Compare commits

..

8 Commits

Author SHA1 Message Date
Josh Yan
4da5d5beaa lint 2024-08-28 10:23:41 -07:00
Josh Yan
cc17b02b23 update 2024-08-28 09:58:23 -07:00
Josh Yan
73d69bc90b remove types 2024-08-27 16:45:07 -07:00
Josh Yan
9bc42f532b rmv api type 2024-08-27 16:45:07 -07:00
Josh Yan
07c0f66f5e rm print 2024-08-27 16:45:04 -07:00
Josh Yan
4a7bfca902 change progress msg 2024-08-27 16:44:38 -07:00
Josh Yan
04f2154505 fixed cgo 2024-08-27 16:44:38 -07:00
Josh Yan
de9b21b472 quantize progress 2024-08-27 16:44:32 -07:00
59 changed files with 26532 additions and 670 deletions

1
.gitattributes vendored
View File

@@ -1,3 +1,4 @@
llm/ext_server/* linguist-vendored
llm/*.h linguist-vendored
* text=auto
*.go text eol=lf

View File

@@ -32,10 +32,6 @@ linters:
linters-settings:
gci:
sections: [standard, default, localmodule]
staticcheck:
checks:
- all
- -SA1019 # omit Deprecated check
severity:
default-severity: error
rules:

View File

@@ -18,7 +18,7 @@ See the [development documentation](./docs/development.md) for instructions on h
* New features: new features (e.g. API fields, environment variables) add surface area to Ollama and make it harder to maintain in the long run as they cannot be removed without potentially breaking users in the future.
* Refactoring: large code improvements are important, but can be harder or take longer to review and merge.
* Documentation: small updates to fill in or correct missing documentation is helpful, however large documentation additions can be hard to maintain over time.
* Documentation: small updates to fill in or dorrect missing documentation is helpful, however large documentation additions can be hard to maintain over time.
### Issues that may not be accepted

View File

@@ -21,7 +21,7 @@ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V11_ARCHITECTURES
ENV GOARCH amd64
ENV GOARCH amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
@@ -38,7 +38,7 @@ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH amd64
ENV GOARCH amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
@@ -56,7 +56,7 @@ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V11_ARCHITECTURES
ENV GOARCH arm64
ENV GOARCH arm64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
@@ -72,7 +72,7 @@ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH arm64
ENV GOARCH arm64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
@@ -92,7 +92,7 @@ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG AMDGPU_TARGETS
ENV GOARCH amd64
ENV GOARCH amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
@@ -107,7 +107,7 @@ ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
ENV GOARCH amd64
ENV GOARCH amd64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/amd64 cpu-builder-amd64 AS static-build-amd64
@@ -181,19 +181,17 @@ RUN --mount=type=cache,target=/root/.ccache \
# Strip out ROCm dependencies to keep the primary image lean
FROM --platform=linux/amd64 ubuntu:22.04 as amd64-libs-without-rocm
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /scratch/
RUN cd /scratch/ollama/ && rm -rf rocblas libamd* libdrm* libroc* libhip* libhsa*
RUN cd /scratch/ollama/ && rm -rf rocblas libamd* libdrm* libroc* libhip* libhsa*
# Runtime stages
FROM --platform=linux/amd64 ubuntu:22.04 as runtime-amd64
COPY --from=amd64-libs-without-rocm /scratch/ /lib/
RUN apt-get update && apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
FROM --platform=linux/arm64 ubuntu:22.04 as runtime-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
RUN apt-get update && apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
# Radeon images are much larger so we keep it distinct from the CPU/CUDA image

