.weight": "365594d8db8e95cf87cc33ac23947942dc326110175cc8ec5a07b5c7059089a7",
"blk.23.attn_k.weight": "badfea1569da0fc6ab817c5727ca3a69b07d9cfd622fb8be5e66678d5b3f7ae2",
"blk.23.attn_norm.weight": "8968f78a379ac3ca5458b4ed4251e8d9112aca6d6dd1ef6440b4bb0b380375a4",
"blk.23.attn_output.weight": "93e43393c03956287b1fe31e9735ff1cfe84f4ae56b83dbaebe96275e4e11831",
"blk.23.attn_q.weight": "aaff73c725a8700ae66bf26ac8869dfe96738eff23a8ff340de2ab53400a5795",
"blk.23.attn_v.weight": "3a86a8dcf14a746ed1411f5a7e634064bc4dfd6511c24cfeccfb2c9ebb6b4101",
"blk.23.ffn_down.weight": "d4da6f37bd7ef69bb203f7b0dd59f50bce37432c70627e6cf274ab81548af5cf",
"blk.23.ffn_gate.weight": "5b6072936c4a693923bb4e3d1473fd45545cb02fc07799aca458ef0449a04061",
"blk.23.ffn_norm.weight": "cd76e37025f84773180298ddb15e0d4ba9cfc7d832e19c791049daa47c6d9c10",
"blk.23.ffn_up.weight": "cde43b99b83124a13b2e4753d12674b3a61dfb34c04703007ced3e8e2aee1801",
"blk.24.attn_k.weight": "457379edc4cce4cbbe107385079019bc922264fdfc7bd1d1ae84343a81460c66",
"blk.24.attn_norm.weight": "0ce0dfab2edeede5da419fa7833db78e36222cf25c358d08f3ec664310f031fb",
"blk.24.attn_output.weight": "0cf91c2fd40c204d2fd4b9c85b69281e5ad4ea8442972fcd44b5fc8e835ffdf8",
"blk.24.attn_q.weight": "87ede30c09eafec6a4e6285674c1bc4637140b168b2da4ed34f36fdb6e176cc9",
"blk.24.attn_v.weight": "4c0b078b2798ca35d6d2c2258fe499820d2bc88700654ba4016e4b028f563590",
"blk.24.ffn_down.weight": "cdb8540c32b1ab988f984484928d39f6841f2131c1cebe90ad9456737fccbcaf",
"blk.24.ffn_gate.weight": "da2e0e913648b5526bd2bbb344038dd067639343aed3b413662b064b0db7556e",
"blk.24.ffn_norm.weight": "8940bd781c610d75eb2be63cfc8d869a3af05e53c963dc7fd4c6f653df5a80ab",
"blk.24.ffn_up.weight": "90cbac2a58801abe11ed6c24560aa4acb949f79429f2aa8ff129ac05868bb87d",
"blk.25.attn_k.weight": "90607131e36998e990ce718ad05cbecd1bcaed010931401ce6baa3b0d93ebce6",
"blk.25.attn_norm.weight": "fbf679c85656c04a6cf8fedd5412c1ace22960e6c2d47f2d43997827811fbb97",
"blk.25.attn_output.weight": "08412724ee7a2086514406e6f68fb9f622e10bac25b0c373b294709f4b09bd2b",
"blk.25.attn_q.weight": "9c1238e98a2747654a0d4371d3e7ea8b979867f609dc42482544f25591e85c7f",
"blk.25.attn_v.weight": "a57796a535c6cb09581cbafd6a91dc14adc8cca2a2465a7ffd0aec546cd84074",
"blk.25.ffn_down.weight": "f7e34e8a6391b480da08b52640613ccadce268373934b409759743a1735b74d6",
"blk.25.ffn_gate.weight": "b8d0b2f4612678b5ce42bd4a683f8024514b75fb5ebf6b22c600811e95582ee4",
"blk.25.ffn_norm.weight": "cde1fdba2369d315f3c6940a997c471ec891924e642505db580d732763bd7b75",
"blk.25.ffn_up.weight": "72e700c32ac8b9c47559c2222e45888a480b527ea512075423c5dc01678e2bb3",
"blk.26.attn_k.weight": "6ac83b3414ae75bf3a9055c32e49d2c40fe611ab21f8444f03d2f465d18122c9",
"blk.26.attn_norm.weight": "55f9d6dc9d75973dc75136ecb9d991b4398097ac133070873fb96ec76a6f60bc",
"blk.26.attn_output.weight": "ebc4fcbd15b33263e50ed2ad45740867cce15bc90e1216623babcb1820734509",
"blk.26.attn_q.weight": "080f057521073e412936fe3fee64fd574c8128fa4a148b879d3e598fe4954581",
"blk.26.attn_v.weight": "0fa2830d6746487ac91b243716e4302361f891e4e008eddd14abec47c7809d5e",
"blk.26.ffn_down.weight": "cb2ab8af1653adc57111ada49d2825c6995e338c8208455b92de10e580f60f31",
"blk.26.ffn_gate.weight": "231ce30966086bce2dc0e0afd34a22a1958cfda7a57c41b3b8e9444c5dfde8a6",
"blk.26.ffn_norm.weight": "35d959d25d17b00617590f5d5831bf705c385c51e46297a14375a700effca6af",
"blk.26.ffn_up.weight": "367680c8d332538b467d1ef87cfeb36cc5c6af564c5023c5fb50e728e3438287",
"blk.27.attn_k.weight": "0bfcb351c6d17aeac5b55a915074fbdf00f11c4bda98babb196ac8804805746b",
"blk.27.attn_norm.weight": "5d598a88c2e75ba59dd7ba4fee940bdec92d72038f1286536d2dfb71d008a09c",
"blk.27.attn_output.weight": "23a9da7347336479f6a10ded14cb3f46e06b5bd56dc4b0fbc526c688552ec840",
"blk.27.attn_q.weight": "b83319dba9055f069208e9c9d66da08bc6874f23e575288fcd81697d1777aa54",
"blk.27.attn_v.weight": "36ed34ccb2f36fdf16b2c2dd225a98ea6b7b0e376e7791191136ccd7bd7a4add",
"blk.27.ffn_down.weight": "5488e1d3a58c71b5e9ddda430540b4776b268cfe1457cbc1c2622dedd9e4526e",
"blk.27.ffn_gate.weight": "4ff48011ee0bac39af704849d9132a2410392c87a509c684f2062f6b76b498fb",
"blk.27.ffn_norm.weight": "32afe99675983da3de2961d1b5ca41c98970a356823597fe29e91f6e86abf0e8",
"blk.27.ffn_up.weight": "1eae3088a75629571fdbf6a20f141bc2bb2ed3f5ba2b9fd1d949f80695e442a1",
"blk.28.attn_k.weight": "c4e80af714962d6f9040d2c09f316f4a1cbc3a2e994e19902d7c653cf3c73dba",
"blk.28.attn_norm.weight": "c1ecf85dedc1c83d5d402bb7c94fb8b9c11f1a3e5f64e7680f80912d4a560794",
"blk.28.attn_output.weight": "72ba47c061b21f5ebc5213a455eaf6fc49c8f8e04ff9ce37e6ed4921b629161d",
"blk.28.attn_q.weight": "c4abc47234307f44b8ca789aa6668e298158fa4b459b2c1e84bd581806591cc1",
"blk.28.attn_v.weight": "aeba950799d4950e491ad0fcbe30334e39b8975177990a2cb339031c45ac153c",
"blk.28.ffn_down.weight": "4e84ce382a37b994fb8608df451a60040559e3f4f3241c3b3cb8989a3ed50d83",
"blk.28.ffn_gate.weight": "04df157acdc8e8534ad60acc2d2a4dd3a7a6610f6382535ec728994fa6f83f83",
"blk.28.ffn_norm.weight": "4d0386dae2bd1c1a9d0f9730718333e3a486c3bc6a5c5d482193c75d39832c80",
"blk.28.ffn_up.weight": "fec60bb0a3daf182a14bd8311fe6dd1e3fd020c5fc273e2549cdb1a2d6b79b05",
"blk.29.attn_k.weight": "b0532a263aa5a4e2a7a80adc83fc5dec974493bd18da7f953e7ebfc3f3a19aae",
"blk.29.attn_norm.weight": "593fc3b4000c35b7a59dace09ca1756c08be0105b2edd354a0e1c16c82898859",
"blk.29.attn_output.weight": "315b896f9f0cbacd0ca8937384c3a3a227efa908cb8c3a9125ec00c480e32b9b",
"blk.29.attn_q.weight": "d482d45386d4ad3394f08e9dff233ee3a70d0427d65c0b8fa05905da7e25ca53",
"blk.29.attn_v.weight": "cd3b5a6e2852da796902930a6a84bc87fc6a7c7bf51f8fc23758d12a39013b36",
"blk.29.ffn_down.weight": "5b3dba6f9753bd1b1ebcba65ef5373dd62c38e755c44b7231b95d93d45761f89",
"blk.29.ffn_gate.weight": "8610d9d2db15c256243ffcca3ffd31786d0ada0af0e7c7aa3fd20524370ab036",
"blk.29.ffn_norm.weight": "1a2ef2d38b7ac3e51190b9ccb8b6552ba83ab290e523356a7f851ddb35dedca2",
"blk.29.ffn_up.weight": "a5fdd15811bde16dc27677cf1a4c97daab4c28cb12a9530f1a0e573134fdb69c",
"blk.30.attn_k.weight": "1efeb0b5f4b45a85cdf47300f892ac77ac1f38000ec3653565d1303d1fb8c743",
"blk.30.attn_norm.weight": "c73934c182c7fe80838ec1d0b92f50a583f75f7a3d78d822f009b58ad2c80e65",
"blk.30.attn_output.weight": "3a0fd89de2d274614750345d827a9c886a4f97b343a13cdf680390505df596a3",
"blk.30.attn_q.weight": "711e113362bdb067db843c66236704eb1cd3fc5f40e3767143e96d510686ef4e",
"blk.30.attn_v.weight": "82b12a9a74fd3d91b73cc2e841e2b3f0a5197ccd2998afa17020995f880d2267",
"blk.30.ffn_down.weight": "af9f4b1287c0d824ae22d6e335d19e04a70135b835be7caa2435f1d85e931993",
"blk.30.ffn_gate.weight": "e2ab3e6f15f5c50fca66c084cb6a57a2b6b82406d65150e82ea0437b93dd9a46",
"blk.30.ffn_norm.weight": "c1b9c325c83f00e177386a4d7e769945f2995e60950c4a576c0a2c4ab9703d04",
"blk.30.ffn_up.weight": "9b94a21efd419715d82071b490d3b635cf1e8da080620dcc39e5bde976d7e9a6",
"blk.31.attn_k.weight": "0db0d82e3ddcc2c06209f5f013e1d72a84a996c40bf00186be485b909cc268e8",
"blk.31.attn_norm.weight": "2b8b7239471f57140c5cdfe06bd224a4f6326282f99736e44fba4c7b120ac101",
"blk.31.attn_output.weight": "a310b048840cc3ff2be4b84796340e8e2cdf05ec89d14bd3655c109b2bfa9fcd",
"blk.31.attn_q.weight": "f45e0cd95645175ea82813455356d171838539bc3f7676d877c698f2af0a0eda",
"blk.31.attn_v.weight": "8bde008e809112aa7e7c23e9c3099087bcc557313b01306c87efa0a4a30805ba",
"blk.31.ffn_down.weight": "8266fec7e203fbfad7033120861e44984581ff8b6851d01dfb7b81c5d8fa90ec",
"blk.31.ffn_gate.weight": "b73bc0aa5baf006d9ef6403104891b8133671b0992398fe038380b67e0d7e2cf",
"blk.31.ffn_norm.weight": "9c62cc27a7b6017c1df8ad49bff249a8245e8895c6754f402cd44623fda83268",
"blk.31.ffn_up.weight": "5b970a4694ea3171a0167f6e1636d9f00268bc1c9640430ffc35218494884adb",
"output.weight": "74fa0ef08c57a30e633e7117b1e9c805f833e2e5e21434bc79ddf9c92c6d7330",
"output_norm.weight": "59b8a59fd3fbf39353506116e43e5e76edd0cbf2a2873d869da4cf27a04997c3"
}

View File

@@ -1,348 +0,0 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "32768",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.rope.dimension_count": "128",
"llama.rope.freq_base": "1e+06",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"llama.expert_count": "8",
"llama.expert_used_count": "2",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "1",
"tokenizer.ggml.eos_token_id": "2",
"tokenizer.ggml.unknown_token_id": "0",
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
"token_embd.weight": "1d1d1d39a867d5a4bfb32792a47247d2638c10c95a6259391d02843583505cc4",
"blk.0.ffn_gate_exps.weight": "2e5cd43ac3f26c44f071926ff6c3f239ecc52a34bc9a5b5906d3d4c1bf2fbbfa",
"blk.0.ffn_down_exps.weight": "a4dfc7e7c96e7402eb70279601675b956bb7331da8101e63fe5c0a611b6972e5",
"blk.0.ffn_up_exps.weight": "2d5d87b378b2319c344ed2c642598b6f7cb6beeb582a8ea51abc9ae690d473c3",
"blk.0.ffn_gate_inp.weight": "a46aaf5aba7401ce6e41f158242b4879d34901661f3ede85496cbd0ce79d6314",
"blk.0.attn_norm.weight": "3fe37d913bdd2b65076bcdd6efe64a37b0b03cacbb1b80b9f7089068aa35f38c",
"blk.0.ffn_norm.weight": "5e14308a3c894734eb204c8f558bdc817e94bbd5b4e9cb4094e91ba388c8f7f2",
"blk.0.attn_k.weight": "73d943dcac0911e87bd771f4aa1c901e1bfe1aed293af06e1a67812159859f67",
"blk.0.attn_output.weight": "4c5f754c855e262e8d4c94c6fbbb57af06399dc0e170d7d99a1a17fc9aab9227",
"blk.0.attn_q.weight": "d6fd7403c873d49c05f6f03208f30d99ad34cb3b71c9990c47334d502a8e4c7b",
"blk.0.attn_v.weight": "cf17cf64b2d683bd9de6cebaf60e5c264df6fdc38fe719dde9d54c80334f6366",
"blk.1.ffn_gate_inp.weight": "0d524de81cd915816b4e714bf595ad6946a9130b3de731cd89428b2781230809",
"blk.1.attn_k.weight": "2ea47f412992b374c70674730fe84700e0c8cce177086ce9b6635e42408964bd",
"blk.1.attn_output.weight": "b4b2520794d54113e86c8ff678eacfc62e35be4395a594a6c8c22b4383ebcc0c",
"blk.1.attn_q.weight": "5db930c98c4f91f6eab57eb974c72210b158e366d23d6d2890b2759c053bee33",
"blk.1.attn_v.weight": "079bdde09668394bf7af9f8bc175017b4f48f0ab64e6dd855a4d7561d1693c0f",
"blk.1.ffn_gate_exps.weight": "146a62de19f9ab093deb101f9640534ffc3dc40d69f508be12fc0475d01b0c7a",
"blk.1.ffn_down_exps.weight": "949da94a3c0f375160672a979e85f7def284264b10d48d038238aad5f5ece793",
"blk.1.ffn_up_exps.weight": "7016a3f467d9e3f2f4b4019579ed86b757469cd367f2b225483305376b4bb3c1",
"blk.1.attn_norm.weight": "1614d1e6ed537737275eb888666c7bac533f4eefbe73dec92b591045ca9e1afd",
"blk.1.ffn_norm.weight": "405a455fa7d1ec36894652ceb554bbcb09a07fd6405f42741e66dc4a4665c19c",
"blk.2.ffn_gate_exps.weight": "90d5003fc7421f44220c0842d43128955e91488f6f785fe570b62d81b719e964",
"blk.2.ffn_down_exps.weight": "ecdc2b5a8b504ef0a7833acff47d69b0c1fa9c22126de1bb120ff5e48c3d6e2c",
"blk.2.ffn_up_exps.weight": "2cbd9485a32460d315eb50a2f3b00863fd77245bfe885b7565efac1cdb1f191e",
"blk.2.ffn_gate_inp.weight": "0d0a17a1a2c7a61f2cca49ecbb479154dc93a870873257bc4f225e7607f2e2c2",
"blk.2.attn_norm.weight": "b2e4c5a977f87a6f880896bd73596234c9b83622fa0d7add5892501e3155913c",
"blk.2.ffn_norm.weight": "0ab875b4280afa922376cfc7b9aa3f7071c9432ea1254091ce7de3749df0e8e6",
"blk.2.attn_k.weight": "bb884af51fb51550acfef54ccf1b58ce8284e587806e6a2f88c8265e1ad05a5e",
"blk.2.attn_output.weight": "0f03099ba1ef342ea61af9cd71d028123bbd8b1dd7d7fd9b509aef77815427d9",
"blk.2.attn_q.weight": "8fad0d29eb4c9d24e564774ee3316b9eb7a4c4985e4567111d2c836c830f6cf3",
"blk.2.attn_v.weight": "fe04c847ff677632401a94e7b6b6fdca60391ab21cb23bd791533115de6303a1",
"blk.3.ffn_gate_inp.weight": "29e3aaa724590c070e614af8288939603d2641b0ef11e8c0f476bebb2776673c",
"blk.3.attn_k.weight": "231cc5631def10f7f292d8862d6125ff555164cd70480ac76362149fad204497",
"blk.3.attn_output.weight": "86467a605c62852e05fda1a7ef43150df2cf715fe59785dbcba09f1c27cfa086",
"blk.3.attn_q.weight": "901822402453922225c2d6ac79616691d48217635d5ff7338daa971d5ddee210",
"blk.3.attn_v.weight": "27030784f44375720df2f090933645a31a022d3fb3b14573e5ca0b78f44070c1",
"blk.3.ffn_gate_exps.weight": "231ba59cc0b988d125d77bf627aa3f04636684870af88f081f3944b48a160d86",
"blk.3.ffn_down_exps.weight": "530c3ab44ae4d66e8afa4d10c153ba5dfcdfb7321989a988e62e9d12e7234625",
"blk.3.ffn_up_exps.weight": "b85c2d4d9d11332e702b3c0a6610d4f525f9a93e5d12f5c7c55c592c40755e75",
"blk.3.attn_norm.weight": "05dbb6d88cfa6b199f9d705ccbda97c0ef13f9ec875c595398a1a42d009a4555",
"blk.3.ffn_norm.weight": "6880b1c27d46969ce36fac049c05dc8b89e4bb47dc89df357e32df7e18fc512e",
"blk.4.ffn_gate_exps.weight": "a883b4f225b760c5a2f6605dc5e2167ab85bb398c70bf64ceb539fcbd6128dcd",
"blk.4.ffn_down_exps.weight": "d291bb656aae77947d4b525e2819bf4112afece53ff31de9dab999af1f65f9c4",
"blk.4.ffn_up_exps.weight": "38592afb8ba3dcfb26970f906174f7d3fa62da44fa4be4fc6912a19030ea9164",
"blk.4.ffn_gate_inp.weight": "1596cb74e8fd6c3080b937b06468bb397b0dbb661e6d180a6bcbdc43e8bfd0c6",
"blk.4.attn_norm.weight": "f90c83c5ff4366281d283384efc941620542b9cfdea160d678dc54a75e33f758",
"blk.4.ffn_norm.weight": "d28d8c49d1746b7cc085562d1074905fd14023844de823dc4fb22202bb280790",
"blk.4.attn_k.weight": "792bbf412cc357140fdaba543e547a9b2f7582919e307bbd9a80c7d6d8f5f1f9",
"blk.4.attn_output.weight": "d98e4a062d2631d9c315f1990d5f6ca9a88e7e0e46387f611ccb0353f876aa12",
"blk.4.attn_q.weight": "1a11a55a91d9f748a72176ff6b1c174844df406e00d1b66b9aa64dc6ee4bcd1d",
"blk.4.attn_v.weight": "04cb3c02b12a6313c7ac7044513441083d534fb4c5a3f63bbaa58f7edbd2fadb",
"blk.5.ffn_gate_inp.weight": "cbd5cdf015d33a2da6703eb74c22fcb97581fb9175435173b6dc4f9e8364320d",
"blk.5.attn_k.weight": "4fdf3405e4d657403f5647b51233521310ee984b4b81bbcd901cb3e6ab76b7ff",
"blk.5.attn_output.weight": "4a25662c46979a29600ed77e1907cf81fb16ef30e724c155444e54ccb76af481",
"blk.5.attn_q.weight": "e2acb30e30b97300039bb20ad0878f05159d5657fa811748a51d5b6fb35d631e",
"blk.5.attn_v.weight": "306504b6a26aa123c63dbbed3f4ced0ed2ee8fb6a30bf0093539b817539f5ece",
"blk.5.ffn_gate_exps.weight": "7e34df9b9944dbeea5e8565786d3aa6937314a4b87acd4d0874687877c5a39fd",
"blk.5.ffn_down_exps.weight": "c4b7a57a42b5ac0a8ae27dcd5cb2646d7a7cc7123126d44a56ab128e85f60b13",
"blk.5.ffn_up_exps.weight": "09d47593b6dd6c664a9155bff02fc2eb7ac4a70219a88162d05c802a01d3c6ba",
"blk.5.attn_norm.weight": "58804a036d6ac4c1fe357b8b6a97a5c37cae1c2f06ee0086c041d449c1c6ef6a",
"blk.5.ffn_norm.weight": "d872dee6789f0826211aa46ca9d0869e3e96bcace9e77d6559a7b6f3e524f3ca",
"blk.6.ffn_gate_inp.weight": "fb1eae732e974d6c1d020a5b4ef98c5f33016f984701bcea656f999a99daad66",
"blk.6.attn_k.weight": "55e9c59c5051ab5519b3a7962e1b5fa96a3c0251cb6200dc2f177885ad2de470",
"blk.6.attn_output.weight": "f3c834a8d0027370350e2b6294d95434d31432e57be6313b013c15a56303d61c",
"blk.6.attn_q.weight": "efaefe5f11c2140dc7cb532b0832c2a0b363a165cbda21f00fadae77efca377b",
"blk.6.attn_v.weight": "900bd734d75616d846a90a121c97e081c956a3d1ab012f66dd0bc62c43e1ec3c",
"blk.6.ffn_gate_exps.weight": "312a99661b1468fcaed2474621116f1681432755e973f3ee79d01912974fd424",
"blk.6.ffn_down_exps.weight": "ac9cd7db67a2ef0d2b5def86873673d05e48d49d147dd944469dbb8e2d4c46f6",
"blk.6.ffn_up_exps.weight": "57613e7e09579400a1a09fee4445acfbfe83f2f327fdf317877787d96ada6b84",
"blk.6.attn_norm.weight": "0e8801e09885c633bc01a9a5b85d4e878d30158a4eb41a937dc5b760ebd044cb",
"blk.6.ffn_norm.weight": "b8c58062ac93072f878446b0e7f958c737aa47fb769fc3a8f593133d12db2dd1",
"blk.7.ffn_gate_exps.weight": "1ef611732ff13edfa8d30981ed9dac00c15ceba9fc012ed0b199e9280a849948",
"blk.7.ffn_down_exps.weight": "856c6811945c7b0fa461ca17811cfa43436b4cdf5326bad23cbc30883486d7cc",
"blk.7.ffn_up_exps.weight": "6725e3e33994302ee13fa5ec163631ce2dcaa08aadde8fc166c2265d4561c5c5",
"blk.7.ffn_gate_inp.weight": "36b49d7f80c1003dc392b2c1b9960cd49889dd69e77b26b9e4b13d01f3d0a32a",
"blk.7.attn_norm.weight": "7a0ec49acc5e20ee71c6f80ca02f4f1e564c485e0ae0621309e7c2eb0c616cf0",
"blk.7.ffn_norm.weight": "eeae035c39ab6e64bc06a4baa1bf6e50d4c8b8797cb0ad8abd48be86974802c0",
"blk.7.attn_k.weight": "e8f78c1def01a7a38d2d9bf7becb17755e28fefe4927856f7890fbee52840187",
"blk.7.attn_output.weight": "5367f05ac3bb49ef8745ba5902e1bdd4442415a3ebff2c7e1a3918d7be6fe948",
"blk.7.attn_q.weight": "37c95fc5acc55a4f6e5f02cab9be60e4fe54c08b65f98f4455741b4aa542ff4e",
"blk.7.attn_v.weight": "c89f1343486ba55814233511e94090f7365662a8a4214aa4c278cdadc79196c2",
"blk.8.ffn_gate_inp.weight": "4e239afe8c7afb8de3a005757c887cf14b1622ca2d224227591cb0e5301f4c17",
"blk.8.attn_k.weight": "2ad0229f30fdcc1e85ce64e00d8f75902238294844a81d5af43e14ba75c02983",
"blk.8.attn_output.weight": "2e44a4722acb3b521b81d0b910f8ca2f6c286d874a92ddd02150566454061699",
"blk.8.attn_q.weight": "1cd2b09cb2f43e08de776b5f7eac197a5a6d4ffdfd52b21baa36319450147bd0",
"blk.8.attn_v.weight": "5a22c57ebfd33ac500cbcfd321d5b5b1783f8728801db6f3f8bed51c7183e4db",
"blk.8.ffn_gate_exps.weight": "91063fe56cb4f3ff3b41052bb5046fcf8ef61516a603ee90aab893a9d68c15a7",
"blk.8.ffn_down_exps.weight": "d4c3abc8f1d1b462f67f70bd8f404b3fcf45dceeaa8527fa120527254c383c90",
"blk.8.ffn_up_exps.weight": "76a1a1f08ec577716a2e7027b45293e9205751126424f1bebe1de89c78f087d5",
"blk.8.attn_norm.weight": "f980d774da39eb76c52358afac3e38cb4c81cb323deaabbe5c41822e3f17a98e",
"blk.8.ffn_norm.weight": "1c937658cf90f1a85db9a5f26e077730fdd4b694607dbeeb825c5fb2bc407e0b",
"blk.9.ffn_gate_exps.weight": "a2532471ecb7896d5c78e5a34e10cfaf4125265e1595166c8d0d0dfbe2a3187f",
"blk.9.ffn_down_exps.weight": "b47921a28412d48fee450b8b9d97cee42344a2e69f06d407fd9523d7adf13333",
"blk.9.ffn_up_exps.weight": "7c461bd1b2a73b439cff6a10d94afa01e8b06f7e6f09d9a6f28e3876aef48bce",
"blk.9.ffn_gate_inp.weight": "1648dfb08b5c06d7953a5a97ecb764995fae9487fb729a1c867023b2538149d0",
"blk.9.attn_norm.weight": "8635db0f299882a63b7cfcd1d4259c9e53fab22c31d3d054de36b1001380b31b",
"blk.9.ffn_norm.weight": "f9309aa323062d174c463613afef9b0a33501b510bfaa58a8e0e866d12ffef3c",
"blk.9.attn_k.weight": "dfe62030441e947a588512d18d9c6e4ed72c2f71c227d622c095e4263b23dadf",
"blk.9.attn_output.weight": "1977beb75c6349c50ba7dd3865d7c0a9c5c5ddc854413147b0eec98ac4fda351",
"blk.9.attn_q.weight": "eb132596719605cd6bd1782487f121994629e115190edd69240b12af66e734f5",
"blk.9.attn_v.weight": "9e708f15d332d7c5187b0693b1a977eb30a2fa10bf7df48ed9d7537c0aa6ed99",
"blk.10.ffn_gate_inp.weight": "97503a5d166c1925f9b65c0eed980753d411714d66896f3d0fad5286c7aba702",
"blk.10.attn_k.weight": "1ebdd222336bd25b48df1b138cdbe09021c4a5562ea7cb78cadd1255d2be3a39",
"blk.10.attn_output.weight": "5e98faa38e9d514b9057e1c8342c509cbe1083defd518e506f6bad89117d1f5a",
"blk.10.attn_q.weight": "3323a26c87d936d1dd87c577d0b763459fced726679612c874b3de5fc6d969c5",
"blk.10.attn_v.weight": "d5fa73cb56aca388e205f44455e4b4f676fdc12ed7fac4542fbb3b41ecea59ad",
"blk.10.ffn_gate_exps.weight": "225021b53782800906cd13b70be3a4161e8b300b97f984a959ccad6a6e8adcbd",
"blk.10.ffn_down_exps.weight": "f08eb91526bd22f5fd0402fe925d6141cdbb308a1ced0330858d0c85c71f5ef3",
"blk.10.ffn_up_exps.weight": "a9f688350c3b53eaada5103b5848bd9a3d7d6b327a70fa16c24bf28ece933eac",
"blk.10.attn_norm.weight": "5ba426c9dfc79805015ccd76cd1068b0ad3bb7a8453e14bb1d35486f122d8f95",
"blk.10.ffn_norm.weight": "98891d6acbc3986b2581b7a3af9f5946a392d9188972c6a8b15d4e745a4f2482",
"blk.11.ffn_gate_inp.weight": "b2365a60566e7dace892e1cb0e62eb73ce387352601723e847052b34874feaa6",
"blk.11.attn_k.weight": "0efbc1d1430505543ff71532a4fcda821aeac616ef6c1dca40e00d4f2ff70bea",
"blk.11.attn_output.weight": "3d5bd4d9a41236f30d4293edb9ae27beaa113ffb31b4fbfadff3a4c370dfd3e6",
"blk.11.attn_q.weight": "aa11e9db14dd9c77951511443077c2a1a78070753d7bd3d9811038473f69e325",
"blk.11.attn_v.weight": "5adc567f377aa11d1763d35f50e53fb2896a8b03b623ac36acc45efa2486d512",
"blk.11.ffn_gate_exps.weight": "71d07d982aabfab9eed3c733d49c20f023bf475368fc71db5084d91beadc4b47",
"blk.11.ffn_down_exps.weight": "9a06e61461e48b3925a9f7d9cca634d048c8b62163d7bc5c43e35899f959319e",
"blk.11.ffn_up_exps.weight": "bc05494d0dcec61021b3ac0c5bc1bf502736cadf48224e213bc139d562699a89",
"blk.11.attn_norm.weight": "a5758a10bdd0404ae1470e8e9db903985d4d07f60553c5001a5e7b660d4f7ada",
"blk.11.ffn_norm.weight": "814ae037563aad3771787316bec4806c95bf6f5991dd6474b4b1e5cc13dc18ee",
"blk.12.ffn_gate_exps.weight": "3a68b831ba1606fb9ef6dffed4732032447ecef23ea563ff4e79317586c7eb49",
"blk.12.ffn_down_exps.weight": "268b25e13f4b7beab08686e83705a41b21d15251809ee4784526f78a580da829",
"blk.12.ffn_up_exps.weight": "9105751a5b5b42ca2614d0456f24f779d2e2ac8cdff0f96842aa7ae2b70f341e",
"blk.12.ffn_gate_inp.weight": "d0de1558cc1d458c5c504f63ddc59785c323df7330474bb0644c346104b40a3a",
"blk.12.attn_norm.weight": "859a4c8113678e2e202d10299850e0cfb52eb11ea50bcbf4fe3ff39bdd394154",
"blk.12.ffn_norm.weight": "7fbf4c459c1760218877e9ee3f5ad49e960956a4369bcfe96c143f04ff9ddf97",
"blk.12.attn_k.weight": "0a7e254fdf3730a57372b6ff421a613eabaea68cdefd64800857941411318374",
"blk.12.attn_output.weight": "ceb763fc15d88af149d8fb78e82db2b7dab3aeae584af8cf7611a12356a397e5",
"blk.12.attn_q.weight": "a43402d23c46cb2d3cb3c2a98c81b19d10026b7e6742370fed6b2880b6e049b5",
"blk.12.attn_v.weight": "3bc24f2c0480ce91ef72993ee8f1cf962f7359e12183424583ffa1246bf3db52",
"blk.13.ffn_gate_inp.weight": "a6d68c82bfe66d8bab68f980f5f18268a9e2c0cd6b8832ed39010e0de198ae05",
"blk.13.attn_k.weight": "0166c39546b37dc2e01b2b396ba43e183f797dd04eaa51a6d103d8b58ee4bace",
"blk.13.attn_output.weight": "2ce5eb198deab9557475a58b69b11e9874b547e05c23f223c6e42fa35ddca069",
"blk.13.attn_q.weight": "745c1bbdf434284a7fae98f45e821c076dd9c2a2467dba6a9d8cf0041e419dbc",
"blk.13.attn_v.weight": "9ece68d5ac64d1421ea7aa32e1cff9cc1fecf5175f4c4da858dd31d8633e3337",
"blk.13.ffn_gate_exps.weight": "ccfdcb4670b131689de12d396a010b5ea737795cf5c15a14a304d720b3c7c899",
"blk.13.ffn_down_exps.weight": "8b8fb328664764f1aaa5cbdec336d5654e981e965a02ef622bde5f07ea1c164d",
"blk.13.ffn_up_exps.weight": "d2ace0236c2fb3365fdc85499d676a7f65813c48e5085348b1df1799922766ec",
"blk.13.attn_norm.weight": "1ed29d7d89ce52d7cb4d57e895ff7115430466e917136c049c385c030ed44e9c",
"blk.13.ffn_norm.weight": "a194fc542597a4dcfdfaec5e3cba2a2b2b21b21edfc87c39c0d7f7651355bc4d",
"blk.14.ffn_gate_exps.weight": "a625e3574e5e740e7f8e2f9c40390f2f382c720aab5b10534e298002dd8d1fb9",
"blk.14.ffn_down_exps.weight": "bc366f015b83c865946afd74c8a884943e0ea2c671314a0b7bb72f21a44d2f78",
"blk.14.ffn_up_exps.weight": "ee3199bf2086de77b49f57f487676be8ee70e102a2fb5a5ef8ddbbc28a9eff41",
"blk.14.ffn_gate_inp.weight": "2b437870c850fa2e2044d032bb02908af634356e37466fdae260b933e48ee8b4",
"blk.14.attn_norm.weight": "cd8344d193a1cbd42bd898e17f4bcb1ca0b2918420fbdafa9249a6f2b7f4ae06",
"blk.14.ffn_norm.weight": "70eec40374e558fed5b07257283cf36342b6b0129285a00007deb59c32c9f7c8",
"blk.14.attn_k.weight": "4053bdb507e0543d724b632570bac86b31707696d90a0db44c49b2a082e0d599",
"blk.14.attn_output.weight": "0182632cb0e06a07241b8293d25d109fbc1862e1e337d435f908e8681e2eb1ab",
"blk.14.attn_q.weight": "ffc7794a4c1b6f793c842dba969435330a7a80b9212e457b4b2ac33e68b41241",
"blk.14.attn_v.weight": "6411805292d528e61bbaad8f9aab9dd073529a17946c057fb06864fad9cf3211",
"blk.15.ffn_gate_inp.weight": "77d0744567c76e6abb67f81ba9c715b2b544841186d5b948309571eff213bafb",
"blk.15.attn_k.weight": "1f7957954ea4c6521c257b35a360e868ffa02bdb3de91f146d5e06bb4a545c98",
"blk.15.attn_output.weight": "d7809d36bd8d3342240c46fd87bcc7f9821a222f48d9a95e45ae50460265d3cf",
"blk.15.attn_q.weight": "25f509313ae4d8401b871904059f472a26f5714e7c791c725de77a1a522c976e",
"blk.15.attn_v.weight": "96fedf5a591fc0f020e6de10fd72ff12b3ef9cf70cd21dabaa0d3e7b06f54e73",
"blk.15.ffn_gate_exps.weight": "8f950d976b2fd9a3d213b84123cf114c1377efde9352767fb2ddee89e177c8ef",
"blk.15.ffn_down_exps.weight": "6fd09d1557bb94b06efbd4f6a1ca4be532a202ba290e9315bc8da3d12a5c4c4a",
"blk.15.ffn_up_exps.weight": "cbeb59ae7b0266a928dc7e3a6e70a9330b92f9ee1b17ee1ed91022108204a33c",
"blk.15.attn_norm.weight": "2005330911ac2edc7b6d27aca021c67d30d16eb632e49b1a13f30fdb2717aed0",
"blk.15.ffn_norm.weight": "0e9198f3b548eb78acc8961f2b3350d238d26cec110933ba753a8cf0035c501c",
"blk.16.ffn_gate_inp.weight": "a41d1f99d739c8b150c3945b6949763988d0c6a4c5a2b5855592ca1a48ed23d5",
"blk.16.attn_k.weight": "b624e2ec88c2d3047f60530fb87e72cb4a5e655a9663f6f3e9b09e5ad32cddaa",
"blk.16.attn_output.weight": "687759ea75e45108526ffc1573d6fdf084728079bfc2dc89b9979e76280f43c4",
"blk.16.attn_q.weight": "beff3a45c7e9ec82ffc6d3c701126be28654d10aabd747d03441210491fd31b6",
"blk.16.attn_v.weight": "43a349b13f0b9d040cacecd942bcb168c030fef8c75c987d59a4fce6c14e855b",
"blk.16.ffn_gate_exps.weight": "793406d6c13d727c82bb7b692ca98d65ca975baee69fc57be5378d77c5a19b62",
"blk.16.ffn_down_exps.weight": "9bad3dd150d0230404b7f886ac7ff8803225757e813f195cdb26bad245243b4d",
"blk.16.ffn_up_exps.weight": "7449d663023fea3496475bf0a9c1de7272ad0ce9adcb3265e8e424badaa674dc",
"blk.16.attn_norm.weight": "a424ce34c195a401df1ce37ac4f2794e8a6720b1ee8acb21428e2b68c65e0125",
"blk.16.ffn_norm.weight": "405a68bb8e16e1064df2de55ca3cd9ceddda1d9fc0af007a9bd7cad4b2676248",
"blk.17.ffn_gate_exps.weight": "97c6e5321491ca5dc039ee88da0eb0e78f347372785411809af84b3298cb19dd",
"blk.17.ffn_down_exps.weight": "1617ac19788a1be19bac69277408761e6bdf5719d63a8c7fea14d41cc27641b5",
"blk.17.ffn_up_exps.weight": "4ead1c365f112581c10610ea3f63d2a1474311d2503d2060fed4b458ef337f5d",
"blk.17.ffn_gate_inp.weight": "ed4b3393f2523f2b5e0fc7680a1caa2842e605728a529b5af68a7fa8d7abf940",
"blk.17.attn_norm.weight": "beac17ef86a7fb2b5840cc72f7a95a5e3d6bd24e7fa698e0b0ebb9bdac45c561",
"blk.17.ffn_norm.weight": "81cb58ec6d6dc02a0b4ede10adc336dc865fa76f982d4eab0e4a37b40f5b0fac",
"blk.17.attn_k.weight": "eab569e5ea8c8b05e5a6a209fba031129453c2e28181eee3e736b3b04b36bbec",
"blk.17.attn_output.weight": "f85b70f01438ce8fe5d10599b113f30bf18dee2bbae0657d3eba295870001db3",
"blk.17.attn_q.weight": "887ceebfbf6a2b94b43d2df4439ac3a5bbc29311d4b28addc04d525546032047",
"blk.17.attn_v.weight": "2df9414d65014c06a93da22ba3a668be7b83e2e8008e98d7771f7dfebed98298",
"blk.18.ffn_gate_inp.weight": "9b07741a0950fc667e5fd25937e33bc22e1f764f80eb4ff3119f005327ae0f6e",
"blk.18.attn_k.weight": "8649598dbb63938744c39bcda5ce8c31773e29c573be8d4d2c114f5030f8d3e8",
"blk.18.attn_output.weight": "f8e391adb92622298ca834d5d1eda48b69c3b1c51c5a584ef6c54a725c298d75",
"blk.18.attn_q.weight": "84bf8708a2eed618f48f69c178ed7dd11fa4c468102376e72e910ebd037d131f",
"blk.18.attn_v.weight": "31db3cd773f09548c2c1b1eac2718e46364a7810970fe9c433fad9d8de5397eb",
"blk.18.ffn_gate_exps.weight": "be2a2ba378002f1b61f86c273a69eede9b93786d5ce96b4fee1861f730dca4c4",
"blk.18.ffn_down_exps.weight": "d35196159e37705db50a5343e3989f7335477f1a4add67ef42ad64a638cd07ae",
"blk.18.ffn_up_exps.weight": "c6ceedd86e97913a6dcadc838e7abb762d629fb8dd55f15cf02fd9bd66d2ba78",
"blk.18.attn_norm.weight": "41f0b1ad83d6e3cb9fbe0d27878c2e7ad4a351b9f554a6bc9117c01745cdf6e5",
"blk.18.ffn_norm.weight": "96646204bd0d82f25dc77faba4dbd86b1332e449313e6684e00122da8be99057",
"blk.19.ffn_gate_exps.weight": "c6eb7f61e7938bda0492dbc05e51e8f631c99224fe18e99861fc4fc53ba9e9ff",
"blk.19.ffn_down_exps.weight": "4384803da3a3a3d44120d7dd192fe2c9bbd9a1a0cb492dbec1fdd7565230f1e8",
"blk.19.ffn_up_exps.weight": "22d73de2fbb8bb0f1bd2caf17fad8a355c47d914143f7f6e6d0128f66f074a60",
"blk.19.ffn_gate_inp.weight": "9a0cc4a2301a5634022fbce41189021bf0d1a961792d2d9330fd35556d18e5bd",
"blk.19.attn_norm.weight": "c5cc56ec5df9a1f7d5ad71fbda49f1433132e58895d45cb44c73420bd61ebd6b",
"blk.19.ffn_norm.weight": "77e17de741742ef2482fc7872fd423c8e3c1454dc4d2be89ee939084b6d78bc0",
"blk.19.attn_k.weight": "a92ea36ce2e3569656306aeefb835ccd5d1b03b33a86e0d3d030644cc923b813",
"blk.19.attn_output.weight": "5e2a912b37855f84ea964907a1a86d609cbdd79efa0c93c3e8e2fc07caf7c226",
"blk.19.attn_q.weight": "4ef3a5913292ac3c1a6fd3e9e53d011021f2b41d0276cf849706d1ca925cf7a7",
"blk.19.attn_v.weight": "42981b75b68ae852cee638b5433605c147da4392aaa6d7a06e756115b0171f39",
"blk.20.ffn_gate_inp.weight": "71381b9879a7c80b9f7b475abc0aa31b8cd71ccc00856ebe89764a2acb9df2dc",
"blk.20.attn_k.weight": "1928b7ebc054eb3967929ed6fb446314d5352f4aaf8b475ce55c6345019f2ea4",
"blk.20.attn_output.weight": "6071ecd9ca91af0d2ba93fef4a1a56f3b243dd70f862a21a2d164d56f386043b",
"blk.20.attn_q.weight": "002e95042a40f36ceed5829e3d0c8072e5f5e4ee86a089e2902b2348fed24dd5",
"blk.20.attn_v.weight": "42f509cdb1c0e298f89f896e349be86952c5168e49b3f83bb17badbcb7596d57",
"blk.20.ffn_gate_exps.weight": "a684a3ffe4b0a57c819a5fa9cb3521de223f392732927271e97ce925b6e33765",
"blk.20.ffn_down_exps.weight": "e3081a7bc7ba750d8a4886bc8ca4f231b55db4ca082b54b4106c7531964725cb",
"blk.20.ffn_up_exps.weight": "fad0fd5eca36ab154788da28be8ec25bb5d6db06c9d133db89e96df358a2f6a2",
"blk.20.attn_norm.weight": "c3e3f2429715ae95e884ef1246b0b461b23c5cc0ed08beecf70a14cddd184820",
"blk.20.ffn_norm.weight": "ff31f609dda65ca496b0584fabea6550e42edd05ebf229812aa6b7bb5ede15e6",
"blk.21.ffn_gate_exps.weight": "366f09ef0ecfb86808eb3296cc9abdb957951d27f6533c03f1422b54061da660",
"blk.21.ffn_down_exps.weight": "3fc495947d27fcca7fc0893c8a96e5d48ba27b2c8c58f8fcfb8dcfcd5539741c",
"blk.21.ffn_up_exps.weight": "6713ed51410bcc8283cbb001c4ad784098f25701e8021f4fa4f411e186859c4a",
"blk.21.ffn_gate_inp.weight": "6d4c92c01ec801647134d907bf1108878156df266a6107abc10526332b328b93",
"blk.21.attn_norm.weight": "27605719ae2df24f4f2e85a730927cab20367631612cb501631f6bbf38eb1209",
"blk.21.ffn_norm.weight": "ca80ee8177db185b15a4a378c1cb6f7143c76546a7f1726bda23f329323d4ffa",
"blk.21.attn_k.weight": "9e49f743d4a5bda9b4bd9c40c2ca37cdae5aec7e54cb193897ac8b4945ada14d",
"blk.21.attn_output.weight": "ab923540879753feaed152f5950f69cdd83d8f2413ca873f5f038b63ab0aea12",
"blk.21.attn_q.weight": "62617fc3f1c9d2aa672a4d91a121c7a91b92d145b65e75f0b06b4bb7c825dc36",
"blk.21.attn_v.weight": "15f8b2e72f8e8e992f2f6b3e93238a9d7be7bd6136f91c9d04b4b4cd0cd60369",
"blk.22.ffn_gate_inp.weight": "3ddb1773d9257b68add7a2a4e94dad25ed926803e02707863dd742ab9b2dc179",
"blk.22.attn_k.weight": "680e45a9e8d5feddee5266e119dc053bf80718fa9af1cf6803e6f493b265f1eb",
"blk.22.attn_output.weight": "0d5fae3402fb2c5aa3a860010e3973fc8e3168d1015f7a76b7b2964681693206",
"blk.22.attn_q.weight": "eee7e3d426ab533bd18d62c9aa142eedbde394bed07db58313e0fccc82a23237",
"blk.22.attn_v.weight": "26b5be1fe3c2b6824c5a648a3e4bdf17691904526fca158fbc3ebb627b67e2f4",
"blk.22.ffn_gate_exps.weight": "32ab7a7735313d60f6a75229b1aeee940b6aee176c9648536bf5921b0dc2929a",
"blk.22.ffn_down_exps.weight": "67590808f6a67777d3eb7976c31fe616d388b98fecbb12253b72d1241d70753f",
"blk.22.ffn_up_exps.weight": "fc245c0183e6d90829ff5e71a4ec93e4860b3d4c1a17b9dda2fb64f5f5c9ed32",
"blk.22.attn_norm.weight": "128e99d206d4d6724758ec97468af767fa0aea592149c324b731659c1e74a1a8",
"blk.22.ffn_norm.weight": "e45f498033f0cffa15da0eff2c47b4472e43fcf8921729fc4eeb2e3a6b3c78e2",
"blk.23.ffn_gate_inp.weight": "d63e686f5325fbc89fa242c2c52a3b8ff54f867dca914c9ae6eea13e9d6f46e5",
"blk.23.attn_k.weight": "f71f5a577f46ea12b1818f3a5ff4b85ddc45f9a2afb0fa2e041d71a3e31c6779",
"blk.23.attn_output.weight": "92b13563c1e0eac0d748fb67b235dfd7a64c8f16e2dafb316885744582e23b4b",
"blk.23.attn_q.weight": "2f9b9c35dc4f912f3f51c06e2d68f417b51a0de0a84aac530a64f9d3d7b0a2dd",
"blk.23.attn_v.weight": "268e40813806e74a5c364b19556d087bf8374e76e7b6fcf55c381eb7da13ccd1",
"blk.23.ffn_gate_exps.weight": "12f857e7a7ce228afac34d99b602c8d6fe96984f2a21118f459a58cb767ee65e",
"blk.23.ffn_down_exps.weight": "cdb082c16599c3bb36a28066dcc122d9529b54fa91b6cf0153437ec960a5e16d",
"blk.23.ffn_up_exps.weight": "f4b99f6f44d7b8b5a305894e88633bf5938fc1f6303a2b2092399da9c8b64d7c",
"blk.23.attn_norm.weight": "a691392210383915916b4d3886d5e4d56e7855e27e37e414fbd73bf66b3712e6",
"blk.23.ffn_norm.weight": "0c3dc72f667e5ae19b69bfa9f2bd2a01a57681f89ef9527bad4eb0d8c7b70da8",
"blk.24.ffn_gate_exps.weight": "86baca2a3157994df7fd8ced5e08436d5c1810dc29c0715637c36de723e0e7d1",
"blk.24.ffn_down_exps.weight": "ac5d559562b35c34993e34b071f66d15c65be5907797078c2d2a49aba54e3192",
"blk.24.ffn_up_exps.weight": "fce0a099cf09777f44fbab3606ceb75f7fae6f0b80725f9e871654b8cdf9262a",
"blk.24.ffn_gate_inp.weight": "e7c6800c0cfc56b565b2d35ad6f1dbfdb70dd0b05b338bc8da2286ffc3678d79",
"blk.24.attn_norm.weight": "dc6cc18ec52d102d015153c4a1132f9d7a504e29cbdec81c5edbf3b9e65815e1",
"blk.24.ffn_norm.weight": "480d5a1397af5e0e657f1e67d20ec0cdef5724e71246a326843321b87ffabd33",
"blk.24.attn_k.weight": "338c0597954a9b95a782545b2fe36469553e73f86ae2d2b5697767b28e1c7daa",
"blk.24.attn_output.weight": "a77d23b79933c67e52f1eef7f83a3dff4f767ce0bbcc39572f8cec4acd457643",
"blk.24.attn_q.weight": "45c9478593002be1998e96e70668aafa2dd3972380fbc1df12fb05c24ba959e0",
"blk.24.attn_v.weight": "515729420885408a6a9614bc27cda393ed907521318d14d21335d39a3eff0b61",
"blk.25.ffn_gate_inp.weight": "aae4ac40e9ab3925241f9d784b54b38851d9bc999a6c3bc03fc3f17c9b28a67c",
"blk.25.attn_k.weight": "4ab4808d02396c35b00b426f536015673b71c17ae6cd55bbc2e6bfe7a4c59d0c",
"blk.25.attn_output.weight": "1990bb982b77e0c947cd1a8ef0b36227ee1259e6dbbc2829e5c136edf88675eb",
"blk.25.attn_q.weight": "a1490f3048e8c0ec8784f8550c43adf5cc8d0f2f90131c934713fe4b1b015bd7",
"blk.25.attn_v.weight": "f15e53c6d45b3b6f58808fa968425d65e0b26b7f9b268127a77abb1227c67431",
"blk.25.ffn_gate_exps.weight": "656662447ff54f56ee80f78a1b9483f7efdc40f7375d0cd8a9c72ccf21f77e7b",
"blk.25.ffn_down_exps.weight": "db06f101bccbaef19cced0f6c185166e18202465f4a42cddfd535fbe5cbabb4a",
"blk.25.ffn_up_exps.weight": "584a7b02456f27fe1d8d3c7ccd21d426b6ea887795a3ed77f704596a1e3841d7",
"blk.25.attn_norm.weight": "8f0f3597982930fd237e9d609776c64f2b909a455b21678f83a7ebd4bbb83e64",
"blk.25.ffn_norm.weight": "3e7079c32582afba0c55e032f254adc18d2997705eec860185e9a6dd3d82f07e",
"blk.26.ffn_gate_exps.weight": "e70341691b583b86489812b29b77aa41eb658b1865733d6118da54c66e3bfcc6",
"blk.26.ffn_down_exps.weight": "5c1b812d11dfb064af816ced5ab6463bf9722eefdfc341b8a93705d5038fd781",
"blk.26.ffn_up_exps.weight": "e18118362ae54ef7432781c83884f9fb230a9d934e342aabeda8822ea5f71fb6",
"blk.26.ffn_gate_inp.weight": "cd1c5f6710166b9567c6b74c97b2348b191c60aa860958c6bc264ab095261dff",
"blk.26.attn_norm.weight": "71d087531af2520bda2e676c489e8529cef5db8aeea1eec0a937a8b4f2fa2e54",
"blk.26.ffn_norm.weight": "7f704e936fda28eb5c2cc339f0f6a5f78170b5aa43c01265b21668870d819c82",
"blk.26.attn_k.weight": "1cc62a0ce0ae251275d898c52c4a9fba5995fca10955d2011d10dd1a59e1afb8",
"blk.26.attn_output.weight": "636e881b1505f9cef656a4be98bec6a4765321d51f9bf1dac8933397cf44b765",
"blk.26.attn_q.weight": "89a3c4d202d7d6adebb9e0c1bcfd8b775f6456386f1be25e86e43acc949c1e16",
"blk.26.attn_v.weight": "ff2cc963b597cdf1a21703f3e7022af3bb4c65a34a19e19d9309a7c5e198b5bd",
"blk.27.ffn_gate_inp.weight": "6150139498fefe380bb99d11e72028da47a15ecb73dfc5b2774f726f4bed8f9e",
"blk.27.attn_k.weight": "f286eb9e5c56c7b801a497aedc40158c2a27877d7f9fb59b3fc67834798902d2",
"blk.27.attn_output.weight": "5dc3d3a05f9f7729509147fd09c16fb53f85f520cdab5cb69abf4bae3fd460c7",
"blk.27.attn_q.weight": "8462e40f86b24251960d6f35a9ea99b8793a01937faf1aec2859f2e5395dbb61",
"blk.27.attn_v.weight": "bac1a99e38e25953f8315f7212eb9777dc216cadb09b959977885ae62724ceca",
"blk.27.ffn_gate_exps.weight": "6a15eca7f0f6ecfd93db2e55c63875348ec4a78c4ff643ec46df9e958c0101e4",
"blk.27.ffn_down_exps.weight": "2e1c91247c4359e2073a8e5f26fd7f6426da7be3ed5bc65dcfff701f0a5022b2",
"blk.27.ffn_up_exps.weight": "65d6f5c553c9332085eae4aeadf25090b5d7768212ea7b08ed698102c21b29a1",
"blk.27.attn_norm.weight": "7fab8ae63ec8e91ce625cd130ab96d8427dad3a7413bb21b25ec5f408c5b9f5a",
"blk.27.ffn_norm.weight": "532720546b0fdcd423a02ca6e3e9d8aacb84b1b3e8269968f88a47fe2a69bab4",
"blk.28.ffn_gate_inp.weight": "a305ea58d98962d9dcf0c53ad2389b7acc8936fb35a0e3fc9410e7767cd49dea",
"blk.28.attn_k.weight": "8315e8a2e4f78dfdf36d4fc18fffc74bc95fe42c3ae4f9af2b6c874612c0f71b",
"blk.28.attn_output.weight": "9b5fdedd32d39ef46a22cca7cd5355d7b93bd07ea305f466a8aad6ca5a4f3778",
"blk.28.attn_q.weight": "4e8fb96997c30e231c437130f410d7c91d541a816f6c568b5f3bfdb4b8dece74",
"blk.28.attn_v.weight": "1fec739cf3bd7b4913f72ca358d4cf31391c304de44ac0ae31ecb825beaa7cfd",
"blk.28.ffn_gate_exps.weight": "9f259789d535e09268266b9a8020f32d6a6779966c909d91d3a10574f06238a2",
"blk.28.ffn_down_exps.weight": "516d3f8abaedb01b9916a4b67d4672159769138ef2850158bc1b32c41e31f0e8",
"blk.28.ffn_up_exps.weight": "f2f1d88d2c31ed588806fb5ad981d68f5134d7284c4fc022fd018de2eef437fc",
"blk.28.attn_norm.weight": "960fd005598deadaebd969996f4367a9dbfad90539a863674fe95730935acc64",
"blk.28.ffn_norm.weight": "e1993b37ced93d4049e9af2c47b0d9207d8f7e6f2cc3a52f57bef30bc806d805",
"blk.29.ffn_gate_exps.weight": "58927146338f443513337476b3cd30e6341742f096c2beb5890d400f10121298",
"blk.29.ffn_down_exps.weight": "03a3386e4f0b75a28c5608e23b2de8f0de25f21954e4aa7fc343431bde9db07e",
"blk.29.ffn_up_exps.weight": "6916b7490a7ae7b04a5d81cc1e7ac9b20c483434f3b186b12d87fe176bf1567b",
"blk.29.ffn_gate_inp.weight": "98e710e467a3d567abe4ce29d78b8e8dc033148762290c0c5e1ae4d78efd8c78",
"blk.29.attn_norm.weight": "4e64cb307d37be20d55f38c94faf7e451d11df5e60df347906cbaf9c5441be71",
"blk.29.ffn_norm.weight": "696c23a52f742679bd44440d687a4c44b4302d57f1e9dc5610d23374336187e7",
"blk.29.attn_k.weight": "e85253652fd6120c623634ba66b725bf7cd491318b54ccdad2c7df8851d64c0a",
"blk.29.attn_output.weight": "4f650a71efb150d1f24cd4d114d4187bf570ac424da3b92ea6455abdf1aea705",
"blk.29.attn_q.weight": "69fa7da901026ebcbbbc848455b425458b7e3295007d7fc093acf4b38e2166ea",
"blk.29.attn_v.weight": "17e2e7590b317b21f106de546aafd955579703d1e95d6aea044ee72ec3a514c9",
"blk.30.ffn_gate_inp.weight": "3a03284b4aa60d59d4a2ec86253469b61fc656372afca427cb77a5332fbcc62c",
"blk.30.attn_k.weight": "d518cfd0db9708e769eb1399e87ee49357dc54d5afdbac3d4c0ca46c64e789eb",
"blk.30.attn_output.weight": "9b44378714d784c5ef9ab604359091baca4e0ec222afa139b7f840eaefb371fd",
"blk.30.attn_q.weight": "cbb95365bbfbcad0c9cd99b4eebb5a5d32de68ce08e4063b5ec3e792b7548044",
"blk.30.attn_v.weight": "e7985c04fe1740e35a9598f43b67b0922b4fc2d00b68a92a9f917b82c3248de1",
"blk.30.ffn_gate_exps.weight": "8ac4bbd07935d98f895ba94dc174e5ad5046c3c222b53729d60f987c05e7eb70",
"blk.30.ffn_down_exps.weight": "dd672cc71e82abf05064a18121b8e55fe1a4f19bc1d7cb9a142f4add54bc336e",
"blk.30.ffn_up_exps.weight": "12282f664a2a12aa25e2deac58946108715ebb978bafed5274cef24569107646",
"blk.30.attn_norm.weight": "1a33458fee054c6c9c896a4bb0a4e1fbfa0293b2408c7dd2b81d692e966e7273",
"blk.30.ffn_norm.weight": "311e33b68051f507f1478ed8f2693fddb846170ddb7285a91be43f795c2ce31e",
"blk.31.ffn_gate_exps.weight": "8af43d9867a51cd8392fb48b981b0ceee0ae979c491c07d711b3b56b5162c786",
"blk.31.ffn_down_exps.weight": "5579cb7758c1600b19d1f540deffe081b575962e37437b3b2efb2fb0a2924e40",
"blk.31.ffn_up_exps.weight": "f2e7c005276b3a001fb40753f027fa10b4d5a346f43cf4b4bbdeec6e74e1cf6a",
"blk.31.ffn_gate_inp.weight": "89885dc0e30b6b16a90c0331d7fa3174671e941364e8102d934f02132237e61b",
"blk.31.attn_norm.weight": "99e4e9bf86a9edf8c404153a7e8a82324ba79da462622196e2faba161bd95172",
"blk.31.ffn_norm.weight": "55335997cf6de781bf332b943de96ff4646966b05d9fee86b76ea897e27b6ca7",
"blk.31.attn_k.weight": "cee570762b78da6316b637892cc4b080e40f57af5551ffb1866b9a8e80e96628",
"blk.31.attn_output.weight": "fa321ff55ec7819ead7b819fd45215262f39744569765ba2113c989c03588802",
"blk.31.attn_q.weight": "9e2c409b878f8a2a1436874abf428fceb1c534b21f9ad4dd6f532b8a469007f0",
"blk.31.attn_v.weight": "a845d0be68ba537b4a775bfba4d897faf7c82a811a2612b0b7420cc4f3574cb8",
"output.weight": "16101cbb74b54cda9ebc07ca3c762e3263a56efb3cc011156184b95807d7cf13",
"output_norm.weight": "d7aa61585baedd60157aafe157930785742c55989c288573566a971b02423564"
}