View File

@@ -296,20 +296,12 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
### Terminal
@@ -345,8 +337,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Flox](https://flox.dev/blog/ollama-part-one)
### Libraries
@@ -357,12 +347,11 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp)
- [Ollama4j for Java](https://github.com/ollama4j/ollama4j)
- [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j)
- [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama)
- [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit)
- [Ollama for Dart](https://github.com/breitburg/dart-ollama)
@@ -379,15 +368,11 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Portkey](https://portkey.ai/docs/welcome/integration-guides/ollama)
- [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)
- [LlamaScript](https://github.com/Project-Llama/llamascript)
- [Gollm](https://docs.gollm.co/examples/ollama-example)
- [Ollamaclient for Golang](https://github.com/xyproto/ollamaclient)
- [High-level function abstraction in Go](https://gitlab.com/tozd/go/fun)
### Mobile
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
### Extensions & Plugins
@@ -417,7 +402,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
- [vnc-lm](https://github.com/jk011ru/vnc-lm) (A containerized Discord bot with support for attachments and web links)
### Supported backends

View File

@@ -296,17 +296,15 @@ type EmbeddingResponse struct {
// CreateRequest is the request passed to [Client.Create].
type CreateRequest struct {
Model string `json:"model"`
Path string `json:"path"`
Modelfile string `json:"modelfile"`
Stream *bool `json:"stream,omitempty"`
Quantize string `json:"quantize,omitempty"`
// Deprecated: set the model name with Model instead
// Name is deprecated, see Model
Name string `json:"name"`
// Deprecated: set the file content with Modelfile instead
Path string `json:"path"`
// Deprecated: use Quantize instead
// Quantization is deprecated, see Quantize
Quantization string `json:"quantization,omitempty"`
}
@@ -314,7 +312,7 @@ type CreateRequest struct {
type DeleteRequest struct {
Model string `json:"model"`
// Deprecated: set the model name with Model instead
// Name is deprecated, see Model
Name string `json:"name"`
}
@@ -329,7 +327,7 @@ type ShowRequest struct {
Options map[string]interface{} `json:"options"`
// Deprecated: set the model name with Model instead
// Name is deprecated, see Model
Name string `json:"name"`
}
@@ -361,7 +359,7 @@ type PullRequest struct {
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Deprecated: set the model name with Model instead
// Name is deprecated, see Model
Name string `json:"name"`
}
@@ -382,7 +380,7 @@ type PushRequest struct {
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Deprecated: set the model name with Model instead
// Name is deprecated, see Model
Name string `json:"name"`
}

View File

@@ -124,6 +124,7 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
}
bars := make(map[string]*progress.Bar)
var quantizeSpin *progress.Spinner
fn := func(resp api.ProgressResponse) error {
if resp.Digest != "" {
spinner.Stop()
@@ -136,6 +137,15 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
}
bar.Set(resp.Completed)
} else if strings.Contains(resp.Status, "quantizing") {
spinner.Stop()
if quantizeSpin != nil {
quantizeSpin.SetMessage(resp.Status)
} else {
quantizeSpin = progress.NewSpinner(resp.Status)
p.Add("quantize", quantizeSpin)
}
} else if status != resp.Status {
spinner.Stop()
@@ -726,17 +736,14 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
}
func showInfo(resp *api.ShowResponse) {
arch := resp.ModelInfo["general.architecture"].(string)
modelData := [][]string{
{"arch", arch},
{"parameters", resp.Details.ParameterSize},
{"quantization", resp.Details.QuantizationLevel},
}
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
modelData = append(modelData,
[]string{"arch", arch},
[]string{"context length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64))},
[]string{"embedding length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64))},
)
{"context length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64))},
{"embedding length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64))},
}
mainTableData := [][]string{

View File

@@ -34,20 +34,10 @@ func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
}
func (p *gemma2Model) Replacements() []string {
return []string{
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
return append(
p.gemmaModel.Replacements(),
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
}
)
}