Binary file not shown.

View File

@@ -1,188 +0,0 @@
{
"general.architecture": "gemma",
"general.file_type": "1",
"general.quantization_version": "2",
"gemma.block_count": "18",
"gemma.context_length": "8192",
"gemma.embedding_length": "2048",
"gemma.feed_forward_length": "16384",
"gemma.attention.head_count": "8",
"gemma.attention.head_count_kv": "1",
"gemma.attention.key_length": "256",
"gemma.attention.value_length": "256",
"gemma.attention.layer_norm_rms_epsilon": "1e-06",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "2",
"tokenizer.ggml.eos_token_id": "1",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.unknown_token_id": "3",
"tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8",
"tokenizer.ggml.token_type": "485e40bf3d715a4764818fc097d6a2a41db872d82ee714bc500872a3437ff48d",
"tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda",
"token_embd.weight": "17b87ab2c01c80657855a5413d0457b4a041afaeda0cc785080e44e2f04acf07",
"blk.0.attn_k.weight": "28ac0da05754ad2714ae95da28a5ad191192140b30b8fd22d108d4700c9d989f",
"blk.0.attn_norm.weight": "3f9d5675d1ab0eb8a816719dac9fab81f2e95c52be02c34263339acbc087febb",
"blk.0.attn_output.weight": "703295c2c63990ff896778685c678f145298886f680f3ed5dc2a7ad54c293265",
"blk.0.attn_q.weight": "69c2d0e4870e9d722a190d356203c9605575a16863466c3d1747966ef1cf5791",
"blk.0.attn_v.weight": "95219c9c07b5ffe9a9a01e456d845eef2b11f4fc12c93dbbba479db395444c13",
"blk.0.ffn_down.weight": "a2feb5eb3d572c57c5bafbf0ab506862df1160fe40965dcfe4b9fd855c08bed7",
"blk.0.ffn_gate.weight": "fcca072c445c31f4dc4d5dfaa785b1bdf7271342442099b74fd17268b5829fbf",
"blk.0.ffn_norm.weight": "7621f95dbd245cade6fffd6b08797d69d8e3954e960f0b5551b90d967ab95448",
"blk.0.ffn_up.weight": "14a9bcdd451403c67136391e1b6e53b3b1830f00199bd911dbcc56d8749c14f4",
"blk.1.attn_k.weight": "c70f73c5df20579cb44d971164b48b5f0d8d5abdb38b381e7a8b880ba12aa406",
"blk.1.attn_norm.weight": "88b6b91f93a1ef83425a7c7dc2a2fbd3b22704a04c64a80061df376ac8c33626",
"blk.1.attn_output.weight": "f031a537490c452be3b3bb51e6b7949a636405756e160976a1c070a792ea00ee",
"blk.1.attn_q.weight": "bdb23214b1cf9cfd30f863a0a5868e52c6809d93b7e8f44df096a94204d9896a",
"blk.1.attn_v.weight": "e9bbc0b05f2c872fb1403f8f938cd1612b502229ee401f12593b1164c61acc00",
"blk.1.ffn_down.weight": "5ff53811038b661a7b8f2bfdf213bebfb185ec1a6060b662f063714f33584d79",
"blk.1.ffn_gate.weight": "205085c8c951a5c7543b1495183cd96028fb49f67464b3e9862a2693a6077a33",
"blk.1.ffn_norm.weight": "798f354fc85afce9625f5d10093a585a966831698a0560e6c9b97ce659eb4b22",
"blk.1.ffn_up.weight": "db92dc5684cb6e90940e13f4d1da555ed20ba4f8cab1e990ddfd7553e2e91315",
"blk.2.attn_k.weight": "ef5ce360c4eed6d00d03ca4761e0f8e4b0af4509978468314be14f3d46621044",
"blk.2.attn_norm.weight": "6dadbc05dbd0d3fabb4216affa60a3de1378a82d2859dc90b338cbe70f50d455",
"blk.2.attn_output.weight": "6bbf87a966f691bbfd7c8d25629aa4e6710107bd431a667434861febb391edc5",
"blk.2.attn_q.weight": "4e575c09ae2de417ce9057ce8b073680e860a24aae13a472b68f101b760752e5",
"blk.2.attn_v.weight": "cd33f7f01141e9439afdaf2ea1aaced9feaa335e32a58daa136ebd555d4d96f4",
"blk.2.ffn_down.weight": "b970ff1b0b6494165defe2fbfa1d31425766ed71e64de9ec4e66ac3955c8bc5f",
"blk.2.ffn_gate.weight": "dbb3e1360402e0e369b101995bb686b73f95d4a7673f061be85d64d15dfb0061",
"blk.2.ffn_norm.weight": "bfb7980105d8ac9647710454f57a5cdac50598a0f6f4884e16f1d94b00844687",
"blk.2.ffn_up.weight": "50ef89339b275a438b664686f6227dd9b6e43853ed6856ec9e33ef4bbd90bda1",
"blk.3.attn_k.weight": "be942ea98151434eebcd2c1da4b00e0146152fe524a530689b1fd491cb833d21",
"blk.3.attn_norm.weight": "0df2f218daf609c289fb7c60c5f375fa99c0d4e04381ad5a494a19144edd8e20",
"blk.3.attn_output.weight": "c2184aaf86aa2cb8f47be49f60b165834e97205f39c6ee1dfd19fd4411a156ce",
"blk.3.attn_q.weight": "4f86e2a0a4221c1c84ff9c409ac89893cb95d7208cf65bf1e98e24e01125f991",
"blk.3.attn_v.weight": "abfdb8a60c349dadde641d1afc9542025e24fbf41a3238bfa9675e0b1f1e4b68",
"blk.3.ffn_down.weight": "58821a8d87008d47d122427911c6fad5272aca70c448bbae223256a74bacd07e",
"blk.3.ffn_gate.weight": "776e051f1a0ddd5c4934e69186683a75ca9a3c8c0f61911bba321fed1dd287d2",
"blk.3.ffn_norm.weight": "7f380f29335e28be90bfcfae6f6d69fdf5751211b36d2dd62aa5541ed113e4f2",
"blk.3.ffn_up.weight": "fc5ae8d488894cbd4951059675468d227da27871d26e925c9941863841c097ee",
"blk.4.attn_k.weight": "14833b078cc4c5137bdd5fdc0538047974ca147a99b0282e1b144440c78bc1db",
"blk.4.attn_norm.weight": "0a69957d4a15599fb80ad4753558020804925221457d9a5052926754d3768065",
"blk.4.attn_output.weight": "887a49b6130fb6297cf10767207c3dd97191b2cf63723449af9c27bca8dbeda0",
"blk.4.attn_q.weight": "51fd577b76764824dd6f0d4891c137ebe4736f591b5ca2793c5fff2be49abbde",
"blk.4.attn_v.weight": "1a623c43cf9c509d1b7ea0d1a5c04d0af4809665f9f9e93b7d6dba8c5df178fa",
"blk.4.ffn_down.weight": "5d61e8856d8941d2b1fd138116d015f63840d0fa1e31e20e20a5ceca1536ceec",
"blk.4.ffn_gate.weight": "06640f7273764f8ca5df7e386547417916b6cd7d565a8343153113239a94b0a1",
"blk.4.ffn_norm.weight": "91a6c6c41b894228e361435ecbc5058dca34d4911a23da5b56de219299c964d3",
"blk.4.ffn_up.weight": "d016dac1055e36d6a10b6317e57f98a904709ea892ef3194342f4d2f6326561e",
"blk.5.attn_k.weight": "987146afe124131500808cc0da33c06d207433656d41df6e6d8c99118a83bac5",
"blk.5.attn_norm.weight": "6b354938966f2608a2fb8d0f5b363ed0d8b0967c2ec8d0abd5c625b413042ded",
"blk.5.attn_output.weight": "cdcbfe02c6ff79d5326882b017a02099f5af71beedf6b1b3eb4de01e3a844536",
"blk.5.attn_q.weight": "b910d0cff781d3efb42eab0a302f46f286b2de717079175680d5b42bf8c309c8",
"blk.5.attn_v.weight": "66d3a279f747412f9f4b0e8abad44540c122ab2e811a7ee74c1f33bc36caade9",
"blk.5.ffn_down.weight": "c9b0efd2212981f16d956d8571f054b68780ad01f4917033647e359b557a4653",
"blk.5.ffn_gate.weight": "fe96b94109ca141c01f6a04788e20783019ca6ec334aa1f3134810bdb499e557",
"blk.5.ffn_norm.weight": "aa7b016e832e7055a36c6e20de58ea1936f995f390401fff1c5fc65906064e49",
"blk.5.ffn_up.weight": "555ce27c4873d3375394f38ad3b45e3d8848f9d5642dc1602383d0f0a33c2a14",
"blk.6.attn_k.weight": "88280d461db324c4f36475ce396793063e61a27283ec64511b0480890fb5b3b4",
"blk.6.attn_norm.weight": "af8f460c411f660d33196286d208f1845fd5a2b45f7b56549a4df31e7515447a",
"blk.6.attn_output.weight": "dd9996fb0a256e8375ad3917705258a33fce006bcea0f536caae420a77974d8b",
"blk.6.attn_q.weight": "7a4841541191e037cfb9b07930c4d8cab451809658b182f0ada6ccde9615c003",
"blk.6.attn_v.weight": "ae81e6a592b64d701a9d40233e986039a56cba8d8d24f61aea93c6393cf3078a",
"blk.6.ffn_down.weight": "622dd1ce1706355cbc659a8ab2c4509678ffe0f3ad34258e5e25ed2a5d951bcd",
"blk.6.ffn_gate.weight": "8389a735c0bd5591010f8ced9805a2a12c749f6df0d3c18ad4d05c2a302e7168",
"blk.6.ffn_norm.weight": "621f5346400382474d61358397bd58fb1459b07c53e376e4bca15e08b3f9b3fb",
"blk.6.ffn_up.weight": "8d834e4c42f13c251dfee36cf89e12f1bd400680d00d5c2e6cac0459e9ce2f7f",
"blk.7.attn_k.weight": "8bd0412de65a3e64901ef8fe6a28c95e116bf39dc9aa22f0126b9d36688e5ea7",
"blk.7.attn_norm.weight": "056d8e56be4e87d6dc6f900762f0dc6fde07bfdc50dd85bfc510415e2bba3f3d",
"blk.7.attn_output.weight": "27972eda51da53d416ff95aed78149a2c5a287b47d2cd46f2f544ca692ecb3bb",
"blk.7.attn_q.weight": "41eca977b9371f7932800c11a9c45b931310196919e2a0651b847703b180fc7f",
"blk.7.attn_v.weight": "13c74fd7e07f08883a09fb070a1fe5bbdd2341b4cb8d1cac07c4b637049b5774",
"blk.7.ffn_down.weight": "9e75db42468800849a9a7da603d0072c5e86c8ed2b4d8b20a312a51fb86a7a10",
"blk.7.ffn_gate.weight": "db6bdc3117f910088aaf7db51f2da63ea5bd933de36af5599c215bfb26f7db2b",
"blk.7.ffn_norm.weight": "48bb82b49bfc8679a1e77f282ee182d952db7a3c11be7ef9a102ee2ddd8011e2",
"blk.7.ffn_up.weight": "feebea87175817a0f3585ec0af09dc873d94c203581ae97a712eb356d3b49efe",
"blk.8.attn_k.weight": "d5640ad71b6af68d88e17bf8e7fc26c907d2262605457a84247dd9afc2884d69",
"blk.8.attn_norm.weight": "75b850c481a69083ae09d0207ba7317b37c735a39fcf5fef5400e6c84fb1257f",
"blk.8.attn_output.weight": "cbd669dbdea2bdd90f9f0cc97566b3dffff3c56cecb4f47290ceef30da83b2d6",
"blk.8.attn_q.weight": "9edcb63087a431bac361822497e6ecdaa06d9ea4a1a754e36da7ba9f8db81c7c",
"blk.8.attn_v.weight": "3fb72c2c4f95a83626aa3e30062f9450b09ab37c7871e229f18bbc5cf744633c",
"blk.8.ffn_down.weight": "bd69d2c9172974fff154441b237b4787fb53b2d185325442d5048130ef5bc4ef",
"blk.8.ffn_gate.weight": "d04689c80553edd011d1cbaa5d570fffa7fa91e88b66cf1352d89ab60b72f908",
"blk.8.ffn_norm.weight": "e49984183b735b7f2c4e4730c289eed9394056d2e283a00fd83ea0915df31a73",
"blk.8.ffn_up.weight": "8fe62a1ce8e847e567add6c6f6bf2922bc467495b5eb4c116b3cb85b85b3b211",
"blk.9.attn_k.weight": "d90904959e5004cf0d6e729c6bff18cc33c094798b802473c1ec55ab8d276183",
"blk.9.attn_norm.weight": "79277f290cc07411115d8fa138045edf4a17b3416ab2145409cbe8ab829fd4ee",
"blk.9.attn_output.weight": "5a21bf2e1f09a81405025f96d4153ffb630158e17269cff8ffff935c38ceb1a7",
"blk.9.attn_q.weight": "51b1d0febc3b350945be4504f55afa4347517bde0f710e1a4b88e6b17e71e7c7",
"blk.9.attn_v.weight": "aab7e1db0a8b50a03036356791ffce736ab010d15674c96eaef8049d80076054",
"blk.9.ffn_down.weight": "cbf43ec84becb40c9359a181ab0e641fd7faae7d34b549501f7cfb7afdc3d764",
"blk.9.ffn_gate.weight": "dce0e8661c778327bed7f03b6790d26710764188aed9dc746e6e05863891fa57",
"blk.9.ffn_norm.weight": "6d41642104f995c77bf31122b13237caebda3e7fcccb1367ce91db36b015e923",
"blk.9.ffn_up.weight": "82fe4c67bf24e7b2d6f6e05f7b1234c2bf90c3932951091a9066211b8e15ecbb",
"blk.10.attn_k.weight": "f6a9ed8fd8d3229b5d03175c413ffc56a07f2ce7236271986361dd3d8993f9aa",
"blk.10.attn_norm.weight": "cebbef89f0326ca8e02df3867a571e4d61c20c2a12f295f98ae590d62bc86010",
"blk.10.attn_output.weight": "34f5efb86accb4f06347d83a32558ea8eab3039d128969161a741ebacbb656ff",
"blk.10.attn_q.weight": "1e0efe27df2d5d50f7157253ba2cfd436d6781c3dc78ca176d0c16a210b5b763",
"blk.10.attn_v.weight": "8f085bf50a2b0f83cd6cdda3c8ef5a9e204a36348ed95871aac725d1f68640cf",
"blk.10.ffn_down.weight": "bf3b3cb4cace435809ac7b4cc933f20853af12f1f272d3dcefe7f19c0f203b8b",
"blk.10.ffn_gate.weight": "d3df7a1413b1c5adf1a1dcda9e5225a15c89874bae53bb6137ad1ea42fca2d34",
"blk.10.ffn_norm.weight": "a1da603b0480471b5ed8e862148cecd5fed918f8304d6933ab0bdb25b8d2fb8f",
"blk.10.ffn_up.weight": "bffbba605922e972dc47dda88a0b4659aa52236c76e5fe861a949e6d9a367492",
"blk.11.attn_k.weight": "9f31c63d66cd32c29b1eb8bb829d0c8525ce2ae936e0eefdaab6335a2d12a3df",
"blk.11.attn_norm.weight": "0bde1a266d8b2e8f202bb7e2e88b19147ca83021901f6d3cae77a4df5548c754",
"blk.11.attn_output.weight": "e10725c7cf746ed4a7e472cf7aea6cb564e5db6a1d5197adc980d650a387ccea",
"blk.11.attn_q.weight": "05ee758a7d065802630f8c65dca424364c1c8825e389aa33f9405c45e8a50cce",
"blk.11.attn_v.weight": "0c3ae7090f11775d24c51120db6e305db6aff706493e7ee123dcab74485ba789",
"blk.11.ffn_down.weight": "7ba40b8e12c09c5fb2006b77a771cb01ce894e88a3b3e1877f927a5b89c91709",
"blk.11.ffn_gate.weight": "db76388a023b98097972d354ba1c6a5e26efdeb1c596b9c28bf2cd8f6596975e",
"blk.11.ffn_norm.weight": "a38c3ae1b89a68ddc7b72c99c5b28be7fe3787c4fad9904d0c43d64eaf00c474",
"blk.11.ffn_up.weight": "13c8142f9cf1eddc658babf978daf3515c4ccc45f849f3e7e3930aa18a8480a0",
"blk.12.attn_k.weight": "f03241c36ac87cb57429a2ef22186b8d7d0b590a8b173beb01fa13d93772f3b1",
"blk.12.attn_norm.weight": "4568f654e6d65104d586e7c16ba960c83428698ce103022b7e0be15e2884e13b",
"blk.12.attn_output.weight": "04867603f82f91e41306e09b33ecda0104b3ee4834061f2c0bbdc8da33c72509",
"blk.12.attn_q.weight": "70fe04b9a8e08b6100cc8d6b58bf4cbbad15ca1de82d63baca5d352ba6c4cbae",
"blk.12.attn_v.weight": "15cb28db61a86c98687991d7e611bc92a1fcc6007f3432149cfb5fe518a4f65e",
"blk.12.ffn_down.weight": "6d10c790a4e3dc44c2dc36d96251ae97cdf30a4fa04d4c43e31bfbd038e6a7b7",
"blk.12.ffn_gate.weight": "3462a2d8f6b4743b25e24da51b90018ac2858d05ac7e582bcb69063cfdac1104",
"blk.12.ffn_norm.weight": "1f96392c1faa34e34ae5dea55a6a86c5aa4c79758952075d53d28de89dd88456",
"blk.12.ffn_up.weight": "d22eacc612a7411953d948483c5fb201e11722955ee0754da866e7bec578ac6d",
"blk.13.attn_k.weight": "5864977e6b733ea942647d6feed5c76156c48c200649c22e4e11b9e5860e57f3",
"blk.13.attn_norm.weight": "87e053535144723db4145aa5402acc54331b7696752d852bb9fc542ff33f0fb5",
"blk.13.attn_output.weight": "078145f5ad83f8b14f97a869346f7fd1583b24d1e3edadaa95d3da4242973f8f",
"blk.13.attn_q.weight": "3b8caf35504cbc4d1a7dd6e011a95760703b7f71e2218b030b1254f811362dd7",
"blk.13.attn_v.weight": "4fdf8365a603e043e5b40c4a21c84ac167f9be62794178f9d8a608dfe5653bf9",
"blk.13.ffn_down.weight": "a07d3abbfcacf48ba028df2cab895be32cc15022d23389a745286e79c1b1d1fd",
"blk.13.ffn_gate.weight": "1d2ab39666aa2909acc96787432a3ed13b19d25170f74665fadff9b17bbaffb1",
"blk.13.ffn_norm.weight": "4f2e809fda5f3eadf52578ee50e0ba36e53be91e55dce418c12dfe595f5f18e7",
"blk.13.ffn_up.weight": "8783d2720c2c37ca176a5801e0b3ef1f9cc9cf3ef1cd37af423aaf6b2a27e2bd",
"blk.14.attn_k.weight": "ce9428e2b55d43ae0c6690dbd56182f99adc427694ba8236b405cc8ea5035e86",
"blk.14.attn_norm.weight": "6abb35f9db8251d6ae954bda147c6ada2371b0574d11702e828f3c6ac99b7cc0",
"blk.14.attn_output.weight": "fe3880916d0ceb5bff672c88bbefb7060a545be609bf049beb2024b38221836d",
"blk.14.attn_q.weight": "7c8ad81be6f4a350931fd108b5f7c9e366e8c26ef62d1d85ffef5dca8fd893f8",
"blk.14.attn_v.weight": "e4bdedffacbebe38567a0734dfd67db90e911d9a9669fcde9a7c4ad8a0066c52",
"blk.14.ffn_down.weight": "ef6694dff1e05820aac0cd2b22f39ac7788b4967afc9250775575554c66aab2c",
"blk.14.ffn_gate.weight": "db63c4179e2db704bc505e2b4696e055b593e295a1b7c4c586fc793bdd5aab19",
"blk.14.ffn_norm.weight": "2796a62d832a9710148f95d533320492a33e712b2e5218659c548705bd11684d",
"blk.14.ffn_up.weight": "3f78c78d8c2d54df45f799d4ff902316628af296834afe4ceed63d4a324ff03e",
"blk.15.attn_k.weight": "6e810ee3859e07695645ee0c9a5efc7962668984a5f0a9325f47e462743b447c",
"blk.15.attn_norm.weight": "0956b576ae96db0b28cb09f761f801cfd9281432284664f0fe181c8d9c55d1ec",
"blk.15.attn_output.weight": "03a17f7e94208177aace5cc41b7f54670ba57873b7274ff6e23caf58cce110ca",
"blk.15.attn_q.weight": "b8edafe7d2216a6f8b4ae4905a906475490e6ea418f6e1d3cec563dbdc6fab91",
"blk.15.attn_v.weight": "f8ae8cae0f4cfa34a459824eba57350c3c248104ba5607e7d9dc7d7c39aaf4a6",
"blk.15.ffn_down.weight": "8d02eb439da852246d2ca67e9b7b6de0b090b80744355e64728a23e41926505b",
"blk.15.ffn_gate.weight": "ed5bf361c67db8731f186b775826f21c33bdb521111fd2d922539719a770239f",
"blk.15.ffn_norm.weight": "5942ca3c73209ac9a0c8bfd9b4aab7f7be7aee9aa12d9c35833493b44af76767",
"blk.15.ffn_up.weight": "f4bebf4ad99ec5f911327dec347be6c595814885309c7bc5647ce28c7f4d1cf5",
"blk.16.attn_k.weight": "756a534c19364448e0958b8948fe33891c6ccda0fbb4dfa2024e1f532a87804b",
"blk.16.attn_norm.weight": "386b7b9e4e6509f6af9c022d942b6c6c6cc136aeed8751ecb037c74d7c4bfb93",
"blk.16.attn_output.weight": "3ba1a766a25830b84d7c22178203635f9c5624caad290bc5e5d73da5d5e7a2ec",
"blk.16.attn_q.weight": "d39b0c91e1fda7685d50a0f7cc8d18c44b5bdc90a142c7fda0bc329cca1afa74",
"blk.16.attn_v.weight": "98b33fcb0ee3483cff1b06ecb44d7b7ffb4d34c268248e4d73dfdf82b2065b2f",
"blk.16.ffn_down.weight": "14006f5e4acb2f9416271ae562e299359cd2585739c7fc77ccbca54495563948",
"blk.16.ffn_gate.weight": "12f8abae2d301d8f88bedb6af98b1daecc7b0b8d05148594f931f30958d77aca",
"blk.16.ffn_norm.weight": "129a15a046ee96d06de288bd43c80f77a6b0fb3a159c7367154c6e4aaf362672",
"blk.16.ffn_up.weight": "b4a5911a45f3871ef1d4efb7dc7108645a564b70f818eccf45beebef2e844ee9",
"blk.17.attn_k.weight": "5e1bfcff0146ebdde3817b656952892eb671e14e75afc92fa53f84f8eecbec4c",
"blk.17.attn_norm.weight": "60bc988fab7c4b29ee9de599df41a8de00caa94fcd74677da011fac82f60f465",
"blk.17.attn_output.weight": "ba49b40d6a0b5685f749c24b0edbed3adc44dbe13b5d5e5fa1e56169fc746555",
"blk.17.attn_q.weight": "82bb415d24efcd14d03ace03f907bb70db6a204c76a0bdd1892e0fba165db87d",
"blk.17.attn_v.weight": "73dbe54beb91a899884e275ea81ffc5187a20cb7d5b68d5c299b783096999d94",
"blk.17.ffn_down.weight": "7c086166241e0664f8963fd1ca4ed74c737abfb2525ec20f8435821ff50158f3",
"blk.17.ffn_gate.weight": "51a32f78244d42a539f619c5ce661db9e6cf41636280a826d439b5444edcd28c",
"blk.17.ffn_norm.weight": "c4bb247fccd1ecc84875028af63dd20aaf5cbd17eb94a9bc36679c09285dccab",
"blk.17.ffn_up.weight": "b5886182790bc6fbadd63de9bc4ffee416f3b69a66280d197ab8c18edf769abf",
"output_norm.weight": "481f3097d0a20412e35b3a739b1b958487bcd41ff67744baa3c9acbddd2ee4d4"
}