View File

@@ -89,14 +89,13 @@ func TestMain(m *testing.M) {
os.Exit(m.Run())
}
func TestConvertModel(t *testing.T) {
func TestConvertFull(t *testing.T) {
cases := []string{
"Meta-Llama-3-8B-Instruct",
"Meta-Llama-3.1-8B-Instruct",
"Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it",
"gemma-2-2b-it",
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
"Phi-3-mini-128k-instruct",
"all-MiniLM-L6-v2",
@@ -141,107 +140,6 @@ func TestConvertModel(t *testing.T) {
}
}
func TestConvertInvalidDatatype(t *testing.T) {
f, err := os.CreateTemp(t.TempDir(), "testmodel")
if err != nil {
t.Fatal(err)
}
defer f.Close()
tempDir := t.TempDir()
generateSafetensorTestData(t, tempDir)
err = ConvertModel(os.DirFS(tempDir), f)
if err == nil || err.Error() != "unsupported safetensors model" {
t.Errorf("expected error but didn't get one")
}
}
func generateSafetensorTestData(t *testing.T, tempDir string) {
type tensorData struct {
Offsets []int `json:"data_offsets"`
Type string `json:"dtype"`
Shape []int `json:"shape"`
}
offset := 4096 * 14336
td := map[string]*tensorData{}
td["model.layers.0.mlp.down_proj.weight"] = &tensorData{
Offsets: []int{0, offset},
Type: "I8",
Shape: []int{4096, 14336},
}
td["model.layers.0.mlp.down_proj.weight_format"] = &tensorData{
Offsets: []int{offset, offset},
Type: "U8",
Shape: []int{},
}
data, err := json.Marshal(td)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
l := int64(len(data))
err = binary.Write(&buf, binary.LittleEndian, l)
if err != nil {
t.Fatal(err)
}
_, err = buf.Write(data)
if err != nil {
t.Fatal(err)
}
fdata, err := os.Create(filepath.Join(tempDir, "model-00001-of-00001.safetensors"))
if err != nil {
t.Fatal(err)
}
defer fdata.Close()
_, err = fdata.Write(buf.Bytes())
if err != nil {
t.Fatal(err)
}
configData := `
{
"architectures": [
"LlamaForCausalLM"
]
}
`
f, err := os.Create(filepath.Join(tempDir, "config.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(configData)
if err != nil {
t.Fatal(err)
}
tokenizerData := `
{
}
`
f, err = os.Create(filepath.Join(tempDir, "tokenizer.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(tokenizerData)
if err != nil {
t.Fatal(err)
}
}
func TestConvertAdapter(t *testing.T) {
type AdapterCase struct {
Name string

View File

@@ -4,7 +4,6 @@ import (
"bytes"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
@@ -51,10 +50,6 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
for _, key := range keys {
if value := headers[key]; value.Type != "" {
// bitsandbytes quantized models are unsupported
if len(value.Shape) == 0 {
return nil, errors.New("unsupported safetensors model")
}
ts = append(ts, safetensor{
fs: fsys,
path: p,

View File

@@ -100,21 +100,8 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
if template, ok := p["chat_template"]; ok {
var s []struct {
Name string `json:"name"`
Template string `json:"template"`
}
if err := json.Unmarshal(template, &t.Template); err == nil {
// noop
} else if err := json.Unmarshal(template, &s); err == nil {
for _, e := range s {
if e.Name == "default" {
t.Template = e.Template
break
}
}
} else {
return nil, fmt.Errorf("invalid chat_template: %w", err)
if err := json.Unmarshal(template, &t.Template); err != nil {
return nil, err
}
}
@@ -154,6 +141,7 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
type tokenizer struct {
Version string `json:"version"`
AddedTokens []token `json:"added_tokens"`
Model struct {
Type string `json:"type"`
@@ -251,7 +239,7 @@ func parseVocabulary(fsys fs.FS) (*Vocabulary, error) {
return pattern.Func(fsys)
}
return nil, errors.New("unknown tokenizer format")
return nil, errors.New("unknown tensor format")
}
type SpecialVocabulary struct {