View File

@@ -3,148 +3,19 @@ package convert
import (
"cmp"
"crypto/sha256"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"slices"
)
const (
_ int32 = iota
tokenTypeNormal
tokenTypeUnknown
tokenTypeControl
tokenTypeUserDefined
tokenTypeUnused
tokenTypeByte
"golang.org/x/exp/maps"
)
type Tokenizer struct {
*Vocabulary
SpecialVocabulary []*SpecialVocabulary
Merges []string
Pre string
Template string
}
func parseTokenizer(d string, specialTypes []string) (*Tokenizer, error) {
v, err := parseVocabulary(d)
if err != nil {
return nil, err
}
t := &Tokenizer{
Vocabulary: v,
Pre: "default",
}
addedTokens := make(map[string]token)
if f, err := os.Open(filepath.Join(d, "tokenizer.json")); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var tt tokenizer
if err := json.NewDecoder(f).Decode(&tt); err != nil {
return nil, err
}
for _, t := range tt.AddedTokens {
addedTokens[t.Content] = t
}
t.Merges = tt.Model.Merges
sha256sum := sha256.New()
for _, pt := range tt.PreTokenizer.PreTokenizers {
switch pt.Type {
case "Split":
if pt.Pattern.Regex != "" {
sha256sum.Write([]byte(pt.Pattern.Regex))
}
}
}
switch digest := hex.EncodeToString(sha256sum.Sum(nil)); digest {
case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
t.Pre = "llama-bpe"
case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
t.Pre = "deepseek-llm"
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
t.Pre = "deepseek-coder"
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
// noop, empty pretokenizer
default:
slog.Warn("unknown pretokenizer, using default", "digest", digest)
}
}
if f, err := os.Open(filepath.Join(d, "tokenizer_config.json")); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var p map[string]json.RawMessage
if err := json.NewDecoder(f).Decode(&p); err != nil {
return nil, err
}
if template, ok := p["chat_template"]; ok {
if err := json.Unmarshal(template, &t.Template); err != nil {
return nil, err
}
}
for _, st := range specialTypes {
sv := SpecialVocabulary{Type: st}
if bts, ok := p[fmt.Sprintf("add_%s_token", st)]; ok {
if err := json.Unmarshal(bts, &sv.AddToken); err != nil {
return nil, err
}
}
if bts, ok := p[fmt.Sprintf("%s_token", st)]; ok {
var content string
if err := json.Unmarshal(bts, &content); err != nil {
var mm map[string]any
if err := json.Unmarshal(bts, &mm); err != nil {
continue
}
content, ok = mm["content"].(string)
if !ok {
continue
}
}
sv.Content = content
}
if id, ok := addedTokens[sv.Content]; ok {
sv.ID = id.ID
t.SpecialVocabulary = append(t.SpecialVocabulary, &sv)
}
}
}
return t, nil
}
type tokenizer struct {
Version string `json:"version"`
AddedTokens []token `json:"added_tokens"`
Model struct {
Type string `json:"type"`
Vocab map[string]int `json:"vocab"`
Merges []string `json:"merges"`
} `json:"model"`
Version string `json:"version"`
AddedTokens []Token `json:"added_tokens"`
Model TokenizerModel `json:"model"`
PreTokenizer struct {
PreTokenizers []struct {
@@ -156,106 +27,80 @@ type tokenizer struct {
} `json:"pre_tokenizer"`
}
type token struct {
type TokenizerModel struct {
Type string `json:"type"`
Vocab map[string]int `json:"vocab"`
Merges []string `json:"merges"`
Tokens []Token
}
type Token struct {
ID int `json:"id"`
Content string `json:"content"`
Special bool `json:"special"`
UserDefined bool
}
type Vocabulary struct {
Model string
Tokens []string
Scores []float32
Types []int32
func (t *Token) Type() int32 {
switch {
case t.Special:
return tokenTypeControl
case t.UserDefined:
return tokenTypeUserDefined
default:
return tokenTypeNormal
}
}
func parseVocabularyFromTokenizer(p string) (*Vocabulary, error) {
f, err := os.Open(filepath.Join(p, "tokenizer.json"))
func (t *Tokenizer) maxID() int {
return max(
slices.Max(maps.Values(t.Model.Vocab)),
slices.MaxFunc(t.AddedTokens, func(a, b Token) int {
return cmp.Compare(a.ID, b.ID)
}).ID,
)
}
func parseTokens(dirpath string) (pre string, tokens []Token, merges []string, err error) {
f, err := os.Open(dirpath)
if err != nil {
return nil, err
panic(err)
}
defer f.Close()
var t tokenizer
var t Tokenizer
if err := json.NewDecoder(f).Decode(&t); err != nil {
return nil, err
return "", nil, nil, err
}
var tokens []token
tokens = make([]Token, t.maxID()+1)
for k, v := range t.Model.Vocab {
tokens = append(tokens, token{
ID: v,
Content: k,
})
tokens[v] = Token{ID: v, Content: k, Special: false, UserDefined: false}
}
for _, t := range t.AddedTokens {
t.UserDefined = true
tokens = append(tokens, t)
for _, v := range t.AddedTokens {
v.UserDefined = true
tokens[v.ID] = v
}
slices.SortFunc(tokens, func(i, j token) int {
return cmp.Compare(i.ID, j.ID)
})
v := Vocabulary{Model: "gpt2"}
for _, t := range tokens {
v.Tokens = append(v.Tokens, t.Content)
v.Scores = append(v.Scores, float32(t.ID))
switch {
case t.Special:
v.Types = append(v.Types, tokenTypeControl)
case t.UserDefined:
v.Types = append(v.Types, tokenTypeUserDefined)
default:
v.Types = append(v.Types, tokenTypeNormal)
sha256sum := sha256.New()
for _, pt := range t.PreTokenizer.PreTokenizers {
if pt.Type == "Split" && pt.Pattern.Regex != "" {
sha256sum.Write([]byte(pt.Pattern.Regex))
}
}
return &v, nil
}
func parseVocabulary(d string) (*Vocabulary, error) {
patterns := map[string]func(string) (*Vocabulary, error){
"tokenizer.model": parseSentencePiece,
"tokenizer.json": parseVocabularyFromTokenizer,
switch digest := fmt.Sprintf("%x", sha256sum.Sum(nil)); digest {
case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
pre = "llama-bpe"
case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
pre = "deepseek-llm"
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
pre = "deepseek-coder"
default:
slog.Warn("unknown pretokenizer, using default", "digest", digest)
pre = "default"
}
for pattern, parseFn := range patterns {
matches, err := filepath.Glob(filepath.Join(d, pattern))
if err != nil {
return nil, err
}
if len(matches) > 0 {
return parseFn(d)
}
}
return nil, errors.New("unknown tensor format")
}
type SpecialVocabulary struct {
Type string
ID int
Content string
AddToken bool
}
func (sv SpecialVocabulary) Key() string {
switch t := sv.Type; t {
case "bos", "eos", "cls", "mask":
return t
case "unk":
return "unknown"
case "sep":
//nolint:misspell // this is an upstream typo
return "seperator"
case "pad":
return "padding"
}
panic("unknown special vocabulary type")
return pre, tokens, t.Model.Merges, nil
}

View File

@@ -1,83 +0,0 @@
package convert
import (
"cmp"
"encoding/json"
"errors"
"fmt"
"os"
"path/filepath"
"slices"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
)
func parseSentencePiece(d string) (*Vocabulary, error) {
bts, err := os.ReadFile(filepath.Join(d, "tokenizer.model"))
if err != nil {
return nil, err
}
var spm sentencepiece.ModelProto
if err := proto.Unmarshal(bts, &spm); err != nil {
return nil, err
}
v := Vocabulary{Model: "llama"}
for _, piece := range spm.GetPieces() {
v.Tokens = append(v.Tokens, piece.GetPiece())
v.Scores = append(v.Scores, piece.GetScore())
switch t := piece.GetType(); t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN,
sentencepiece.ModelProto_SentencePiece_CONTROL,
sentencepiece.ModelProto_SentencePiece_UNUSED,
sentencepiece.ModelProto_SentencePiece_BYTE:
v.Types = append(v.Types, int32(t))
default:
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL))
}
}
f, err := os.Open(filepath.Join(d, "added_tokens.json"))
if errors.Is(err, os.ErrNotExist) {
return &v, nil
} else if err != nil {
return nil, err
}
defer f.Close()
var atm map[string]int
if err := json.NewDecoder(f).Decode(&atm); err != nil {
return nil, err
}
type t struct {
id int
content string
}
var ts []t
for content, id := range atm {
ts = append(ts, t{id, content})
}
slices.SortFunc(ts, func(i, j t) int {
return cmp.Compare(i.id, j.id)
})
n := len(v.Tokens)
for i, t := range ts {
if t.id != i+n {
return nil, fmt.Errorf("invalid token id: %d", t.id)
}
v.Tokens = append(v.Tokens, t.content)
v.Scores = append(v.Scores, -1000.0)
v.Types = append(v.Types, tokenTypeUserDefined)
}
return &v, nil
}

287
convert/torch.go Normal file
View File

@@ -0,0 +1,287 @@
package convert
import (
"encoding/binary"
"encoding/json"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
type torchWriterTo struct {
t *llm.Tensor
params *Params
bo ByteOrder
storage pytorch.StorageInterface
repacker func(string, []float32, []uint64) ([]float32, error)
}
type TorchFormat struct{}
func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
slog.Debug("getting torch tensors")
var files []string
if pt, _ := filepath.Glob(filepath.Join(dirpath, "consolidated*.pth")); len(pt) > 0 {
files = append(files, pt...)
} else if pt, _ := filepath.Glob(filepath.Join(dirpath, "pytorch_model*.pth")); len(pt) > 0 {
files = append(files, pt...)
}
var offset uint64
var tensors []llm.Tensor
for _, fn := range files {
m, err := pytorch.Load(fn)
if err != nil {
slog.Error(fmt.Sprintf("error unpickling: %q", err))
return []llm.Tensor{}, err
}
for _, k := range m.(*types.Dict).Keys() {
if strings.HasSuffix(k.(string), "self_attn.rotary_emb.inv_freq") {
continue
}
t, _ := m.(*types.Dict).Get(k)
tshape := t.(*pytorch.Tensor).Size
var size uint64
var kind uint32
switch len(tshape) {
case 0:
continue
case 1:
// convert to float32
kind = 0
size = uint64(tshape[0] * 4)
case 2:
// convert to float16
kind = 1
size = uint64(tshape[0] * tshape[1] * 2)
}
ggufName, err := tf.GetLayerName(k.(string))
if err != nil {
slog.Error(err.Error())
return nil, err
}
slog.Debug(fmt.Sprintf("'%35s': '%30s' %10d [%#v]", k.(string), ggufName, size, tshape))
shape := []uint64{0, 0, 0, 0}
for i := range tshape {
shape[i] = uint64(tshape[i])
}
tensor := llm.Tensor{
Name: ggufName,
Kind: kind,
Offset: offset, // calculate the offset
Shape: shape,
}
tensor.WriterTo = torchWriterTo{
t: &tensor,
params: params,
bo: params.ByteOrder,
storage: t.(*pytorch.Tensor).Source,
}
tensors = append(tensors, tensor)
offset += size
}
}
return tensors, nil
}
func getAltParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "params.json"))
if err != nil {
slog.Error("no params.json")
return nil, err
}
defer f.Close()
type TorchParams struct {
HiddenSize int `json:"dim"`
AttentionHeads int `json:"n_heads"`
KeyValHeads int `json:"n_kv_heads"`
HiddenLayers int `json:"n_layers"`
RopeTheta float64 `json:"rope_theta"`
NormEPS float64 `json:"norm_eps"`
}
var tparams TorchParams
d := json.NewDecoder(f)
err = d.Decode(&tparams)
if err != nil {
return nil, err
}
params := &Params{
Architectures: []string{"LlamaForCausalLM"},
HiddenSize: tparams.HiddenSize,
AttentionHeads: tparams.AttentionHeads,
KeyValHeads: tparams.KeyValHeads,
HiddenLayers: tparams.HiddenLayers,
NormEPS: tparams.NormEPS,
}
switch {
case tparams.RopeTheta == 1000000:
// Codellama
params.ContextSize = 16384
case tparams.NormEPS == 1e-06:
// llama2
slog.Debug("Found llama2 - setting context size to 4096")
params.ContextSize = 4096
default:
params.ContextSize = 2048
}
params.ByteOrder = binary.LittleEndian
return params, nil
}
func (m *TorchFormat) GetParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "config.json"))
if err != nil {
if os.IsNotExist(err) {
// try params.json instead
return getAltParams(dirpath)
} else {
return nil, err
}
}
var params Params
d := json.NewDecoder(f)
err = d.Decode(&params)
if err != nil {
return nil, err
}
params.ByteOrder = binary.LittleEndian
return &params, nil
}
func (m *TorchFormat) GetLayerName(n string) (string, error) {
directMap := map[string]string{
"tok_embeddings.weight": "token_embd.weight",
"output.weight": "output.weight",
"norm.weight": "output_norm.weight",
"rope.freqs": "rope_freqs.weight",
"model.embed_tokens.weight": "token_embd.weight",
"lm_head.weight": "output.weight",
"model.norm.weight": "output_norm.weight",
}
lMap := map[string]string{
"layers.(\\d+).attention_norm.weight": "blk.$1.attn_norm.weight",
"layers.(\\d+).attention_output_norm.weight": "blk.$1.attn_norm.weight",
"layers.(\\d+).feed_forward.w2.weight": "blk.$1.ffn_down.weight",
"layers.(\\d+).feed_forward.w1.weight": "blk.$1.ffn_gate.weight",
"layers.(\\d+).feed_forward.w3.weight": "blk.$1.ffn_up.weight",
"layers.(\\d+).ffn_norm.weight": "blk.$1.ffn_norm.weight",
"layers.(\\d+).attention.wk.weight": "blk.$1.attn_k.weight",
"layers.(\\d+).attention.wo.weight": "blk.$1.attn_output.weight",
"layers.(\\d+).attention.wq.weight": "blk.$1.attn_q.weight",
"layers.(\\d+).attention.wv.weight": "blk.$1.attn_v.weight",
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
}
v, ok := directMap[n]
if ok {
return v, nil
}
// quick hack to rename the layers to gguf format
for k, v := range lMap {
re := regexp.MustCompile(k)
newName := re.ReplaceAllString(n, v)
if newName != n {
return newName, nil
}
}
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}
func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) {
var f32s []float32
switch s := r.storage.(type) {
case *pytorch.FloatStorage:
f32s = s.Data
case *pytorch.HalfStorage:
f32s = s.Data
case *pytorch.BFloat16Storage:
f32s = s.Data
default:
return 0, fmt.Errorf("unknown data type: %T", s)
}
if r.repacker != nil {
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
if err != nil {
return 0, err
}
}
switch r.t.Kind {
case 0:
return 0, binary.Write(w, r.bo, f32s)
case 1:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, r.bo, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
}
}
func (m *TorchFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
switch len(params.Architectures) {
case 0:
return nil, fmt.Errorf("No architecture specified to convert")
case 1:
switch params.Architectures[0] {
case "LlamaForCausalLM":
return &LlamaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
default:
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
}
}
return nil, fmt.Errorf("Unknown error")
}

View File

@@ -272,4 +272,4 @@ The following server settings may be used to adjust how Ollama handles concurren
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.