View File

@@ -1,208 +0,0 @@
package convert
import (
"io"
"io/fs"
"os"
"path/filepath"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func createTokenizerFS(t *testing.T, dir string, files map[string]io.Reader) fs.FS {
t.Helper()
for k, v := range files {
if err := func() error {
f, err := os.Create(filepath.Join(dir, k))
if err != nil {
return err
}
defer f.Close()
if _, err := io.Copy(f, v); err != nil {
return err
}
return nil
}(); err != nil {
t.Fatalf("unexpected error: %v", err)
}
}
return os.DirFS(dir)
}
func TestParseTokenizer(t *testing.T) {
cases := []struct {
name string
fsys fs.FS
specialTokenTypes []string
want *Tokenizer
}{
{
name: "string chat template",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{}`),
"tokenizer_config.json": strings.NewReader(`{
"chat_template": "<default template>"
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{Model: "gpt2"},
Pre: "default",
Template: "<default template>",
},
},
{
name: "list chat template",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{}`),
"tokenizer_config.json": strings.NewReader(`{
"chat_template": [
{
"name": "default",
"template": "<default template>"
},
{
"name": "tools",
"template": "<tools template>"
}
]
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{Model: "gpt2"},
Pre: "default",
Template: "<default template>",
},
},
{
name: "added tokens",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 999,
"content": "<unused999>",
"special": false
}
]
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<unused999>"},
Scores: []float32{999},
Types: []int32{4},
},
Pre: "default",
},
},
{
name: "added tokens overlap vocab",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<pad>",
"special": true
}
],
"model": {
"vocab": {
"<pad>": 0
}
}
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<pad>"},
Scores: []float32{0},
Types: []int32{3},
},
Pre: "default",
},
},
{
name: "special token types",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<pad>",
"special": true
},
{
"id": 1,
"content": "<eos>",
"special": true
},
{
"id": 2,
"content": "<bos>",
"special": true
},
{
"id": 3,
"content": "<unk>",
"special": true
}
],
"model": {
"vocab": {
"<pad>": 0,
"<eos>": 1,
"<bos>": 2,
"<unk>": 3
}
}
}`),
"tokenizer_config.json": strings.NewReader(`{
"add_bos_token": true,
"add_eos_token": false,
"bos_token": "<bos>",
"eos_token": "<eos>",
"pad_token": "<pad>",
"unk_token": "<unk>"
}`),
}),
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<pad>", "<eos>", "<bos>", "<unk>"},
Scores: []float32{0, 1, 2, 3},
Types: []int32{3, 3, 3, 3},
},
SpecialVocabulary: []*SpecialVocabulary{
{Type: "pad", Content: "<pad>", ID: 0, AddToken: false},
{Type: "eos", Content: "<eos>", ID: 1, AddToken: false},
{Type: "bos", Content: "<bos>", ID: 2, AddToken: true},
{Type: "unk", Content: "<unk>", ID: 3, AddToken: false},
},
Pre: "default",
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
tokenizer, err := parseTokenizer(tt.fsys, tt.specialTokenTypes)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if diff := cmp.Diff(tt.want, tokenizer); diff != "" {
t.Errorf("unexpected tokenizer (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -194,8 +194,6 @@ Refer to the section [above](#how-do-i-configure-ollama-server) for how to set e
If a different directory needs to be used, set the environment variable `OLLAMA_MODELS` to the chosen directory.
> Note: on Linux using the standard installer, the `ollama` user needs read and write access to the specified directory. To assign the directory to the `ollama` user run `sudo chown -R ollama:ollama <directory>`.
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## How can I use Ollama in Visual Studio Code?