View File

@@ -9,9 +9,10 @@ const (
Thousand = 1000
Million = Thousand * 1000
Billion = Million * 1000
Trillion = Billion * 1000
)
func HumanNumber(b uint64) string {
func RoundedParameter(b uint64) string {
switch {
case b >= Billion:
number := float64(b) / Billion
@@ -31,3 +32,33 @@ func HumanNumber(b uint64) string {
return fmt.Sprintf("%d", b)
}
}
func Parameters(b uint64) string {
switch {
case b >= Trillion:
number := float64(b) / Trillion
return fmt.Sprintf("%sT", decimalPlace(number))
case b >= Billion:
number := float64(b) / Billion
return fmt.Sprintf("%sB", decimalPlace(number))
case b >= Million:
number := float64(b) / Million
return fmt.Sprintf("%sM", decimalPlace(number))
case b >= Thousand:
number := float64(b) / Thousand
return fmt.Sprintf("%sK", decimalPlace(number))
default:
return fmt.Sprintf("%d", b)
}
}
func decimalPlace(number float64) string {
switch {
case number >= 100:
return fmt.Sprintf("%.0f", number)
case number >= 10:
return fmt.Sprintf("%.1f", number)
default:
return fmt.Sprintf("%.2f", number)
}
}

View File

@@ -4,7 +4,7 @@ import (
"testing"
)
func TestHumanNumber(t *testing.T) {
func TestRoundedParameter(t *testing.T) {
type testCase struct {
input uint64
expected string
@@ -24,7 +24,34 @@ func TestHumanNumber(t *testing.T) {
for _, tc := range testCases {
t.Run(tc.expected, func(t *testing.T) {
result := HumanNumber(tc.input)
result := RoundedParameter(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}
})
}
}
func TestParameters(t *testing.T) {
type testCase struct {
input uint64
expected string
}
testCases := []testCase{
{26000000, "26.0M"},
{26000000000, "26.0B"},
{1000, "1.00K"},
{1000000, "1.00M"},
{1000000000, "1.00B"},
{1000000000000, "1.00T"},
{100, "100"},
{206000000, "206M"},
}
for _, tc := range testCases {
t.Run(tc.expected, func(t *testing.T) {
result := Parameters(tc.input)
if result != tc.expected {
t.Errorf("Expected %s, got %s", tc.expected, result)
}

2
go.mod
View File

@@ -18,10 +18,10 @@ require (
require (
github.com/agnivade/levenshtein v1.1.1
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/google/go-cmp v0.6.0
github.com/mattn/go-runewidth v0.0.14
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
github.com/sbinet/npyio v0.9.0
)
require (

2
go.sum
View File

@@ -171,8 +171,6 @@ github.com/rogpeppe/go-internal v1.8.0 h1:FCbCCtXNOY3UtUuHUYaghJg4y7Fd14rXifAYUA
github.com/rogpeppe/go-internal v1.8.0/go.mod h1:WmiCO8CzOY8rg0OYDC4/i/2WRWAB6poM+XZ2dLUbcbE=
github.com/russross/blackfriday/v2 v2.1.0/go.mod h1:+Rmxgy9KzJVeS9/2gXHxylqXiyQDYRxCVz55jmeOWTM=
github.com/ruudk/golang-pdf417 v0.0.0-20181029194003-1af4ab5afa58/go.mod h1:6lfFZQK844Gfx8o5WFuvpxWRwnSoipWe/p622j1v06w=
github.com/sbinet/npyio v0.9.0 h1:A7h8OyYsOsc+NPRtynRMSf70xSgATZNpamNp8nQ8Tjc=
github.com/sbinet/npyio v0.9.0/go.mod h1:vgjQEMRTS9aMS9GdXhr+5jounCmGqjDO2JI+IpSokns=
github.com/spf13/cobra v1.7.0 h1:hyqWnYt1ZQShIddO5kBpj3vu05/++x6tJ6dg8EC572I=
github.com/spf13/cobra v1.7.0/go.mod h1:uLxZILRyS/50WlhOIKD7W6V5bgeIt+4sICxh6uRMrb0=
github.com/spf13/pflag v1.0.5 h1:iy+VFUOCP1a+8yFto/drg2CJ5u0yRoB7fZw3DKv/JXA=

View File

@@ -49,9 +49,17 @@ func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
}
func commonAMDValidateLibDir() (string, error) {
// We try to favor system paths first, so that we can wire up the subprocess to use
// the system version. Only use our bundled version if the system version doesn't work
// This gives users a more recovery options if versions have subtle problems at runtime
// Favor our bundled version
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
}
// Prefer explicit HIP env var
hipPath := os.Getenv("HIP_PATH")
@@ -87,14 +95,5 @@ func commonAMDValidateLibDir() (string, error) {
}
}
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
}
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
}

View File

@@ -84,9 +84,8 @@ func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
}
slog.Debug("hipDriverGetVersion", "version", version)
// TODO - this isn't actually right, but the docs claim hipDriverGetVersion isn't accurate anyway...
driverMajor = version / 1000
driverMinor = (version - (driverMajor * 1000)) / 10
driverMajor = version / 10000000
driverMinor = (version - (driverMajor * 10000000)) / 100000
return driverMajor, driverMinor, nil
}

View File

@@ -22,8 +22,8 @@ const (
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // TODO - probably include more coverage of files here...
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob?
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // This is not sufficient to discern v5 vs v6
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
)
func AMDGetGPUInfo() []RocmGPUInfo {
@@ -35,12 +35,11 @@ func AMDGetGPUInfo() []RocmGPUInfo {
}
defer hl.Release()
// TODO - this reports incorrect version information, so omitting for now
// driverMajor, driverMinor, err := hl.AMDDriverVersion()
// if err != nil {
// // For now this is benign, but we may eventually need to fail compatibility checks
// slog.Debug("error looking up amd driver version", "error", err)
// }
driverMajor, driverMinor, err := hl.AMDDriverVersion()
if err != nil {
// For now this is benign, but we may eventually need to fail compatibility checks
slog.Debug("error looking up amd driver version", "error", err)
}
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
count := hl.HipGetDeviceCount()
@@ -132,10 +131,8 @@ func AMDGetGPUInfo() []RocmGPUInfo {
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
// TODO - this information isn't accurate on windows, so don't report it until we find the right way to retrieve
// DriverMajor: driverMajor,
// DriverMinor: driverMinor,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
},
index: i,
}

View File

@@ -274,6 +274,28 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
} else {
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
slog.Info("detected OS VRAM overhead",
"id", gpuInfo.ID,
"library", gpuInfo.Library,
"compute", gpuInfo.Compute,
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
"name", gpuInfo.Name,
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
)
}
}
}
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
@@ -338,14 +360,17 @@ func GetGPUInfo() GpuInfoList {
"before",
"total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory),
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
),
slog.Group(
"now",
"total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory),
"free_swap", format.HumanBytes2(mem.FreeSwap),
),
)
cpus[0].FreeMemory = mem.FreeMemory
cpus[0].FreeSwap = mem.FreeSwap
}
var memInfo C.mem_info_t
@@ -374,9 +399,14 @@ func GetGPUInfo() GpuInfoList {
slog.Warn("error looking up nvidia GPU memory")
continue
}
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
// When using the management library update based on recorded overhead
memInfo.free -= C.uint64_t(gpu.OSOverhead)
}
slog.Debug("updating cuda memory data",
"gpu", gpu.ID,
"name", gpu.Name,
"overhead", format.HumanBytes2(gpu.OSOverhead),
slog.Group(
"before",
"total", format.HumanBytes2(gpu.TotalMemory),

View File

@@ -57,6 +57,7 @@ func GetCPUMem() (memInfo, error) {
return memInfo{
TotalMemory: uint64(C.getPhysicalMemory()),
FreeMemory: uint64(C.getFreeMemory()),
// FreeSwap omitted as Darwin uses dynamic paging
}, nil
}

View File

@@ -50,7 +50,7 @@ var OneapiMgmtName = "libze_intel_gpu.so"
func GetCPUMem() (memInfo, error) {
var mem memInfo
var total, available, free, buffers, cached uint64
var total, available, free, buffers, cached, freeSwap uint64
f, err := os.Open("/proc/meminfo")
if err != nil {
return mem, err
@@ -70,20 +70,21 @@ func GetCPUMem() (memInfo, error) {
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
case strings.HasPrefix(line, "Cached:"):
_, err = fmt.Sscanf(line, "Cached:%d", &cached)
case strings.HasPrefix(line, "SwapFree:"):
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
default:
continue
}
if err != nil {
return mem, err
}
if total > 0 && available > 0 {
mem.TotalMemory = total * format.KibiByte
mem.FreeMemory = available * format.KibiByte
return mem, nil
}
}
mem.TotalMemory = total * format.KibiByte
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
mem.FreeSwap = freeSwap * format.KibiByte
if available > 0 {
mem.FreeMemory = available * format.KibiByte
} else {
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
}
return mem, nil
}

View File

@@ -51,5 +51,5 @@ func GetCPUMem() (memInfo, error) {
if r1 == 0 {
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
}
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys}, nil
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil
}

View File

@@ -10,6 +10,7 @@ import (
type memInfo struct {
TotalMemory uint64 `json:"total_memory,omitempty"`
FreeMemory uint64 `json:"free_memory,omitempty"`
FreeSwap uint64 `json:"free_swap,omitempty"`
}
// Beginning of an `ollama info` command
@@ -52,7 +53,8 @@ type CPUInfo struct {
type CudaGPUInfo struct {
GpuInfo
index int //nolint:unused,nolintlint
OSOverhead uint64 // Memory overhead between the driver library and management library
index int //nolint:unused,nolintlint
}
type CudaGPUInfoList []CudaGPUInfo

View File

@@ -178,7 +178,7 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
echo "Building custom CUDA GPU"
else
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DGGML_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} -DCMAKE_LIBRARY_PATH=/usr/local/cuda/compat"
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
fi
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
@@ -254,7 +254,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
fi
init_vars
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DLLAMA_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""

View File

@@ -6,18 +6,9 @@ function amdGPUs {
if ($env:AMDGPU_TARGETS) {
return $env:AMDGPU_TARGETS
}
# TODO - load from some common data file for linux + windows build consistency
# Current supported rocblas list from ROCm v6.1.2 on windows
$GPU_LIST = @(
"gfx900"
"gfx906:xnack-"
"gfx908:xnack-"
"gfx90a:xnack+"
"gfx90a:xnack-"
"gfx940"
"gfx941"
"gfx942"
"gfx1010"
"gfx1012"
"gfx1030"
"gfx1100"
"gfx1101"
@@ -366,6 +357,7 @@ function build_rocm() {
"-DCMAKE_C_COMPILER=clang.exe",
"-DCMAKE_CXX_COMPILER=clang++.exe",
"-DGGML_HIPBLAS=on",
"-DLLAMA_CUDA_NO_PEER_COPY=on",
"-DHIP_PLATFORM=amd",
"-DGGML_AVX=on",
"-DGGML_AVX2=off",
@@ -394,7 +386,6 @@ function build_rocm() {
sign
install
# Assumes v5.7, may need adjustments for v6
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\" -ea 0 > $null
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"

View File

@@ -1,12 +1,9 @@
package llm
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"log/slog"
"slices"
)
@@ -19,7 +16,6 @@ func (c *containerGGLA) Name() string {
}
func (c *containerGGLA) Decode(rs io.ReadSeeker) (model, error) {
slog.Info("decoding ggla")
if err := binary.Read(rs, binary.LittleEndian, &c.version); err != nil {
return nil, err
}
@@ -40,8 +36,6 @@ type ggla struct {
kv KV
tensors []*Tensor
tensorOffset uint64
}
func newGGLA(container *containerGGLA) *ggla {
@@ -56,13 +50,10 @@ func (llm *ggla) KV() KV {
}
func (llm *ggla) Tensors() Tensors {
return Tensors{
Items: llm.tensors,
Offset: llm.tensorOffset,
}
return llm.tensors
}
func (llm *ggla) decode(rs io.ReadSeeker) error {
func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
var r uint32
if err := binary.Read(rs, binary.LittleEndian, &r); err != nil {
return err
@@ -75,22 +66,21 @@ func (llm *ggla) decode(rs io.ReadSeeker) error {
}
llm.kv["alpha"] = alpha
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
llm.tensorOffset = uint64(offset)
for {
var dims uint32
if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil {
if errors.Is(err, io.EOF) {
break
return nil
}
return err
}
defer func() {
if errors.Is(retErr, io.EOF) {
retErr = io.ErrUnexpectedEOF
}
}()
var namesize uint32
if err := binary.Read(rs, binary.LittleEndian, &namesize); err != nil {
return err
@@ -121,14 +111,13 @@ func (llm *ggla) decode(rs io.ReadSeeker) error {
}
t.Name = string(name)
slog.Info(fmt.Sprintf("%s: [%d, %d] k=%d", t.Name, t.Shape[0], t.Shape[1], t.Kind))
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
if _, err := rs.Seek((offset+31)&-32, io.SeekStart); err != nil {
if _, err := rs.Seek((offset+31)&-32-offset, io.SeekCurrent); err != nil {
return err
}
@@ -145,87 +134,4 @@ func (llm *ggla) decode(rs io.ReadSeeker) error {
llm.tensors = append(llm.tensors, &t)
}
return nil
}
func WriteGGLA(ws io.WriteSeeker, kv KV, ts []*Tensor) error {
slog.Debug("writing ggla")
if err := binary.Write(ws, binary.LittleEndian, []byte("algg")); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(1)); err != nil {
return err
}
var r uint32
var alpha uint32
var ok bool
if r, ok = kv["r"].(uint32); !ok {
r = 8
}
if err := binary.Write(ws, binary.LittleEndian, r); err != nil {
return err
}
if alpha, ok = kv["alpha"].(uint32); !ok {
alpha = 16
}
if err := binary.Write(ws, binary.LittleEndian, alpha); err != nil {
return err
}
for _, t := range ts {
dims := 0
for cnt := range len(t.Shape) {
if t.Shape[cnt] > 0 {
dims++
}
}
if err := binary.Write(ws, binary.LittleEndian, uint32(dims)); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(len(t.Name))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, t.Kind); err != nil {
return err
}
for cnt := range dims {
if err := binary.Write(ws, binary.LittleEndian, uint32(t.Shape[dims-1-cnt])); err != nil {
return err
}
}
if err := binary.Write(ws, binary.LittleEndian, []byte(t.Name)); err != nil {
return err
}
offset, err := ws.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
var alignment int32 = 32
pad := gglaPadding(int32(offset), alignment)
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(pad))); err != nil {
return err
}
if _, err := t.WriteTo(ws); err != nil {
return err
}
}
return nil
}
func gglaPadding(offset, align int32) int32 {
return (align - offset%align) % align
}

View File

@@ -112,14 +112,11 @@ func (kv KV) ChatTemplate() string {
return s
}
type Tensors struct {
Items []*Tensor
Offset uint64
}
type Tensors []*Tensor
func (ts Tensors) Layers() map[string]Layer {
layers := make(map[string]Layer)
for _, t := range ts.Items {
for _, t := range ts {
parts := strings.Split(t.Name, ".")
if parts[0] == "blk" {
// join first and second part, e.g. blk.%d
@@ -427,6 +424,32 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
)
case "chatglm":
fullOffload = 4 * batch * (embedding + vocab)
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
fullOffload = max(
fullOffload,
4*batch*(2+
2*embedding+
context+
context*heads+
embeddingHeadsK*heads+
qkvBias.Shape[0]),
)
partialOffload = max(
partialOffload,
4*batch*(1+
2*embedding+
embeddingHeadsK*heads+
context+
context*heads)+
4*embeddingHeadsK*context+
4*context*embeddingHeadsK+
4*qkvBias.Shape[0],
)
}
}
return

View File

@@ -2,16 +2,11 @@ package llm
import (
"bytes"
"cmp"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"log/slog"
"slices"
"strings"
"golang.org/x/exp/maps"
)
type containerGGUF struct {
@@ -94,7 +89,6 @@ type gguf struct {
tensors []*Tensor
parameters uint64
tensorOffset uint64
scratch [16 << 10]byte
}
@@ -106,15 +100,16 @@ func newGGUF(container *containerGGUF) *gguf {
}
}
func NewGGUFV3(bo binary.ByteOrder) *gguf {
return newGGUF(&containerGGUF{ByteOrder: bo, Version: 3})
}
func (llm *gguf) KV() KV {
return llm.kv
}
func (llm *gguf) Tensors() Tensors {
return Tensors{
Items: llm.tensors,
Offset: llm.tensorOffset,
}
return llm.tensors
}
func (llm *gguf) numTensor() uint64 {
@@ -204,7 +199,7 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
return fmt.Errorf("failed to read tensor dimensions: %w", err)
}
shape := make([]uint64, dims)
shape := [4]uint64{1, 1, 1, 1}
for i := 0; uint32(i) < dims; i++ {
shape[i], err = readGGUF[uint64](llm, rs)
if err != nil {
@@ -241,21 +236,13 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
alignment = 32
}
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
padding := ggufPadding(offset, int64(alignment))
llm.tensorOffset = uint64(offset + padding)
for _, tensor := range llm.tensors {
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return fmt.Errorf("failed to get current offset: %w", err)
}
padding := ggufPadding(offset, int64(alignment))
padding := llm.padding(offset, int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return fmt.Errorf("failed to seek to init padding: %w", err)
}
@@ -274,12 +261,12 @@ func readGGUF[T any](llm *gguf, r io.Reader) (T, error) {
return t, err
}
func writeGGUF[V any](w io.Writer, t uint32, v V) error {
if err := binary.Write(w, binary.LittleEndian, t); err != nil {
func writeGGUF[V any](llm *gguf, w io.Writer, t uint32, v V) error {
if err := binary.Write(w, llm.ByteOrder, t); err != nil {
return err
}
return binary.Write(w, binary.LittleEndian, v)
return binary.Write(w, llm.ByteOrder, v)
}
func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
@@ -343,12 +330,12 @@ func readGGUFString(llm *gguf, r io.Reader) (string, error) {
return string(buf), nil
}
func writeGGUFString(w io.Writer, s string) error {
if err := binary.Write(w, binary.LittleEndian, ggufTypeString); err != nil {
func writeGGUFString(llm *gguf, w io.Writer, s string) error {
if err := binary.Write(w, llm.ByteOrder, ggufTypeString); err != nil {
return err
}
if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
if err := binary.Write(w, llm.ByteOrder, uint64(len(s))); err != nil {
return err
}
@@ -489,21 +476,21 @@ func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
return a, nil
}
func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
if err := binary.Write(w, binary.LittleEndian, ggufTypeArray); err != nil {
func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error {
if err := binary.Write(w, llm.ByteOrder, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(w, binary.LittleEndian, t); err != nil {
if err := binary.Write(w, llm.ByteOrder, t); err != nil {
return err
}
if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
if err := binary.Write(w, llm.ByteOrder, uint64(len(s))); err != nil {
return err
}
for _, e := range s {
if err := binary.Write(w, binary.LittleEndian, e); err != nil {
if err := binary.Write(w, llm.ByteOrder, e); err != nil {
return err
}
}
@@ -511,55 +498,193 @@ func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
return nil
}
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []*Tensor) error {
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
var ggufKVOrder = map[string][]string{
"llama": {
"general.architecture",
"general.name",
"llama.vocab_size",
"llama.context_length",
"llama.embedding_length",
"llama.block_count",
"llama.feed_forward_length",
"llama.attention.head_count",
"llama.attention.head_count_kv",
"llama.attention.layer_norm_rms_epsilon",
"llama.rope.freq_base",
"llama.rope.dimension_count",
"llama.expert_count",
"llama.expert_used_count",
"gemma.context_length",
"gemma.embedding_length",
"gemma.block_count",
"gemma.feed_forward_length",
"gemma.attention.head_count",
"gemma.attention.head_count_kv",
"gemma.attention.layer_norm_rms_epsilon",
"gemma.attention.key_length",
"gemma.attention.value_length",
"general.file_type",
"tokenizer.ggml.pre",
"tokenizer.ggml.model",
"tokenizer.ggml.tokens",
"tokenizer.ggml.scores",
"tokenizer.ggml.merges",
"tokenizer.ggml.token_type",
"tokenizer.ggml.bos_token_id",
"tokenizer.ggml.eos_token_id",
"tokenizer.ggml.unknown_token_id",
"tokenizer.ggml.padding_token_id",
"tokenizer.ggml.add_bos_token",
"tokenizer.ggml.add_eos_token",
"tokenizer.chat_template",
},
}
func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
switch llm.Version {
case 3:
llm.V3.NumTensor = uint64(len(tensors))
llm.V3.NumKV = uint64(len(kv))
default:
return fmt.Errorf("not implemented: ggufv%d", llm.Version)
}
if err := binary.Write(ws, llm.ByteOrder, []byte("GGUF")); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
if err := binary.Write(ws, llm.ByteOrder, llm.Version); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
if err := binary.Write(ws, llm.ByteOrder, llm.numTensor()); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
if err := binary.Write(ws, llm.ByteOrder, llm.numKV()); err != nil {
return err
}
keys := maps.Keys(kv)
slices.Sort(keys)
kvCheck := make(map[string]bool)
for k := range kv {
kvCheck[k] = false
}
for _, key := range keys {
if err := ggufWriteKV(ws, key, kv[key]); err != nil {
for _, k := range ggufKVOrder["llama"] {
v, ok := kv[k]
if !ok {
continue
}
kvCheck[k] = true
if err := binary.Write(ws, llm.ByteOrder, uint64(len(k))); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, []byte(k)); err != nil {
return err
}
var err error
switch v := v.(type) {
case uint32:
err = writeGGUF(llm, ws, ggufTypeUint32, v)
case float32:
err = writeGGUF(llm, ws, ggufTypeFloat32, v)
case bool:
err = writeGGUF(llm, ws, ggufTypeBool, v)
case string:
err = writeGGUFString(llm, ws, v)
case []int32:
err = writeGGUFArray(llm, ws, ggufTypeInt32, v)
case []uint32:
err = writeGGUFArray(llm, ws, ggufTypeUint32, v)
case []float32:
err = writeGGUFArray(llm, ws, ggufTypeFloat32, v)
case []string:
if err := binary.Write(ws, llm.ByteOrder, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, ggufTypeString); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, uint64(len(v))); err != nil {
return err
}
for _, e := range v {
if err := binary.Write(ws, llm.ByteOrder, uint64(len(e))); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, []byte(e)); err != nil {
return err
}
}
default:
return fmt.Errorf("improper type for '%s'", k)
}
if err != nil {
return err
}
}
slices.SortFunc(ts, func(a, b *Tensor) int {
var i, j int
if n, err := fmt.Sscanf(a.Name, "blk.%d", &i); err != nil || n != 1 {
return cmp.Compare(a.Name, b.Name)
} else if n, err := fmt.Sscanf(b.Name, "blk.%d", &j); err != nil || n != 1 {
return cmp.Compare(a.Name, b.Name)
for k, v := range kvCheck {
if !v {
return fmt.Errorf("Didn't know how to write kv %s", k)
}
}
return cmp.Compare(i, j)
})
var s uint64
for _, t := range ts {
t.Offset = s
if err := ggufWriteTensorInfo(ws, t); err != nil {
for _, tensor := range tensors {
if err := binary.Write(ws, llm.ByteOrder, uint64(len(tensor.Name))); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, []byte(tensor.Name)); err != nil {
return err
}
var dims int
for cnt := range len(tensor.Shape) {
if tensor.Shape[cnt] > 0 {
dims++
}
}
if err := binary.Write(ws, llm.ByteOrder, uint32(dims)); err != nil {
return err
}
for i := range dims {
if err := binary.Write(ws, llm.ByteOrder, tensor.Shape[dims-1-i]); err != nil {
return err
}
}
if err := binary.Write(ws, llm.ByteOrder, tensor.Kind); err != nil {
return err
}
if err := binary.Write(ws, llm.ByteOrder, tensor.Offset); err != nil {
return err
}
s += t.Size()
}
var alignment int64 = 32
for _, t := range ts {
if err := ggufWriteTensor(ws, t, alignment); err != nil {
for _, tensor := range tensors {
offset, err := ws.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
padding := llm.padding(offset, alignment)
if err := binary.Write(ws, llm.ByteOrder, bytes.Repeat([]byte{0}, int(padding))); err != nil {
return err
}
if _, err := tensor.WriteTo(ws); err != nil {
return err
}
}
@@ -567,103 +692,6 @@ func WriteGGUF(ws io.WriteSeeker, kv KV, ts []*Tensor) error {
return nil
}
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
slog.Debug(k, "type", fmt.Sprintf("%T", v))
if err := binary.Write(ws, binary.LittleEndian, uint64(len(k))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(k)); err != nil {
return err
}
var err error
switch v := v.(type) {
case uint32:
err = writeGGUF(ws, ggufTypeUint32, v)
case float32:
err = writeGGUF(ws, ggufTypeFloat32, v)
case bool:
err = writeGGUF(ws, ggufTypeBool, v)
case string:
err = writeGGUFString(ws, v)
case []int32:
err = writeGGUFArray(ws, ggufTypeInt32, v)
case []uint32:
err = writeGGUFArray(ws, ggufTypeUint32, v)
case []float32:
err = writeGGUFArray(ws, ggufTypeFloat32, v)
case []string:
if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
return err
}
for _, e := range v {
if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
return err
}
}
default:
return fmt.Errorf("improper type for '%s'", k)
}
return err
}
func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(t.Name)); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(len(t.Shape))); err != nil {
return err
}
for i := range len(t.Shape) {
if err := binary.Write(ws, binary.LittleEndian, t.Shape[len(t.Shape)-i-1]); err != nil {
return err
}
}
if err := binary.Write(ws, binary.LittleEndian, t.Kind); err != nil {
return err
}
return binary.Write(ws, binary.LittleEndian, t.Offset)
}
func ggufWriteTensor(ws io.WriteSeeker, t *Tensor, alignment int64) error {
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
offset, err := ws.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
return err
}
_, err = t.WriteTo(ws)
return err
}
func ggufPadding(offset, align int64) int64 {
func (gguf) padding(offset, align int64) int64 {
return (align - offset%align) % align
}

View File

@@ -4,8 +4,8 @@ package llm
// #cgo LDFLAGS: -lllama -lggml -lstdc++ -lpthread
// #cgo darwin,arm64 LDFLAGS: -L${SRCDIR}/build/darwin/arm64_static -L${SRCDIR}/build/darwin/arm64_static/src -L${SRCDIR}/build/darwin/arm64_static/ggml/src -framework Accelerate -framework Metal
// #cgo darwin,amd64 LDFLAGS: -L${SRCDIR}/build/darwin/x86_64_static -L${SRCDIR}/build/darwin/x86_64_static/src -L${SRCDIR}/build/darwin/x86_64_static/ggml/src
// #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/windows/amd64_static -L${SRCDIR}/build/windows/amd64_static/src -L${SRCDIR}/build/windows/amd64_static/ggml/src
// #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src
// #cgo windows,amd64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/amd64_static -L${SRCDIR}/build/windows/amd64_static/src -L${SRCDIR}/build/windows/amd64_static/ggml/src
// #cgo windows,arm64 LDFLAGS: -static-libstdc++ -static-libgcc -static -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src
// #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/linux/x86_64_static -L${SRCDIR}/build/linux/x86_64_static/src -L${SRCDIR}/build/linux/x86_64_static/ggml/src
// #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/linux/arm64_static -L${SRCDIR}/build/linux/arm64_static/src -L${SRCDIR}/build/linux/arm64_static/ggml/src
// #include <stdlib.h>
@@ -33,7 +33,7 @@ func Quantize(infile, outfile string, ftype fileType) error {
params.ftype = ftype.Value()
if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
return fmt.Errorf("llama_model_quantize: %d", rc)
return fmt.Errorf("failed to quantize model. This model architecture may not be supported, or you may need to upgrade Ollama to the latest version")
}
return nil

View File

@@ -2,6 +2,7 @@ package llm
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"testing"
@@ -19,9 +20,10 @@ func TestEstimateGPULayers(t *testing.T) {
f, err := os.CreateTemp(t.TempDir(), modelName)
require.NoError(t, err)
defer f.Close()
gguf := NewGGUFV3(binary.LittleEndian)
inputLayerCount := 5
tensors := []*Tensor{
tensors := []Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
@@ -30,7 +32,7 @@ func TestEstimateGPULayers(t *testing.T) {
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}
assert.Len(t, tensors, inputLayerCount+1)
err = WriteGGUF(f, KV{
err = gguf.Encode(f, KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),

View File

@@ -1,78 +0,0 @@
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 4f6cd687..b8c6896b 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -189,3 +189,4 @@ if (LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()
+add_subdirectory(../ext_server ext_server) # ollama
diff --git a/src/llama.cpp b/src/llama.cpp
index 2b9ace28..b0151571 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -18609,6 +18609,20 @@ static int llama_apply_lora_from_file_internal(
return 1;
}
+ // show tensor data
+ auto show_tensor = [](std::string name, ggml_tensor *t) {
+ LLAMA_LOG_INFO("%s\n", name.c_str());
+
+ for(int i=0; i<3; i++) {
+ for(int j=0; j<3; j++) {
+ float v = ggml_get_f32_nd(t, i, j, 0, 0);
+ LLAMA_LOG_INFO("%.8f ", v);
+ }
+ LLAMA_LOG_INFO(" ...\n");
+ }
+ LLAMA_LOG_INFO(" ...\n");
+ };
+
// load tensor data
auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
read_buf.resize(ggml_nbytes(tensor));
@@ -18619,6 +18633,9 @@ static int llama_apply_lora_from_file_internal(
load_tensor(metaA, loraA);
load_tensor(metaB, loraB);
+ show_tensor(base_name + ".loraA", loraA);
+ show_tensor(base_name + ".loraB", loraB);
+
// load base model tensor data
if (ml) {
ml->load_data_for(base_t);
@@ -18633,8 +18650,10 @@ static int llama_apply_lora_from_file_internal(
}
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
- LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
- " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
+ LLAMA_LOG_ERROR("%s: incompatible tensors: base [%lld, %lld] loraA [%lld, %lld] loraB [%lld, %lld]\n", __func__,
+ base_t->ne[0], base_t->ne[1],
+ loraA->ne[0], loraA->ne[1],
+ loraB->ne[0], loraB->ne[1]);
ggml_free(lora_ctx);
ggml_backend_buffer_free(lora_buf);
ggml_backend_free(backend_cpu);
@@ -18643,14 +18662,18 @@ static int llama_apply_lora_from_file_internal(
auto build_lora_graph = [&]() {
// w = w + BA*s
- ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
+ ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraB, loraA);
ggml_set_name(BA, "BA");
if (scaling != 1.0f) {
- BA = ggml_scale(lora_ctx, BA, scaling);
+ //BA = ggml_scale(lora_ctx, BA, scaling);
+ BA = ggml_scale(lora_ctx, BA, 20.0);
ggml_set_name(BA, "BA_scaled");
}
+ // transpose matrix before we add
+ BA = ggml_cont(lora_ctx, ggml_transpose(lora_ctx, BA));
+
ggml_tensor * r;
r = ggml_add_inplace(lora_ctx, base_t, BA);
ggml_set_name(r, "r_add");

View File

@@ -88,6 +88,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
var estimate MemoryEstimate
var systemTotalMemory uint64
var systemFreeMemory uint64
var systemSwapFreeMemory uint64
systemMemInfo, err := gpu.GetCPUMem()
if err != nil {
@@ -95,7 +96,8 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
} else {
systemTotalMemory = systemMemInfo.TotalMemory
systemFreeMemory = systemMemInfo.FreeMemory
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", systemFreeMemory)
systemSwapFreeMemory = systemMemInfo.FreeSwap
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
}
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
@@ -122,6 +124,16 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
}
}
// On linux, over-allocating CPU memory will almost always result in an error
if runtime.GOOS == "linux" {
systemMemoryRequired := estimate.TotalSize - estimate.VRAMSize
available := min(systemTotalMemory, systemFreeMemory+systemSwapFreeMemory)
if systemMemoryRequired > available {
slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", available, "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "swap", format.HumanBytes2(systemSwapFreeMemory))
return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
}
}
estimate.log()
// Loop through potential servers
@@ -254,10 +266,6 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--tensor-split", estimate.TensorSplit)
}
if estimate.TensorSplit != "" {
params = append(params, "--tensor-split", estimate.TensorSplit)
}
for i := range len(servers) {
dir := availableServers[servers[i]]
if dir == "" {
@@ -679,7 +687,7 @@ type CompletionRequest struct {
Prompt string
Format string
Images []ImageData
Options api.Options
Options *api.Options
}
type CompletionResponse struct {

View File

@@ -338,12 +338,16 @@ func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
switch stop := r.Stop.(type) {
case string:
options["stop"] = []string{stop}
case []string:
options["stop"] = stop
default:
if r.Stop != nil {
return api.GenerateRequest{}, fmt.Errorf("invalid type for 'stop' field: %T", r.Stop)
case []any:
var stops []string
for _, s := range stop {
if str, ok := s.(string); ok {
stops = append(stops, str)
} else {
return api.GenerateRequest{}, fmt.Errorf("invalid type for 'stop' field: %T", s)
}
}
options["stop"] = stops
}
if r.MaxTokens != nil {

View File

@@ -3,7 +3,6 @@ package openai
import (
"bytes"
"encoding/json"
"fmt"
"io"
"net/http"
"net/http/httptest"
@@ -16,7 +15,133 @@ import (
"github.com/stretchr/testify/assert"
)
func TestMiddleware(t *testing.T) {
func TestMiddlewareRequests(t *testing.T) {
type testCase struct {
Name string
Method string
Path string
Handler func() gin.HandlerFunc
Setup func(t *testing.T, req *http.Request)
Expected func(t *testing.T, req *http.Request)
}
var capturedRequest *http.Request
captureRequestMiddleware := func() gin.HandlerFunc {
return func(c *gin.Context) {
bodyBytes, _ := io.ReadAll(c.Request.Body)
c.Request.Body = io.NopCloser(bytes.NewReader(bodyBytes))
capturedRequest = c.Request
c.Next()
}
}
testCases := []testCase{
{
Name: "chat handler",
Method: http.MethodPost,
Path: "/api/chat",
Handler: ChatMiddleware,
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{{Role: "user", Content: "Hello"}},
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, req *http.Request) {
var chatReq api.ChatRequest
if err := json.NewDecoder(req.Body).Decode(&chatReq); err != nil {
t.Fatal(err)
}
if chatReq.Messages[0].Role != "user" {
t.Fatalf("expected 'user', got %s", chatReq.Messages[0].Role)
}
if chatReq.Messages[0].Content != "Hello" {
t.Fatalf("expected 'Hello', got %s", chatReq.Messages[0].Content)
}
},
},
{
Name: "completions handler",
Method: http.MethodPost,
Path: "/api/generate",
Handler: CompletionsMiddleware,
Setup: func(t *testing.T, req *http.Request) {
temp := float32(0.8)
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
Temperature: &temp,
Stop: []string{"\n", "stop"},
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, req *http.Request) {
var genReq api.GenerateRequest
if err := json.NewDecoder(req.Body).Decode(&genReq); err != nil {
t.Fatal(err)
}
if genReq.Prompt != "Hello" {
t.Fatalf("expected 'Hello', got %s", genReq.Prompt)
}
if genReq.Options["temperature"] != 1.6 {
t.Fatalf("expected 1.6, got %f", genReq.Options["temperature"])
}
stopTokens, ok := genReq.Options["stop"].([]any)
if !ok {
t.Fatalf("expected stop tokens to be a list")
}
if stopTokens[0] != "\n" || stopTokens[1] != "stop" {
t.Fatalf("expected ['\\n', 'stop'], got %v", stopTokens)
}
},
},
}
gin.SetMode(gin.TestMode)
router := gin.New()
endpoint := func(c *gin.Context) {
c.Status(http.StatusOK)
}
for _, tc := range testCases {
t.Run(tc.Name, func(t *testing.T) {
router = gin.New()
router.Use(captureRequestMiddleware())
router.Use(tc.Handler())
router.Handle(tc.Method, tc.Path, endpoint)
req, _ := http.NewRequest(tc.Method, tc.Path, nil)
if tc.Setup != nil {
tc.Setup(t, req)
}
resp := httptest.NewRecorder()
router.ServeHTTP(resp, req)
tc.Expected(t, capturedRequest)
})
}
}
func TestMiddlewareResponses(t *testing.T) {
type testCase struct {
Name string
Method string
@@ -30,159 +155,7 @@ func TestMiddleware(t *testing.T) {
testCases := []testCase{
{
Name: "chat handler",
Method: http.MethodPost,
Path: "/api/chat",
TestPath: "/api/chat",
Handler: ChatMiddleware,
Endpoint: func(c *gin.Context) {
var chatReq api.ChatRequest
if err := c.ShouldBindJSON(&chatReq); err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "invalid request"})
return
}
userMessage := chatReq.Messages[0].Content
var assistantMessage string
switch userMessage {
case "Hello":
assistantMessage = "Hello!"
default:
assistantMessage = "I'm not sure how to respond to that."
}
c.JSON(http.StatusOK, api.ChatResponse{
Message: api.Message{
Role: "assistant",
Content: assistantMessage,
},
})
},
Setup: func(t *testing.T, req *http.Request) {
body := ChatCompletionRequest{
Model: "test-model",
Messages: []Message{{Role: "user", Content: "Hello"}},
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
assert.Equal(t, http.StatusOK, resp.Code)
var chatResp ChatCompletion
if err := json.NewDecoder(resp.Body).Decode(&chatResp); err != nil {
t.Fatal(err)
}
if chatResp.Object != "chat.completion" {
t.Fatalf("expected chat.completion, got %s", chatResp.Object)
}
if chatResp.Choices[0].Message.Content != "Hello!" {
t.Fatalf("expected Hello!, got %s", chatResp.Choices[0].Message.Content)
}
},
},
{
Name: "completions handler",
Method: http.MethodPost,
Path: "/api/generate",
TestPath: "/api/generate",
Handler: CompletionsMiddleware,
Endpoint: func(c *gin.Context) {
c.JSON(http.StatusOK, api.GenerateResponse{
Response: "Hello!",
})
},
Setup: func(t *testing.T, req *http.Request) {
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
assert.Equal(t, http.StatusOK, resp.Code)
var completionResp Completion
if err := json.NewDecoder(resp.Body).Decode(&completionResp); err != nil {
t.Fatal(err)
}
if completionResp.Object != "text_completion" {
t.Fatalf("expected text_completion, got %s", completionResp.Object)
}
if completionResp.Choices[0].Text != "Hello!" {
t.Fatalf("expected Hello!, got %s", completionResp.Choices[0].Text)
}
},
},
{
Name: "completions handler with params",
Method: http.MethodPost,
Path: "/api/generate",
TestPath: "/api/generate",
Handler: CompletionsMiddleware,
Endpoint: func(c *gin.Context) {
var generateReq api.GenerateRequest
if err := c.ShouldBindJSON(&generateReq); err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "invalid request"})
return
}
temperature := generateReq.Options["temperature"].(float64)
var assistantMessage string
switch temperature {
case 1.6:
assistantMessage = "Received temperature of 1.6"
default:
assistantMessage = fmt.Sprintf("Received temperature of %f", temperature)
}
c.JSON(http.StatusOK, api.GenerateResponse{
Response: assistantMessage,
})
},
Setup: func(t *testing.T, req *http.Request) {
temp := float32(0.8)
body := CompletionRequest{
Model: "test-model",
Prompt: "Hello",
Temperature: &temp,
}
bodyBytes, _ := json.Marshal(body)
req.Body = io.NopCloser(bytes.NewReader(bodyBytes))
req.Header.Set("Content-Type", "application/json")
},
Expected: func(t *testing.T, resp *httptest.ResponseRecorder) {
assert.Equal(t, http.StatusOK, resp.Code)
var completionResp Completion
if err := json.NewDecoder(resp.Body).Decode(&completionResp); err != nil {
t.Fatal(err)
}
if completionResp.Object != "text_completion" {
t.Fatalf("expected text_completion, got %s", completionResp.Object)
}
if completionResp.Choices[0].Text != "Received temperature of 1.6" {
t.Fatalf("expected Received temperature of 1.6, got %s", completionResp.Choices[0].Text)
}
},
},
{
Name: "completions handler with error",
Name: "completions handler error forwarding",
Method: http.MethodPost,
Path: "/api/generate",
TestPath: "/api/generate",

View File

@@ -107,9 +107,12 @@ function gatherDependencies() {
# TODO - this varies based on host build system and MSVC version - drive from dumpbin output
# currently works for Win11 + MSVC 2019 + Cuda V11
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140*.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\ollama_runners\"
foreach ($part in $("runtime", "stdio", "filesystem", "math", "convert", "heap", "string", "time", "locale", "environment")) {
cp "$env:VCToolsRedistDir\..\..\..\Tools\Llvm\x64\bin\api-ms-win-crt-${part}*.dll" "${script:DEPS_DIR}\ollama_runners\"
}
cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\"

View File

@@ -34,6 +34,8 @@ import (
"github.com/ollama/ollama/version"
)
var errCapabilityCompletion = errors.New("completion")
type Capability string
const CapabilityCompletion = Capability("completion")
@@ -62,7 +64,10 @@ type Model struct {
Template *template.Template
}
func (m *Model) Has(caps ...Capability) bool {
// CheckCapabilities checks if the model has the specified capabilities returning an error describing
// any missing or unknown capabilities
func (m *Model) CheckCapabilities(caps ...Capability) error {
var errs []error
for _, cap := range caps {
switch cap {
case CapabilityCompletion:
@@ -81,15 +86,19 @@ func (m *Model) Has(caps ...Capability) bool {
}
if _, ok := ggml.KV()[fmt.Sprintf("%s.pooling_type", ggml.KV().Architecture())]; ok {
return false
errs = append(errs, errCapabilityCompletion)
}
default:
slog.Error("unknown capability", "capability", cap)
return false
return fmt.Errorf("unknown capability: %s", cap)
}
}
return true
if err := errors.Join(errs...); err != nil {
return fmt.Errorf("missing capabilities: %w", errors.Join(errs...))
}
return nil
}
func (m *Model) String() string {
@@ -457,7 +466,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
if baseLayer.GGML != nil {
config.ModelFormat = cmp.Or(config.ModelFormat, baseLayer.GGML.Name())
config.ModelFamily = cmp.Or(config.ModelFamily, baseLayer.GGML.KV().Architecture())
config.ModelType = cmp.Or(config.ModelType, format.HumanNumber(baseLayer.GGML.KV().ParameterCount()))
config.ModelType = cmp.Or(config.ModelType, format.RoundedParameter(baseLayer.GGML.KV().ParameterCount()))
config.FileType = cmp.Or(config.FileType, baseLayer.GGML.KV().FileType().String())
config.ModelFamilies = append(config.ModelFamilies, baseLayer.GGML.KV().Architecture())
}

View File

@@ -129,24 +129,38 @@ func extractFromZipFile(p string, file *os.File, fn func(api.ProgressResponse))
}
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
layerType := "application/vnd.ollama.image.model"
convertAdapter, err := convert.DetectNPZ(file.Name())
if err != nil {
return nil, err
}
tempDir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
if err != nil {
return nil, err
}
defer os.RemoveAll(tempDir)
if !convertAdapter {
if err := extractFromZipFile(tempDir, file, fn); err != nil {
return nil, err
}
} else {
layerType = "application/vnd.ollama.image.adapter"
if err := extractFromZipFile(tempDir, file, fn); err != nil {
return nil, err
}
mf, err := convert.GetModelFormat(tempDir)
if err != nil {
return nil, err
}
params, err := mf.GetParams(tempDir)
if err != nil {
return nil, err
}
mArch, err := mf.GetModelArch("", tempDir, params)
if err != nil {
return nil, err
}
fn(api.ProgressResponse{Status: "processing tensors"})
if err := mArch.GetTensors(); err != nil {
return nil, err
}
if err := mArch.LoadVocab(); err != nil {
return nil, err
}
fn(api.ProgressResponse{Status: "converting model"})
@@ -160,22 +174,15 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
defer temp.Close()
defer os.Remove(temp.Name())
if convertAdapter {
slog.Info("convert adapter")
if err := convert.ConvertAdapter(file.Name(), temp); err != nil {
return nil, err
}
} else {
if err := convert.Convert(tempDir, temp); err != nil {
return nil, err
}
if err = mArch.WriteGGUF(temp); err != nil {
return nil, err
}
if _, err := temp.Seek(0, io.SeekStart); err != nil {
return nil, err
}
layer, err := NewLayer(temp, layerType)
layer, err := NewLayer(temp, "application/vnd.ollama.image.model")
if err != nil {
return nil, err
}
@@ -194,11 +201,7 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
layers = append(layers, &layerGGML{layer, ggml})
intermediateBlobs[digest] = layer.Digest
if !convertAdapter {
return detectChatTemplate(layers)
}
return layers, nil
return detectChatTemplate(layers)
}
func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {

View File

@@ -1,217 +1,83 @@
package server
import (
"fmt"
"bytes"
"context"
"log/slog"
"strings"
"text/template/parse"
"slices"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/template"
)
// isResponseNode checks if the node contains .Response
func isResponseNode(node *parse.ActionNode) bool {
for _, cmd := range node.Pipe.Cmds {
for _, arg := range cmd.Args {
if fieldNode, ok := arg.(*parse.FieldNode); ok && len(fieldNode.Ident) > 0 {
if fieldNode.Ident[0] == "Response" {
return true
}
}
type tokenizeFunc func(context.Context, string) ([]int, error)
// chatPrompt accepts a list of messages and returns the prompt and images that should be used for the next chat turn.
// chatPrompt truncates any messages that exceed the context window of the model, making sure to always include 1) the
// latest message and 2) system messages
func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.Options, msgs []api.Message) (prompt string, images []llm.ImageData, _ error) {
// pull out any system messages which should always be included in the prompt
var system []api.Message
msgs = slices.DeleteFunc(msgs, func(m api.Message) bool {
if m.Role == "system" {
system = append(system, m)
return true
}
}
return false
}
// formatTemplateForResponse formats the template AST to:
// 1. remove all nodes after the first .Response (if generate=true)
// 2. add a .Response node to the end if it doesn't exist
// TODO(jmorganca): this should recursively cut the template before the first .Response
func formatTemplateForResponse(tmpl *template.Template, generate bool) {
var found bool
for i, node := range tmpl.Tree.Root.Nodes {
if actionNode, ok := node.(*parse.ActionNode); ok {
if isResponseNode(actionNode) {
found = true
if generate {
tmpl.Tree.Root.Nodes = tmpl.Tree.Root.Nodes[:i+1]
break
}
}
return false
})
if len(system) == 0 && m.System != "" {
// add model system prompt since it wasn't provided
system = append(system, api.Message{Role: "system", Content: m.System})
}
// always include the last message
n := len(msgs) - 1
// in reverse, find all messages that fit into context window
for i := n - 1; i >= 0; i-- {
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...)}); err != nil {
return "", nil, err
}
}
if !found {
// add the response node if it doesn't exist
responseFieldNode := &parse.FieldNode{NodeType: parse.NodeField, Ident: []string{"Response"}}
responsePipeNode := &parse.PipeNode{NodeType: parse.NodePipe, Cmds: []*parse.CommandNode{{NodeType: parse.NodeCommand, Args: []parse.Node{responseFieldNode}}}}
responseActionNode := &parse.ActionNode{NodeType: parse.NodeAction, Pipe: responsePipeNode}
tmpl.Tree.Root.Nodes = append(tmpl.Tree.Root.Nodes, responseActionNode)
}
}
// Prompt renders a prompt from a template. If generate is set to true,
// the response and parts of the template following it are not rendered
func Prompt(tmpl *template.Template, system, prompt, response string, generate bool) (string, error) {
formatTemplateForResponse(tmpl, generate)
vars := map[string]any{
"System": system,
"Prompt": prompt,
"Response": response,
}
var sb strings.Builder
if err := tmpl.Execute(&sb, vars); err != nil {
return "", err
}
return sb.String(), nil
}
func countTokens(tmpl *template.Template, system string, prompt string, response string, encode func(string) ([]int, error)) (int, error) {
rendered, err := Prompt(tmpl, system, prompt, response, false)
if err != nil {
return 0, err
}
tokens, err := encode(rendered)
if err != nil {
slog.Error("failed to encode prompt", "err", err)
return 0, err
}
return len(tokens), err
}
// ChatPrompt builds up a prompt from a series of messages, truncating based on context window size
func ChatPrompt(tmpl *template.Template, messages []api.Message, window int, encode func(string) ([]int, error)) (string, error) {
type prompt struct {
System string
Prompt string
Response string
images []int
tokens int
}
var p prompt
// iterate through messages to build up {system,user,response} prompts
var imgId int
var prompts []prompt
for _, msg := range messages {
switch strings.ToLower(msg.Role) {
case "system":
if p.System != "" || p.Prompt != "" || p.Response != "" {
prompts = append(prompts, p)
p = prompt{}
}
p.System = msg.Content
case "user":
if p.Prompt != "" || p.Response != "" {
prompts = append(prompts, p)
p = prompt{}
}
var sb strings.Builder
for range msg.Images {
fmt.Fprintf(&sb, "[img-%d] ", imgId)
p.images = append(p.images, imgId)
imgId += 1
}
sb.WriteString(msg.Content)
p.Prompt = sb.String()
case "assistant":
if p.Response != "" {
prompts = append(prompts, p)
p = prompt{}
}
p.Response = msg.Content
default:
return "", fmt.Errorf("invalid role: %s, role must be one of [system, user, assistant]", msg.Role)
}
}
// add final prompt
if p.System != "" || p.Prompt != "" || p.Response != "" {
prompts = append(prompts, p)
}
// calculate token lengths for each prompt, estimating 768 tokens per images
for i, p := range prompts {
tokens, err := countTokens(tmpl, p.System, p.Prompt, p.Response, encode)
s, err := tokenize(ctx, b.String())
if err != nil {
return "", err
return "", nil, err
}
prompts[i].tokens = tokens + len(prompts[i].images)*768
}
// truncate images and prompts starting from the beginning of the list
// until either one prompt remains or the total tokens fits the context window
// TODO (jmorganca): this doesn't account for the context window room required for the response
for {
var required int
for _, p := range prompts {
required += p.tokens
c := len(s)
if m.ProjectorPaths != nil {
for _, m := range msgs[i:] {
// images are represented as 768 sized embeddings
// TODO: get embedding length from project metadata
c += 768 * len(m.Images)
}
}
required += 1 // for bos token
if required <= window {
slog.Debug("prompt now fits in context window", "required", required, "window", window)
if c > opts.NumCtx {
slog.Debug("truncating input messages which exceed context length", "truncated", len(msgs[i:]))
break
} else {
n = i
}
prompt := &prompts[0]
if len(prompt.images) > 1 {
img := prompt.images[0]
slog.Debug("prompt longer than context window, removing image", "id", img, "required", required, "window", window)
prompt.images = prompt.images[1:]
prompt.Prompt = strings.Replace(prompt.Prompt, fmt.Sprintf(" [img-%d]", img), "", 1)
prompt.tokens -= 768
continue
}
if len(prompts) > 1 {
slog.Debug("required tokens longer than context window, removing first prompt", "prompt", prompts[0].tokens, "required", required, "window", window)
system := prompt.System
prompts = prompts[1:]
if system != "" && prompts[0].System == "" {
prompts[0].System = system
tokens, err := countTokens(tmpl, prompts[0].System, prompts[0].Prompt, prompts[0].Response, encode)
if err != nil {
return "", err
}
prompts[0].tokens = tokens + len(prompts[0].images)*768
}
continue
}
// stop truncating if there's only one prompt left
break
}
var sb strings.Builder
for i, p := range prompts {
// last prompt should leave the response unrendered (for completion)
rendered, err := Prompt(tmpl, p.System, p.Prompt, p.Response, i == len(prompts)-1)
if err != nil {
return "", err
}
sb.WriteString(rendered)
// truncate any messages that do not fit into the context window
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[n:]...)}); err != nil {
return "", nil, err
}
return sb.String(), nil
for _, m := range msgs[n:] {
for _, i := range m.Images {
images = append(images, llm.ImageData{
ID: len(images),
Data: i,
})
}
}
return b.String(), images, nil
}