View File

@@ -35,11 +35,10 @@ curl -fsSL https://ollama.com/download/ollama-linux-amd64-rocm.tgz | sudo tar zx
### Adding Ollama as a startup service (recommended)
Create a user and group for Ollama:
Create a user for Ollama:
```bash
sudo useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama
sudo usermod -a -G ollama $(whoami)
sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama
```
Create a service file in `/etc/systemd/system/ollama.service`:
@@ -55,7 +54,6 @@ User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=$PATH"
[Install]
WantedBy=default.target
@@ -85,11 +83,10 @@ Make sure to install ROCm v6
### Start Ollama
Start Ollama and verify it is running:
Start Ollama using `systemd`:
```bash
sudo systemctl start ollama
sudo systemctl status ollama
```
## Update

View File

@@ -128,10 +128,10 @@ Currently supported model architectures:
#### Build from a GGUF file
```modelfile
FROM ./ollama-model.gguf
FROM ./ollama-model.bin
```
The GGUF file location should be specified as an absolute path or relative to the `Modelfile` location.
The GGUF bin file location should be specified as an absolute path or relative to the `Modelfile` location.
### PARAMETER
@@ -208,7 +208,7 @@ Currently supported Safetensor adapters:
#### GGUF adapter
```modelfile
ADAPTER ./ollama-lora.gguf
ADAPTER ./ollama-lora.bin
```
### LICENSE