View File

@@ -1,6 +1,8 @@
package server
import (
"bytes"
"context"
"strings"
"testing"
@@ -8,208 +10,195 @@ import (
"github.com/ollama/ollama/template"
)
func TestPrompt(t *testing.T) {
tests := []struct {
name string
template string
system string
prompt string
response string
generate bool
want string
}{
{
name: "simple prompt",
template: "[INST] {{ .System }} {{ .Prompt }} [/INST]",
system: "You are a Wizard.",
prompt: "What are the potion ingredients?",
want: "[INST] You are a Wizard. What are the potion ingredients? [/INST]",
},
{
name: "implicit response",
template: "[INST] {{ .System }} {{ .Prompt }} [/INST]",
system: "You are a Wizard.",
prompt: "What are the potion ingredients?",
response: "I don't know.",
want: "[INST] You are a Wizard. What are the potion ingredients? [/INST]I don't know.",
},
{
name: "response",
template: "[INST] {{ .System }} {{ .Prompt }} [/INST] {{ .Response }}",
system: "You are a Wizard.",
prompt: "What are the potion ingredients?",
response: "I don't know.",
want: "[INST] You are a Wizard. What are the potion ingredients? [/INST] I don't know.",
},
{
name: "cut",
template: "<system>{{ .System }}</system><user>{{ .Prompt }}</user><assistant>{{ .Response }}</assistant>",
system: "You are a Wizard.",
prompt: "What are the potion ingredients?",
response: "I don't know.",
generate: true,
want: "<system>You are a Wizard.</system><user>What are the potion ingredients?</user><assistant>I don't know.",
},
{
name: "nocut",
template: "<system>{{ .System }}</system><user>{{ .Prompt }}</user><assistant>{{ .Response }}</assistant>",
system: "You are a Wizard.",
prompt: "What are the potion ingredients?",
response: "I don't know.",
want: "<system>You are a Wizard.</system><user>What are the potion ingredients?</user><assistant>I don't know.</assistant>",
},
func tokenize(_ context.Context, s string) (tokens []int, err error) {
for range strings.Fields(s) {
tokens = append(tokens, len(tokens))
}
for _, tc := range tests {
t.Run(tc.name, func(t *testing.T) {
tmpl, err := template.Parse(tc.template)
if err != nil {
t.Fatal(err)
}
got, err := Prompt(tmpl, tc.system, tc.prompt, tc.response, tc.generate)
if err != nil {
t.Errorf("error = %v", err)
}
if got != tc.want {
t.Errorf("got = %v, want %v", got, tc.want)
}
})
}
return
}
func TestChatPrompt(t *testing.T) {
tests := []struct {
name string
template string
messages []api.Message
window int
want string
type expect struct {
prompt string
images [][]byte
}
cases := []struct {
name string
limit int
msgs []api.Message
expect
}{
{
name: "simple prompt",
template: "[INST] {{ .Prompt }} [/INST]",
messages: []api.Message{
{Role: "user", Content: "Hello"},
name: "messages",
limit: 64,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "You're a test, Harry! I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
},
window: 1024,
want: "[INST] Hello [/INST]",
},
{
name: "with system message",
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST]",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello"},
name: "truncate messages",
limit: 1,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "A test. And a thumping good one at that, I'd wager. ",
},
window: 1024,
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> Hello [/INST]",
},
{
name: "with response",
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST] {{ .Response }}",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "I am?"},
name: "truncate messages with image",
limit: 64,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("something")}},
},
expect: expect{
prompt: "[img-0] A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("something"),
},
},
window: 1024,
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> Hello [/INST] I am?",
},
{
name: "with implicit response",
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST]",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "I am?"},
name: "truncate messages with images",
limit: 64,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!", Images: []api.ImageData{[]byte("something")}},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("somethingelse")}},
},
expect: expect{
prompt: "[img-0] A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("somethingelse"),
},
},
window: 1024,
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> Hello [/INST]I am?",
},
{
name: "with conversation",
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST] {{ .Response }} ",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "What are the potion ingredients?"},
{Role: "assistant", Content: "sugar"},
{Role: "user", Content: "Anything else?"},
name: "messages with images",
limit: 2048,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!", Images: []api.ImageData{[]byte("something")}},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("somethingelse")}},
},
expect: expect{
prompt: "[img-0] You're a test, Harry! I-I'm a what? [img-1] A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("something"),
[]byte("somethingelse"),
},
},
window: 1024,
want: "[INST] <<SYS>>You are a Wizard.<</SYS>> What are the potion ingredients? [/INST] sugar [INST] Anything else? [/INST] ",
},
{
name: "with truncation",
template: "{{ .System }} {{ .Prompt }} {{ .Response }} ",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello"},
{Role: "assistant", Content: "I am?"},
{Role: "user", Content: "Why is the sky blue?"},
{Role: "assistant", Content: "The sky is blue from rayleigh scattering"},
name: "message with image tag",
limit: 2048,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry! [img]", Images: []api.ImageData{[]byte("something")}},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager.", Images: []api.ImageData{[]byte("somethingelse")}},
},
expect: expect{
prompt: "You're a test, Harry! [img-0] I-I'm a what? [img-1] A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("something"),
[]byte("somethingelse"),
},
},
window: 10,
want: "You are a Wizard. Why is the sky blue? The sky is blue from rayleigh scattering",
},
{
name: "images",
template: "{{ .System }} {{ .Prompt }}",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello", Images: []api.ImageData{[]byte("base64")}},
name: "messages with interleaved images",
limit: 2048,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "user", Images: []api.ImageData{[]byte("something")}},
{Role: "user", Images: []api.ImageData{[]byte("somethingelse")}},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "You're a test, Harry!\n\n[img-0]\n\n[img-1] I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("something"),
[]byte("somethingelse"),
},
},
window: 1024,
want: "You are a Wizard. [img-0] Hello",
},
{
name: "images truncated",
template: "{{ .System }} {{ .Prompt }}",
messages: []api.Message{
{Role: "system", Content: "You are a Wizard."},
{Role: "user", Content: "Hello", Images: []api.ImageData{[]byte("img1"), []byte("img2")}},
name: "truncate message with interleaved images",
limit: 1024,
msgs: []api.Message{
{Role: "user", Content: "You're a test, Harry!"},
{Role: "user", Images: []api.ImageData{[]byte("something")}},
{Role: "user", Images: []api.ImageData{[]byte("somethingelse")}},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "[img-0] I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
images: [][]byte{
[]byte("somethingelse"),
},
},
window: 1024,
want: "You are a Wizard. [img-0] [img-1] Hello",
},
{
name: "empty list",
template: "{{ .System }} {{ .Prompt }}",
messages: []api.Message{},
window: 1024,
want: "",
},
{
name: "empty prompt",
template: "[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>> {{ end }}{{ .Prompt }} [/INST] {{ .Response }} ",
messages: []api.Message{
{Role: "user", Content: ""},
name: "message with system prompt",
limit: 2048,
msgs: []api.Message{
{Role: "system", Content: "You are the Test Who Lived."},
{Role: "user", Content: "You're a test, Harry!"},
{Role: "assistant", Content: "I-I'm a what?"},
{Role: "user", Content: "A test. And a thumping good one at that, I'd wager."},
},
expect: expect{
prompt: "You are the Test Who Lived. You're a test, Harry! I-I'm a what? A test. And a thumping good one at that, I'd wager. ",
},
window: 1024,
want: "",
},
}
encode := func(s string) ([]int, error) {
words := strings.Fields(s)
return make([]int, len(words)), nil
tmpl, err := template.Parse(`
{{- if .System }}{{ .System }} {{ end }}
{{- if .Prompt }}{{ .Prompt }} {{ end }}
{{- if .Response }}{{ .Response }} {{ end }}`)
if err != nil {
t.Fatal(err)
}
for _, tc := range tests {
t.Run(tc.name, func(t *testing.T) {
tmpl, err := template.Parse(tc.template)
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
model := Model{Template: tmpl, ProjectorPaths: []string{"vision"}}
opts := api.Options{Runner: api.Runner{NumCtx: tt.limit}}
prompt, images, err := chatPrompt(context.TODO(), &model, tokenize, &opts, tt.msgs)
if err != nil {
t.Fatal(err)
}
got, err := ChatPrompt(tmpl, tc.messages, tc.window, encode)
if err != nil {
t.Errorf("error = %v", err)
if tt.prompt != prompt {
t.Errorf("expected %q, got %q", tt.prompt, prompt)
}
if got != tc.want {
t.Errorf("got: %q, want: %q", got, tc.want)
if len(images) != len(tt.images) {
t.Fatalf("expected %d images, got %d", len(tt.images), len(images))
}
for i := range images {
if images[i].ID != i {
t.Errorf("expected ID %d, got %d", i, images[i].ID)
}
if !bytes.Equal(images[i].Data, tt.images[i]) {
t.Errorf("expected %q, got %q", tt.images[i], images[i])
}
}
})
}

View File

@@ -1,13 +1,13 @@
package server
import (
"bytes"
"cmp"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"net"
"net/http"
@@ -54,6 +54,8 @@ func init() {
gin.SetMode(mode)
}
var errRequired = errors.New("is required")
func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options, error) {
opts := api.DefaultOptions()
if err := opts.FromMap(model.Options); err != nil {
@@ -67,163 +69,140 @@ func modelOptions(model *Model, requestOpts map[string]interface{}) (api.Options
return opts, nil
}
func isSupportedImageType(image []byte) bool {
contentType := http.DetectContentType(image)
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
return slices.Contains(allowedTypes, contentType)
// scheduleRunner schedules a runner after validating inputs such as capabilities and model options.
// It returns the allocated runner, model instance, and consolidated options if successful and error otherwise.
func (s *Server) scheduleRunner(ctx context.Context, name string, caps []Capability, requestOpts map[string]any, keepAlive *api.Duration) (llm.LlamaServer, *Model, *api.Options, error) {
if name == "" {
return nil, nil, nil, fmt.Errorf("model %w", errRequired)
}
model, err := GetModel(name)
if err != nil {
return nil, nil, nil, err
}
if err := model.CheckCapabilities(caps...); err != nil {
return nil, nil, nil, fmt.Errorf("%s %w", name, err)
}
opts, err := modelOptions(model, requestOpts)
if err != nil {
return nil, nil, nil, err
}
runnerCh, errCh := s.sched.GetRunner(ctx, model, opts, keepAlive)
var runner *runnerRef
select {
case runner = <-runnerCh:
case err = <-errCh:
return nil, nil, nil, err
}
return runner.llama, model, &opts, nil
}
func (s *Server) GenerateHandler(c *gin.Context) {
checkpointStart := time.Now()
var req api.GenerateRequest
err := c.ShouldBindJSON(&req)
switch {
case errors.Is(err, io.EOF):
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
case err != nil:
} else if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
// validate the request
switch {
case req.Model == "":
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "model is required"})
if req.Format != "" && req.Format != "json" {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "format must be empty or \"json\""})
return
case len(req.Format) > 0 && req.Format != "json":
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "format must be json"})
return
case req.Raw && (req.Template != "" || req.System != "" || len(req.Context) > 0):
} else if req.Raw && (req.Template != "" || req.System != "" || len(req.Context) > 0) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "raw mode does not support template, system, or context"})
return
}
for _, img := range req.Images {
if !isSupportedImageType(img) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "unsupported image format"})
return
}
}
model, err := GetModel(req.Model)
if err != nil {
var pErr *fs.PathError
if errors.As(err, &pErr) {
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found, try pulling it first", req.Model)})
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
caps := []Capability{CapabilityCompletion}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, caps, req.Options, req.KeepAlive)
if errors.Is(err, errCapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support generate", req.Model)})
return
} else if err != nil {
handleScheduleError(c, req.Model, err)
return
}
if !model.Has(CapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%s does not support generate", req.Model)})
return
}
opts, err := modelOptions(model, req.Options)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
rCh, eCh := s.sched.GetRunner(c.Request.Context(), model, opts, req.KeepAlive)
var runner *runnerRef
select {
case runner = <-rCh:
case err = <-eCh:
handleErrorResponse(c, err)
return
}
// an empty request loads the model
// note: for a short while template was used in lieu
// of `raw` mode so we need to check for it too
if req.Prompt == "" && req.Template == "" && req.System == "" {
if req.Prompt == "" {
c.JSON(http.StatusOK, api.GenerateResponse{
CreatedAt: time.Now().UTC(),
Model: req.Model,
CreatedAt: time.Now().UTC(),
Done: true,
DoneReason: "load",
})
return
}
tmpl, err := template.Parse(req.Template)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
images := make([]llm.ImageData, len(req.Images))
for i := range req.Images {
images[i] = llm.ImageData{ID: i, Data: req.Images[i]}
}
checkpointLoaded := time.Now()
var prompt string
switch {
case req.Raw:
prompt = req.Prompt
case req.Prompt != "":
if req.Template == "" {
tmpl = model.Template
prompt := req.Prompt
if !req.Raw {
var msgs []api.Message
if req.System != "" {
msgs = append(msgs, api.Message{Role: "system", Content: req.System})
} else if m.System != "" {
msgs = append(msgs, api.Message{Role: "system", Content: m.System})
}
if req.System == "" {
req.System = model.System
for _, i := range images {
msgs = append(msgs, api.Message{Role: "user", Content: fmt.Sprintf("[img-%d]", i.ID)})
}
slog.Debug("generate handler", "prompt", req.Prompt)
slog.Debug("generate handler", "template", req.Template)
slog.Debug("generate handler", "system", req.System)
msgs = append(msgs, api.Message{Role: "user", Content: req.Prompt})
var sb strings.Builder
for i := range req.Images {
fmt.Fprintf(&sb, "[img-%d] ", i)
tmpl := m.Template
if req.Template != "" {
tmpl, err = template.Parse(req.Template)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
}
sb.WriteString(req.Prompt)
p, err := Prompt(tmpl, req.System, sb.String(), "", true)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
sb.Reset()
var b bytes.Buffer
if req.Context != nil {
prev, err := runner.llama.Detokenize(c.Request.Context(), req.Context)
s, err := r.Detokenize(c.Request.Context(), req.Context)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
sb.WriteString(prev)
b.WriteString(s)
}
sb.WriteString(p)
if err := tmpl.Execute(&b, template.Values{Messages: msgs}); err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
prompt = sb.String()
prompt = b.String()
}
slog.Debug("generate handler", "prompt", prompt)
slog.Debug("generate request", "prompt", prompt, "images", images)
ch := make(chan any)
var generated strings.Builder
go func() {
defer close(ch)
fn := func(r llm.CompletionResponse) {
// Build up the full response
if _, err := generated.WriteString(r.Content); err != nil {
ch <- gin.H{"error": err.Error()}
return
}
resp := api.GenerateResponse{
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
}, func(r llm.CompletionResponse) {
ch <- api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Done: r.Done,
Response: r.Content,
Done: r.Done,
DoneReason: r.DoneReason,
Metrics: api.Metrics{
PromptEvalCount: r.PromptEvalCount,
@@ -232,77 +211,35 @@ func (s *Server) GenerateHandler(c *gin.Context) {
EvalDuration: r.EvalDuration,
},
}
if r.Done {
resp.TotalDuration = time.Since(checkpointStart)
resp.LoadDuration = checkpointLoaded.Sub(checkpointStart)
if !req.Raw {
p, err := Prompt(tmpl, req.System, req.Prompt, generated.String(), false)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
// TODO (jmorganca): encode() should not strip special tokens
tokens, err := runner.llama.Tokenize(c.Request.Context(), p)
if err != nil {
ch <- gin.H{"error": err.Error()}
return
}
resp.Context = append(req.Context, tokens...)
}
}
ch <- resp
}
var images []llm.ImageData
for i := range req.Images {
images = append(images, llm.ImageData{
ID: i,
Data: req.Images[i],
})
}
// Start prediction
req := llm.CompletionRequest{
Prompt: prompt,
Format: req.Format,
Images: images,
Options: opts,
}
if err := runner.llama.Completion(c.Request.Context(), req, fn); err != nil {
}); err != nil {
ch <- gin.H{"error": err.Error()}
}
}()
if req.Stream != nil && !*req.Stream {
// Accumulate responses into the final response
var final api.GenerateResponse
var r api.GenerateResponse
var sb strings.Builder
for resp := range ch {
switch r := resp.(type) {
for rr := range ch {
switch t := rr.(type) {
case api.GenerateResponse:
sb.WriteString(r.Response)
final = r
sb.WriteString(t.Response)
r = t
case gin.H:
if errorMsg, ok := r["error"].(string); ok {
c.JSON(http.StatusInternalServerError, gin.H{"error": errorMsg})
return
} else {
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error format in response"})
return
msg, ok := t["error"].(string)
if !ok {
msg = "unexpected error format in response"
}
c.JSON(http.StatusInternalServerError, gin.H{"error": msg})
return
default:
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error"})
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected response"})
return
}
}
final.Response = sb.String()
c.JSON(http.StatusOK, final)
r.Response = sb.String()
c.JSON(http.StatusOK, r)
return
}
@@ -311,44 +248,17 @@ func (s *Server) GenerateHandler(c *gin.Context) {
func (s *Server) EmbeddingsHandler(c *gin.Context) {
var req api.EmbeddingRequest
err := c.ShouldBindJSON(&req)
switch {
case errors.Is(err, io.EOF):
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
case err != nil:
} else if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
if req.Model == "" {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "model is required"})
return
}
model, err := GetModel(req.Model)
r, _, _, err := s.scheduleRunner(c.Request.Context(), req.Model, []Capability{}, req.Options, req.KeepAlive)
if err != nil {
var pErr *fs.PathError
if errors.As(err, &pErr) {
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found, try pulling it first", req.Model)})
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
opts, err := modelOptions(model, req.Options)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
rCh, eCh := s.sched.GetRunner(c.Request.Context(), model, opts, req.KeepAlive)
var runner *runnerRef
select {
case runner = <-rCh:
case err = <-eCh:
handleErrorResponse(c, err)
handleScheduleError(c, req.Model, err)
return
}
@@ -358,17 +268,14 @@ func (s *Server) EmbeddingsHandler(c *gin.Context) {
return
}
embedding, err := runner.llama.Embedding(c.Request.Context(), req.Prompt)
embedding, err := r.Embedding(c.Request.Context(), req.Prompt)
if err != nil {
slog.Info(fmt.Sprintf("embedding generation failed: %v", err))
c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
return
}
resp := api.EmbeddingResponse{
Embedding: embedding,
}
c.JSON(http.StatusOK, resp)
c.JSON(http.StatusOK, api.EmbeddingResponse{Embedding: embedding})
}
func (s *Server) PullModelHandler(c *gin.Context) {
@@ -649,9 +556,9 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
}
}
msgs := make([]api.Message, 0)
for _, msg := range m.Messages {
msgs = append(msgs, api.Message{Role: msg.Role, Content: msg.Content})
msgs := make([]api.Message, len(m.Messages))
for i, msg := range m.Messages {
msgs[i] = api.Message{Role: msg.Role, Content: msg.Content}
}
n := model.ParseName(req.Model)
@@ -1214,132 +1121,55 @@ func (s *Server) ProcessHandler(c *gin.Context) {
c.JSON(http.StatusOK, api.ProcessResponse{Models: models})
}
// ChatPrompt builds up a prompt from a series of messages for the currently `loaded` model
func chatPrompt(ctx context.Context, runner *runnerRef, template *template.Template, messages []api.Message, numCtx int) (string, error) {
encode := func(s string) ([]int, error) {
return runner.llama.Tokenize(ctx, s)
}
prompt, err := ChatPrompt(template, messages, numCtx, encode)
if err != nil {
return "", err
}
return prompt, nil
}
func (s *Server) ChatHandler(c *gin.Context) {
checkpointStart := time.Now()
var req api.ChatRequest
err := c.ShouldBindJSON(&req)
switch {
case errors.Is(err, io.EOF):
if err := c.ShouldBindJSON(&req); errors.Is(err, io.EOF) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "missing request body"})
return
case err != nil:
} else if err != nil {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
// validate the request
switch {
case req.Model == "":
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "model is required"})
caps := []Capability{CapabilityCompletion}
r, m, opts, err := s.scheduleRunner(c.Request.Context(), req.Model, caps, req.Options, req.KeepAlive)
if errors.Is(err, errCapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%q does not support chat", req.Model)})
return
case len(req.Format) > 0 && req.Format != "json":
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "format must be json"})
} else if err != nil {
handleScheduleError(c, req.Model, err)
return
}
model, err := GetModel(req.Model)
if err != nil {
var pErr *fs.PathError
if errors.As(err, &pErr) {
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model '%s' not found, try pulling it first", req.Model)})
return
}
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
if !model.Has(CapabilityCompletion) {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("%s does not support chat", req.Model)})
return
}
opts, err := modelOptions(model, req.Options)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
rCh, eCh := s.sched.GetRunner(c.Request.Context(), model, opts, req.KeepAlive)
var runner *runnerRef
select {
case runner = <-rCh:
case err = <-eCh:
handleErrorResponse(c, err)
return
}
checkpointLoaded := time.Now()
// if the first message is not a system message, then add the model's default system message
if len(req.Messages) > 0 && req.Messages[0].Role != "system" {
req.Messages = append([]api.Message{
{
Role: "system",
Content: model.System,
},
}, req.Messages...)
}
prompt, err := chatPrompt(c.Request.Context(), runner, model.Template, req.Messages, opts.NumCtx)
if err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
}
// an empty request loads the model
if len(req.Messages) == 0 || prompt == "" {
resp := api.ChatResponse{
CreatedAt: time.Now().UTC(),
if len(req.Messages) == 0 {
c.JSON(http.StatusOK, api.ChatResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Message: api.Message{Role: "assistant"},
Done: true,
DoneReason: "load",
Message: api.Message{Role: "assistant"},
}
c.JSON(http.StatusOK, resp)
})
return
}
// only send images that are in the prompt
var i int
var images []llm.ImageData
for _, m := range req.Messages {
for _, img := range m.Images {
if !isSupportedImageType(img) {
c.AbortWithStatusJSON(http.StatusBadRequest, gin.H{"error": "unsupported image format"})
return
}
if strings.Contains(prompt, fmt.Sprintf("[img-%d]", i)) {
images = append(images, llm.ImageData{Data: img, ID: i})
}
i += 1
}
prompt, images, err := chatPrompt(c.Request.Context(), m, r.Tokenize, opts, req.Messages)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
slog.Debug("chat handler", "prompt", prompt, "images", len(images))
slog.Debug("chat request", "images", len(images), "prompt", prompt)
ch := make(chan any)
go func() {
defer close(ch)
fn := func(r llm.CompletionResponse) {
resp := api.ChatResponse{
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
}, func(r llm.CompletionResponse) {
ch <- api.ChatResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Message: api.Message{Role: "assistant", Content: r.Content},
@@ -1352,64 +1182,52 @@ func (s *Server) ChatHandler(c *gin.Context) {
EvalDuration: r.EvalDuration,
},
}
if r.Done {
resp.TotalDuration = time.Since(checkpointStart)
resp.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
ch <- resp
}
if err := runner.llama.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Format: req.Format,
Images: images,
Options: opts,
}, fn); err != nil {
}); err != nil {
ch <- gin.H{"error": err.Error()}
}
}()
if req.Stream != nil && !*req.Stream {
// Accumulate responses into the final response
var final api.ChatResponse
var r api.ChatResponse
var sb strings.Builder
for resp := range ch {
switch r := resp.(type) {
for rr := range ch {
switch t := rr.(type) {
case api.ChatResponse:
sb.WriteString(r.Message.Content)
final = r
sb.WriteString(t.Message.Content)
r = t
case gin.H:
if errorMsg, ok := r["error"].(string); ok {
c.JSON(http.StatusInternalServerError, gin.H{"error": errorMsg})
return
} else {
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error format in response"})
return
msg, ok := t["error"].(string)
if !ok {
msg = "unexpected error format in response"
}
c.JSON(http.StatusInternalServerError, gin.H{"error": msg})
return
default:
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected error"})
c.JSON(http.StatusInternalServerError, gin.H{"error": "unexpected response"})
return
}
}
final.Message = api.Message{Role: "assistant", Content: sb.String()}
c.JSON(http.StatusOK, final)
r.Message.Content = sb.String()
c.JSON(http.StatusOK, r)
return
}
streamResponse(c, ch)
}
func handleErrorResponse(c *gin.Context, err error) {
if errors.Is(err, context.Canceled) {
func handleScheduleError(c *gin.Context, name string, err error) {
switch {
case errors.Is(err, errRequired):
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
case errors.Is(err, context.Canceled):
c.JSON(499, gin.H{"error": "request canceled"})
return
}
if errors.Is(err, ErrMaxQueue) {
case errors.Is(err, ErrMaxQueue):
c.JSON(http.StatusServiceUnavailable, gin.H{"error": err.Error()})
return
case errors.Is(err, os.ErrNotExist):
c.JSON(http.StatusNotFound, gin.H{"error": fmt.Sprintf("model %q not found, try pulling it first", name)})
default:
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
}
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
}

View File

@@ -2,6 +2,7 @@ package server
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
@@ -20,7 +21,7 @@ import (
var stream bool = false
func createBinFile(t *testing.T, kv map[string]any, ti []*llm.Tensor) string {
func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) string {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "")
@@ -29,7 +30,7 @@ func createBinFile(t *testing.T, kv map[string]any, ti []*llm.Tensor) string {
}
defer f.Close()
if err := llm.WriteGGUF(f, kv, ti); err != nil {
if err := llm.NewGGUFV3(binary.LittleEndian).Encode(f, kv, ti); err != nil {
t.Fatal(err)
}
@@ -544,9 +545,9 @@ func TestCreateDetectTemplate(t *testing.T) {
}
checkFileExists(t, filepath.Join(p, "blobs", "*"), []string{
filepath.Join(p, "blobs", "sha256-2f8e594e6f34b1b4d36a246628eeb3365ce442303d656f1fcc69e821722acea0"),
filepath.Join(p, "blobs", "sha256-542b217f179c7825eeb5bca3c77d2b75ed05bafbd3451d9188891a60a85337c6"),
filepath.Join(p, "blobs", "sha256-553c4a3f747b3d22a4946875f1cc8ed011c2930d83f864a0c7265f9ec0a20413"),
filepath.Join(p, "blobs", "sha256-c608dc615584cd20d9d830363dabf8a4783ae5d34245c3d8c115edb3bc7b28e4"),
filepath.Join(p, "blobs", "sha256-f836ee110db21567f826332e4cedd746c06d10664fd5a9ea3659e3683a944510"),
})
})

View File

@@ -133,17 +133,8 @@ func (s *Scheduler) processPending(ctx context.Context) {
numParallel = 1
slog.Warn("multimodal models don't support parallel requests yet")
}
// Keep NumCtx and numParallel in sync
if numParallel > 1 {
pending.opts.NumCtx = pending.origNumCtx * numParallel
}
for {
cpus := s.getCpuFn()
var systemMem gpu.GpuInfo
if len(cpus) > 0 {
systemMem = cpus[0]
}
var runnerToExpire *runnerRef
s.loadedMu.Lock()
runner := s.loaded[pending.model.ModelPath]
@@ -197,46 +188,15 @@ func (s *Scheduler) processPending(ctx context.Context) {
break
}
estimate := llm.EstimateGPULayers(gpus, ggml, pending.model.ProjectorPaths, pending.opts)
maxSize := systemMem.FreeMemory
// Add available GPU memory to the total pool
// macOS hardware has unified memory so don't double count
if runtime.GOOS != "darwin" {
for _, gpu := range gpus {
if gpu.Library == "cpu" {
continue
}
if loadedCount == 0 {
// If no other models are loaded, set the limit based on what's available
maxSize += gpu.FreeMemory
} else {
// Other models could be unloaded, favor total memory for limit
maxSize += gpu.TotalMemory
}
}
}
// Block attempting to load a model larger than system memory + GPU memory
if estimate.TotalSize > maxSize {
slog.Warn("model request too large for system", "requested", format.HumanBytes2(estimate.TotalSize), "system", format.HumanBytes2(maxSize))
// Linux will crash if over-allocating memory - return an error to the user.
// TODO (jmorganca): add reasonable upper limits for darwin and windows as well
if runtime.GOOS == "linux" {
pending.errCh <- fmt.Errorf("requested model (%s) is too large for this system (%s)", format.HumanBytes2(estimate.TotalSize), format.HumanBytes2(maxSize))
break
}
}
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
if len(gpus) == 1 && gpus[0].Library == "cpu" {
// simplifying assumption of defaultParallel when in CPU mode
if numParallel <= 0 {
numParallel = defaultParallel
pending.opts.NumCtx = pending.origNumCtx * numParallel
}
pending.opts.NumCtx = pending.origNumCtx * numParallel
if loadedCount == 0 {
slog.Debug("cpu mode with first model, loading")
s.loadFn(pending, ggml, gpus, numParallel)

View File

@@ -3,6 +3,7 @@ package server
import (
"bytes"
"context"
"encoding/binary"
"fmt"
"log/slog"
"os"
@@ -114,7 +115,8 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
require.NoError(t, err)
defer f.Close()
require.NoError(t, llm.WriteGGUF(f, llm.KV{
gguf := llm.NewGGUFV3(binary.LittleEndian)
err = gguf.Encode(f, llm.KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),
@@ -125,10 +127,10 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
"tokenizer.ggml.tokens": []string{" "},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []*llm.Tensor{
}, []llm.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}))
})
require.NoError(t, err)
fname := f.Name()

View File

@@ -4,4 +4,5 @@
{{ .Prompt }}
{{ end }}### Response:
{{ .Response }}
{{ .Response }}

View File

@@ -3,4 +3,4 @@
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>
{{ .Response }}<|im_end|>

View File

@@ -2,4 +2,5 @@
{{ end }}{{ if .Prompt }}User: {{ .Prompt }}
{{ end }}Assistant: <|begin_of_text|>{{ .Response }}
{{ end }}Assistant: {{ .Response }}

View File

@@ -1,8 +1,10 @@
{{ if .System }} Source: system
{{ if .System }}Source: system
{{ .System }} <step>{{ end }} Source: user
{{ .System }} <step> {{ end }}Source: user
{{ .Prompt }} <step> Source: assistant
{{- if not .Response }}
Destination: user
{{- end }}
{{ .Response }}<step>
{{ .Response }} <step>

View File

@@ -1,3 +1,5 @@
{{ if .System }}{{ .System }}
{{ end }}{{ if .Prompt }}User: {{ .Prompt }}
{{ end }}Assistant: {{ .Response }}
{{ if .System }}System: {{ .System }}
{{ end }}{{ if .Prompt }}User:
{{ .Prompt }}
{{ end }}Falcon:
{{ .Response }}

View File

@@ -1,4 +1,5 @@
<start_of_turn>user
{{ if .System }}{{ .System }} {{ end }}{{ .Prompt }}<end_of_turn>
{{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}<end_of_turn>
<start_of_turn>model
{{ .Response }}<end_of_turn>
{{ .Response }}<end_of_turn>

View File

@@ -1,9 +1,9 @@
{{ if .System }}
System:
{{ if .System }}System:
{{ .System }}
{{ end }}{{ if .Prompt }}Question:
{{ .Prompt }}
{{ end }}Answer:
{{ .Response }}
{{ .Response }}

View File

@@ -1,3 +1,6 @@
[INST] <<SYS>>{{ .System }}<</SYS>>
[INST] <<SYS>>
{{- if .System }}
{{ .System }}
{{ end }}<</SYS>>
{{ .Prompt }} [/INST] {{ .Response }}
{{ .Prompt }} [/INST] {{ .Response }}</s><s>

View File

@@ -4,4 +4,5 @@
{{ .Prompt }}
{{ end }}@@ Response
{{ .Response }}
{{ .Response }}

View File

@@ -1,6 +1,3 @@
{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>
[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST] {{ .Response }}</s>

View File

@@ -1 +1 @@
{{ .System }}<|end_of_turn|>GPT4 Correct User: {{ .Prompt }}<|end_of_turn|>GPT4 Correct Assistant: {{ .Response }}<|end_of_turn|>
{{ if .System }}GPT4 Correct System: {{ .System }}<|end_of_turn|>{{ end }}GPT4 Correct User: {{ .Prompt }}<|end_of_turn|>GPT4 Correct Assistant: {{ .Response }}<|end_of_turn|>

View File

@@ -3,4 +3,4 @@
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|end|>
{{ end }}<|assistant|>
{{ .Response }}<|end|>
{{ .Response }}<|end|>

View File

@@ -5,4 +5,5 @@
{{ .Prompt }}
{{ end }}### Assistant:
{{ .Response }}
{{ .Response }}</s>

View File

@@ -3,7 +3,6 @@
{{ end }}{{ if .Prompt }}### Instruction
{{ .Prompt }}
{{ end }}### Response
{{ .Response }}<|endoftext|>

View File

@@ -5,6 +5,7 @@ import (
"embed"
"encoding/json"
"errors"
"fmt"
"io"
"math"
"slices"
@@ -14,6 +15,7 @@ import (
"text/template/parse"
"github.com/agnivade/levenshtein"
"github.com/ollama/ollama/api"
"golang.org/x/exp/maps"
)
@@ -74,30 +76,59 @@ func Named(s string) (*named, error) {
return nil, errors.New("no matching template found")
}
var DefaultTemplate, _ = Parse("{{ .Prompt }}")
type Template struct {
*template.Template
raw string
}
// response is a template node that can be added to templates that don't already have one
var response = parse.ActionNode{
NodeType: parse.NodeAction,
Pipe: &parse.PipeNode{
NodeType: parse.NodePipe,
Cmds: []*parse.CommandNode{
{
NodeType: parse.NodeCommand,
Args: []parse.Node{
&parse.FieldNode{
NodeType: parse.NodeField,
Ident: []string{"Response"},
},
},
},
},
},
}
func Parse(s string) (*Template, error) {
tmpl := template.New("").Option("missingkey=zero")
tmpl, err := tmpl.Parse(s)
if err != nil {
return nil, err
}
t := Template{Template: tmpl, raw: s}
if vars := t.Vars(); !slices.Contains(vars, "messages") && !slices.Contains(vars, "response") {
// touch up the template and append {{ .Response }}
tmpl.Tree.Root.Nodes = append(tmpl.Tree.Root.Nodes, &response)
}
return &t, nil
}
func (t *Template) String() string {
return t.raw
}
var DefaultTemplate, _ = Parse("{{ .Prompt }}")
func Parse(s string) (*Template, error) {
t, err := template.New("").Option("missingkey=zero").Parse(s)
if err != nil {
return nil, err
}
return &Template{Template: t, raw: s}, nil
}
func (t *Template) Vars() []string {
var vars []string
for _, n := range t.Tree.Root.Nodes {
vars = append(vars, parseNode(n)...)
for _, tt := range t.Templates() {
for _, n := range tt.Root.Nodes {
vars = append(vars, parseNode(n)...)
}
}
set := make(map[string]struct{})
@@ -110,6 +141,108 @@ func (t *Template) Vars() []string {
return vars
}
type Values struct {
Messages []api.Message
// forceLegacy is a flag used to test compatibility with legacy templates
forceLegacy bool
}
func (t *Template) Execute(w io.Writer, v Values) error {
system, collated := collate(v.Messages)
if !v.forceLegacy && slices.Contains(t.Vars(), "messages") {
return t.Template.Execute(w, map[string]any{
"System": system,
"Messages": collated,
})
}
var b bytes.Buffer
var prompt, response string
for i, m := range collated {
switch m.Role {
case "system":
system = m.Content
case "user":
prompt = m.Content
case "assistant":
response = m.Content
}
if i != len(collated)-1 && prompt != "" && response != "" {
if err := t.Template.Execute(&b, map[string]any{
"System": system,
"Prompt": prompt,
"Response": response,
}); err != nil {
return err
}
system = ""
prompt = ""
response = ""
}
}
var cut bool
nodes := deleteNode(t.Template.Root.Copy(), func(n parse.Node) bool {
switch t := n.(type) {
case *parse.ActionNode:
case *parse.FieldNode:
if slices.Contains(t.Ident, "Response") {
cut = true
}
}
return cut
})
tree := parse.Tree{Root: nodes.(*parse.ListNode)}
if err := template.Must(template.New("").AddParseTree("", &tree)).Execute(&b, map[string]any{
"System": "",
"Prompt": prompt,
}); err != nil {
return err
}
_, err := io.Copy(w, &b)
return err
}
// collate messages based on role. consecutive messages of the same role are merged
// into a single message. collate also collects and returns all system messages.
// collate mutates message content adding image tags ([img-%d]) as needed
func collate(msgs []api.Message) (string, []*api.Message) {
var n int
var system []string
var collated []*api.Message
for i := range msgs {
msg := msgs[i]
for range msg.Images {
imageTag := fmt.Sprintf("[img-%d]", n)
if !strings.Contains(msg.Content, "[img]") {
msg.Content = strings.TrimSpace("[img] " + msg.Content)
}
msg.Content = strings.Replace(msg.Content, "[img]", imageTag, 1)
n++
}
if msg.Role == "system" {
system = append(system, msg.Content)
}
if len(collated) > 0 && collated[len(collated)-1].Role == msg.Role {
collated[len(collated)-1].Content += "\n\n" + msg.Content
} else {
collated = append(collated, &msg)
}
}
return strings.Join(system, "\n\n"), collated
}
func parseNode(n parse.Node) []string {
switch n := n.(type) {
case *parse.ActionNode:
@@ -152,7 +285,78 @@ func parseNode(n parse.Node) []string {
return names
case *parse.FieldNode:
return n.Ident
case *parse.TemplateNode:
return parseNode(n.Pipe)
}
return nil
}
// deleteNode walks the node list and deletes nodes that match the predicate
// this is currently to remove the {{ .Response }} node from templates
func deleteNode(n parse.Node, fn func(parse.Node) bool) parse.Node {
var walk func(n parse.Node) parse.Node
walk = func(n parse.Node) parse.Node {
if fn(n) {
return nil
}
switch t := n.(type) {
case *parse.ListNode:
var nodes []parse.Node
for _, c := range t.Nodes {
if n := walk(c); n != nil {
nodes = append(nodes, n)
}
}
t.Nodes = nodes
return t
case *parse.IfNode:
t.BranchNode = *(walk(&t.BranchNode).(*parse.BranchNode))
case *parse.WithNode:
t.BranchNode = *(walk(&t.BranchNode).(*parse.BranchNode))
case *parse.RangeNode:
t.BranchNode = *(walk(&t.BranchNode).(*parse.BranchNode))
case *parse.BranchNode:
t.List = walk(t.List).(*parse.ListNode)
if t.ElseList != nil {
t.ElseList = walk(t.ElseList).(*parse.ListNode)
}
case *parse.ActionNode:
n := walk(t.Pipe)
if n == nil {
return nil
}
t.Pipe = n.(*parse.PipeNode)
case *parse.PipeNode:
var commands []*parse.CommandNode
for _, c := range t.Cmds {
var args []parse.Node
for _, a := range c.Args {
if n := walk(a); n != nil {
args = append(args, n)
}
}
if len(args) == 0 {
return nil
}
c.Args = args
commands = append(commands, c)
}
if len(commands) == 0 {
return nil
}
t.Cmds = commands
}
return n
}
return walk(n)
}

View File

@@ -8,9 +8,11 @@ import (
"os"
"path/filepath"
"slices"
"strings"
"testing"
"text/template"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
)
@@ -46,7 +48,7 @@ func TestNamed(t *testing.T) {
t.Fatal(err)
}
tmpl, err := template.New(s).Parse(b.String())
tmpl, err := Parse(b.String())
if err != nil {
t.Fatal(err)
}
@@ -59,18 +61,125 @@ func TestNamed(t *testing.T) {
}
}
func TestTemplate(t *testing.T) {
cases := make(map[string][]api.Message)
for _, mm := range [][]api.Message{
{
{Role: "user", Content: "Hello, how are you?"},
},
{
{Role: "user", Content: "Hello, how are you?"},
{Role: "assistant", Content: "I'm doing great. How can I help you today?"},
{Role: "user", Content: "I'd like to show off how chat templating works!"},
},
{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello, how are you?"},
{Role: "assistant", Content: "I'm doing great. How can I help you today?"},
{Role: "user", Content: "I'd like to show off how chat templating works!"},
},
} {
var roles []string
for _, m := range mm {
roles = append(roles, m.Role)
}
cases[strings.Join(roles, "-")] = mm
}
matches, err := filepath.Glob("*.gotmpl")
if err != nil {
t.Fatal(err)
}
for _, match := range matches {
t.Run(match, func(t *testing.T) {
bts, err := os.ReadFile(match)
if err != nil {
t.Fatal(err)
}
tmpl, err := Parse(string(bts))
if err != nil {
t.Fatal(err)
}
for n, tt := range cases {
var actual bytes.Buffer
t.Run(n, func(t *testing.T) {
if err := tmpl.Execute(&actual, Values{Messages: tt}); err != nil {
t.Fatal(err)
}
expect, err := os.ReadFile(filepath.Join("testdata", match, n))
if err != nil {
t.Fatal(err)
}
bts := actual.Bytes()
if slices.Contains([]string{"chatqa.gotmpl", "llama2-chat.gotmpl", "mistral-instruct.gotmpl", "openchat.gotmpl", "vicuna.gotmpl"}, match) && bts[len(bts)-1] == ' ' {
t.Log("removing trailing space from output")
bts = bts[:len(bts)-1]
}
if diff := cmp.Diff(bts, expect); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
t.Run("legacy", func(t *testing.T) {
t.Skip("legacy outputs are currently default outputs")
var legacy bytes.Buffer
if err := tmpl.Execute(&legacy, Values{Messages: tt, forceLegacy: true}); err != nil {
t.Fatal(err)
}
legacyBytes := legacy.Bytes()
if slices.Contains([]string{"chatqa.gotmpl", "openchat.gotmpl", "vicuna.gotmpl"}, match) && legacyBytes[len(legacyBytes)-1] == ' ' {
t.Log("removing trailing space from legacy output")
legacyBytes = legacyBytes[:len(legacyBytes)-1]
} else if slices.Contains([]string{"codellama-70b-instruct.gotmpl", "llama2-chat.gotmpl", "mistral-instruct.gotmpl"}, match) {
t.Skip("legacy outputs cannot be compared to messages outputs")
}
if diff := cmp.Diff(legacyBytes, actual.Bytes()); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}
})
}
}
func TestParse(t *testing.T) {
cases := []struct {
template string
vars []string
}{
{"{{ .Prompt }}", []string{"prompt"}},
{"{{ .System }} {{ .Prompt }}", []string{"prompt", "system"}},
{"{{ .Prompt }}", []string{"prompt", "response"}},
{"{{ .System }} {{ .Prompt }}", []string{"prompt", "response", "system"}},
{"{{ .System }} {{ .Prompt }} {{ .Response }}", []string{"prompt", "response", "system"}},
{"{{ with .Tools }}{{ . }}{{ end }} {{ .System }} {{ .Prompt }}", []string{"prompt", "system", "tools"}},
{"{{ with .Tools }}{{ . }}{{ end }} {{ .System }} {{ .Prompt }}", []string{"prompt", "response", "system", "tools"}},
{"{{ range .Messages }}{{ .Role }} {{ .Content }}{{ end }}", []string{"content", "messages", "role"}},
{"{{ range .Messages }}{{ if eq .Role \"system\" }}SYSTEM: {{ .Content }}{{ else if eq .Role \"user\" }}USER: {{ .Content }}{{ else if eq .Role \"assistant\" }}ASSISTANT: {{ .Content }}{{ end }}{{ end }}", []string{"content", "messages", "role"}},
{"{{ .Prompt }} {{ .Suffix }}", []string{"prompt", "suffix"}},
{`{{- range .Messages }}
{{- if eq .Role "system" }}SYSTEM:
{{- else if eq .Role "user" }}USER:
{{- else if eq .Role "assistant" }}ASSISTANT:
{{- end }} {{ .Content }}
{{- end }}`, []string{"content", "messages", "role"}},
{`{{- if .Messages }}
{{- range .Messages }}<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ else -}}
{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>
{{- end -}}`, []string{"content", "messages", "prompt", "response", "role", "system"}},
}
for _, tt := range cases {
@@ -80,9 +189,172 @@ func TestParse(t *testing.T) {
t.Fatal(err)
}
vars := tmpl.Vars()
if !slices.Equal(tt.vars, vars) {
t.Errorf("expected %v, got %v", tt.vars, vars)
if diff := cmp.Diff(tmpl.Vars(), tt.vars); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}
}
func TestExecuteWithMessages(t *testing.T) {
type template struct {
name string
template string
}
cases := []struct {
name string
templates []template
values Values
expected string
}{
{
"mistral",
[]template{
{"no response", `[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST] `},
{"response", `[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST] {{ .Response }}`},
{"messages", `[INST] {{ if .System }}{{ .System }}
{{ end }}
{{- range .Messages }}
{{- if eq .Role "user" }}{{ .Content }}[/INST] {{ else if eq .Role "assistant" }}{{ .Content }}[INST] {{ end }}
{{- end }}`},
},
Values{
Messages: []api.Message{
{Role: "user", Content: "Hello friend!"},
{Role: "assistant", Content: "Hello human!"},
{Role: "user", Content: "What is your name?"},
},
},
`[INST] Hello friend![/INST] Hello human![INST] What is your name?[/INST] `,
},
{
"mistral system",
[]template{
{"no response", `[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST] `},
{"response", `[INST] {{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}[/INST] {{ .Response }}`},
{"messages", `[INST] {{ if .System }}{{ .System }}
{{ end }}
{{- range .Messages }}
{{- if eq .Role "user" }}{{ .Content }}[/INST] {{ else if eq .Role "assistant" }}{{ .Content }}[INST] {{ end }}
{{- end }}`},
},
Values{
Messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant!"},
{Role: "user", Content: "Hello friend!"},
{Role: "assistant", Content: "Hello human!"},
{Role: "user", Content: "What is your name?"},
},
},
`[INST] You are a helpful assistant!
Hello friend![/INST] Hello human![INST] What is your name?[/INST] `,
},
{
"chatml",
[]template{
// this does not have a "no response" test because it's impossible to render the same output
{"response", `{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>
`},
{"messages", `
{{- range $index, $_ := .Messages }}<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{ end }}<|im_start|>assistant
`},
},
Values{
Messages: []api.Message{
{Role: "system", Content: "You are a helpful assistant!"},
{Role: "user", Content: "Hello friend!"},
{Role: "assistant", Content: "Hello human!"},
{Role: "user", Content: "What is your name?"},
},
},
`<|im_start|>system
You are a helpful assistant!<|im_end|>
<|im_start|>user
Hello friend!<|im_end|>
<|im_start|>assistant
Hello human!<|im_end|>
<|im_start|>user
What is your name?<|im_end|>
<|im_start|>assistant
`,
},
{
"moondream",
[]template{
// this does not have a "no response" test because it's impossible to render the same output
{"response", `{{ if .Prompt }}Question: {{ .Prompt }}
{{ end }}Answer: {{ .Response }}
`},
{"messages", `
{{- range .Messages }}
{{- if eq .Role "user" }}Question: {{ .Content }}
{{ else if eq .Role "assistant" }}Answer: {{ .Content }}
{{ end }}
{{- end }}Answer: `},
},
Values{
Messages: []api.Message{
{Role: "user", Content: "What's in this image?", Images: []api.ImageData{[]byte("")}},
{Role: "assistant", Content: "It's a hot dog."},
{Role: "user", Content: "What's in _this_ image?"},
{Role: "user", Images: []api.ImageData{[]byte("")}},
{Role: "user", Content: "Is it a hot dog?"},
},
},
`Question: [img-0] What's in this image?
Answer: It's a hot dog.
Question: What's in _this_ image?
[img-1]
Is it a hot dog?
Answer: `,
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
for _, ttt := range tt.templates {
t.Run(ttt.name, func(t *testing.T) {
tmpl, err := Parse(ttt.template)
if err != nil {
t.Fatal(err)
}
var b bytes.Buffer
if err := tmpl.Execute(&b, tt.values); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(b.String(), tt.expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}
})
}

View File

@@ -0,0 +1 @@
<start_system>You are a helpful assistant.<end_message><start_user>Hello, how are you?<end_message><start_assistant>I'm doing great. How can I help you today?<end_message><start_user>I'd like to show off how chat templating works!<end_message><start_assistant>

1
template/testdata/alfred.gotmpl/user vendored Normal file
View File

@@ -0,0 +1 @@
<start_user>Hello, how are you?<end_message><start_assistant>

View File

@@ -0,0 +1 @@
<start_user>Hello, how are you?<end_message><start_assistant>I'm doing great. How can I help you today?<end_message><start_user>I'd like to show off how chat templating works!<end_message><start_assistant>

View File

@@ -0,0 +1,12 @@
You are a helpful assistant.
### Instruction:
Hello, how are you?
### Response:
I'm doing great. How can I help you today?
### Instruction:
I'd like to show off how chat templating works!
### Response:

4
template/testdata/alpaca.gotmpl/user vendored Normal file
View File

@@ -0,0 +1,4 @@
### Instruction:
Hello, how are you?
### Response:

View File

@@ -0,0 +1,10 @@
### Instruction:
Hello, how are you?
### Response:
I'm doing great. How can I help you today?
### Instruction:
I'd like to show off how chat templating works!
### Response:

View File

@@ -0,0 +1,9 @@
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Hello, how are you?<|im_end|>
<|im_start|>assistant
I'm doing great. How can I help you today?<|im_end|>
<|im_start|>user
I'd like to show off how chat templating works!<|im_end|>
<|im_start|>assistant

3
template/testdata/chatml.gotmpl/user vendored Normal file
View File

@@ -0,0 +1,3 @@
<|im_start|>user
Hello, how are you?<|im_end|>
<|im_start|>assistant

View File

@@ -0,0 +1,7 @@
<|im_start|>user
Hello, how are you?<|im_end|>
<|im_start|>assistant
I'm doing great. How can I help you today?<|im_end|>
<|im_start|>user
I'd like to show off how chat templating works!<|im_end|>
<|im_start|>assistant

View File

@@ -0,0 +1,9 @@
System: You are a helpful assistant.
User: Hello, how are you?
Assistant: I'm doing great. How can I help you today?
User: I'd like to show off how chat templating works!
Assistant:

3
template/testdata/chatqa.gotmpl/user vendored Normal file
View File

@@ -0,0 +1,3 @@
User: Hello, how are you?
Assistant:

View File

@@ -0,0 +1,7 @@
User: Hello, how are you?
Assistant: I'm doing great. How can I help you today?
User: I'd like to show off how chat templating works!
Assistant:

View File

@@ -0,0 +1,12 @@
Source: system
You are a helpful assistant. <step> Source: user
Hello, how are you? <step> Source: assistant
I'm doing great. How can I help you today? <step> Source: user
I'd like to show off how chat templating works! <step> Source: assistant
Destination: user

View File

@@ -0,0 +1,6 @@
Source: user
Hello, how are you? <step> Source: assistant
Destination: user

View File

@@ -0,0 +1,10 @@
Source: user
Hello, how are you? <step> Source: assistant
I'm doing great. How can I help you today? <step> Source: user
I'd like to show off how chat templating works! <step> Source: assistant
Destination: user

View File

@@ -0,0 +1,8 @@
System: You are a helpful assistant.
User:
Hello, how are you?
Falcon:
I'm doing great. How can I help you today?
User:
I'd like to show off how chat templating works!
Falcon:

View File

@@ -0,0 +1,3 @@
User:
Hello, how are you?
Falcon:

View File

@@ -0,0 +1,7 @@
User:
Hello, how are you?
Falcon:
I'm doing great. How can I help you today?
User:
I'd like to show off how chat templating works!
Falcon:

View File

@@ -0,0 +1,8 @@
<start_of_turn>user
You are a helpful assistant.
Hello, how are you?<end_of_turn>
<start_of_turn>model
I'm doing great. How can I help you today?<end_of_turn>
<start_of_turn>user
I'd like to show off how chat templating works!<end_of_turn>
<start_of_turn>model

View File

@@ -0,0 +1,3 @@
<start_of_turn>user
Hello, how are you?<end_of_turn>
<start_of_turn>model

View File

@@ -0,0 +1,7 @@
<start_of_turn>user
Hello, how are you?<end_of_turn>
<start_of_turn>model
I'm doing great. How can I help you today?<end_of_turn>
<start_of_turn>user
I'd like to show off how chat templating works!<end_of_turn>
<start_of_turn>model

View File

@@ -0,0 +1,13 @@
System:
You are a helpful assistant.
Question:
Hello, how are you?
Answer:
I'm doing great. How can I help you today?
Question:
I'd like to show off how chat templating works!
Answer:

View File

@@ -0,0 +1,4 @@
Question:
Hello, how are you?
Answer:

View File

@@ -0,0 +1,10 @@
Question:
Hello, how are you?
Answer:
I'm doing great. How can I help you today?
Question:
I'd like to show off how chat templating works!
Answer:

Some files were not shown because too many files have changed in this diff Show More