View File

@@ -300,28 +300,3 @@ curl http://localhost:11434/v1/chat/completions \
]
}'
```
### Setting the context size
The OpenAI API does not have a way of setting the context size for a model. If you need to change the context size, create a `Modelfile` which looks like:
```modelfile
FROM <some model>
PARAMETER num_ctx <context size>
```
Use the `ollama create mymodel` command to create a new model with the updated context size. Call the API with the updated model name:
```shell
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "mymodel",
"messages": [
{
"role": "user",
"content": "Hello!"
}
]
}'
```

View File

@@ -30,7 +30,9 @@ func Host() *url.URL {
defaultPort = "443"
}
hostport, path, _ := strings.Cut(hostport, "/")
// trim trailing slashes
hostport = strings.TrimRight(hostport, "/")
host, port, err := net.SplitHostPort(hostport)
if err != nil {
host, port = "127.0.0.1", defaultPort
@@ -43,13 +45,15 @@ func Host() *url.URL {
if n, err := strconv.ParseInt(port, 10, 32); err != nil || n > 65535 || n < 0 {
slog.Warn("invalid port, using default", "port", port, "default", defaultPort)
port = defaultPort
return &url.URL{
Scheme: scheme,
Host: net.JoinHostPort(host, defaultPort),
}
}
return &url.URL{
Scheme: scheme,
Host: net.JoinHostPort(host, port),
Path: path,
}
}

View File

@@ -13,35 +13,34 @@ func TestHost(t *testing.T) {
value string
expect string
}{
"empty": {"", "http://127.0.0.1:11434"},
"only address": {"1.2.3.4", "http://1.2.3.4:11434"},
"only port": {":1234", "http://:1234"},
"address and port": {"1.2.3.4:1234", "http://1.2.3.4:1234"},
"hostname": {"example.com", "http://example.com:11434"},
"hostname and port": {"example.com:1234", "http://example.com:1234"},
"zero port": {":0", "http://:0"},
"too large port": {":66000", "http://:11434"},
"too small port": {":-1", "http://:11434"},
"ipv6 localhost": {"[::1]", "http://[::1]:11434"},
"ipv6 world open": {"[::]", "http://[::]:11434"},
"ipv6 no brackets": {"::1", "http://[::1]:11434"},
"ipv6 + port": {"[::1]:1337", "http://[::1]:1337"},
"extra space": {" 1.2.3.4 ", "http://1.2.3.4:11434"},
"extra quotes": {"\"1.2.3.4\"", "http://1.2.3.4:11434"},
"extra space+quotes": {" \" 1.2.3.4 \" ", "http://1.2.3.4:11434"},
"extra single quotes": {"'1.2.3.4'", "http://1.2.3.4:11434"},
"http": {"http://1.2.3.4", "http://1.2.3.4:80"},
"http port": {"http://1.2.3.4:4321", "http://1.2.3.4:4321"},
"https": {"https://1.2.3.4", "https://1.2.3.4:443"},
"https port": {"https://1.2.3.4:4321", "https://1.2.3.4:4321"},
"proxy path": {"https://example.com/ollama", "https://example.com:443/ollama"},
"empty": {"", "127.0.0.1:11434"},
"only address": {"1.2.3.4", "1.2.3.4:11434"},
"only port": {":1234", ":1234"},
"address and port": {"1.2.3.4:1234", "1.2.3.4:1234"},
"hostname": {"example.com", "example.com:11434"},
"hostname and port": {"example.com:1234", "example.com:1234"},
"zero port": {":0", ":0"},
"too large port": {":66000", ":11434"},
"too small port": {":-1", ":11434"},
"ipv6 localhost": {"[::1]", "[::1]:11434"},
"ipv6 world open": {"[::]", "[::]:11434"},
"ipv6 no brackets": {"::1", "[::1]:11434"},
"ipv6 + port": {"[::1]:1337", "[::1]:1337"},
"extra space": {" 1.2.3.4 ", "1.2.3.4:11434"},
"extra quotes": {"\"1.2.3.4\"", "1.2.3.4:11434"},
"extra space+quotes": {" \" 1.2.3.4 \" ", "1.2.3.4:11434"},
"extra single quotes": {"'1.2.3.4'", "1.2.3.4:11434"},
"http": {"http://1.2.3.4", "1.2.3.4:80"},
"http port": {"http://1.2.3.4:4321", "1.2.3.4:4321"},
"https": {"https://1.2.3.4", "1.2.3.4:443"},
"https port": {"https://1.2.3.4:4321", "1.2.3.4:4321"},
}
for name, tt := range cases {
t.Run(name, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", tt.value)
if host := Host(); host.String() != tt.expect {
t.Errorf("%s: expected %s, got %s", name, tt.expect, host.String())
if host := Host(); host.Host != tt.expect {
t.Errorf("%s: expected %s, got %s", name, tt.expect, host.Host)
}
})
}

View File

@@ -57,7 +57,7 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
}
}
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 {
return "v11"
}
return "v12"

View File

@@ -2,7 +2,7 @@ set(TARGET ollama_llama_server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
set(LLAMA_SERVER_LDFLAGS $ENV{LLAMA_SERVER_LDFLAGS})
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp httplib.h)
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>

24596
llm/ext_server/json.hpp vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -262,7 +262,7 @@ struct server_slot {
char buffer[512];
double t_token = t_prompt_processing / n_prompt_tokens_processed;
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
snprintf(buffer, sizeof(buffer), "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
t_prompt_processing, n_prompt_tokens_processed,
t_token, n_tokens_second);
LOG_DEBUG(buffer, {
@@ -276,7 +276,7 @@ struct server_slot {
t_token = t_token_generation / n_decoded;
n_tokens_second = 1e3 / t_token_generation * n_decoded;
snprintf(buffer, sizeof(buffer), "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
t_token_generation, n_decoded,
t_token, n_tokens_second);
LOG_DEBUG(buffer, {
@@ -288,7 +288,7 @@ struct server_slot {
{"n_tokens_second", n_tokens_second},
});
snprintf(buffer, sizeof(buffer), " total time = %10.2f ms", t_prompt_processing + t_token_generation);
sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
LOG_DEBUG(buffer, {
{"slot_id", id},
{"task_id", task_id},
@@ -425,7 +425,7 @@ struct llama_server_context
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_add_bos_token(model);
add_bos_token = llama_should_add_bos_token(model);
return true;
}
@@ -1031,7 +1031,7 @@ struct llama_server_context
continue;
}
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.cpuparams.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG_TEE("Error processing the given image");
return false;
}
@@ -2014,7 +2014,7 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.cpuparams.n_threads);
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
@@ -2287,7 +2287,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true;
break;
}
params.cpuparams.n_threads = std::stoi(argv[i]);
params.n_threads = std::stoi(argv[i]);
}
else if (arg == "--grp-attn-n" || arg == "-gan")
{
@@ -2315,7 +2315,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true;
break;
}
params.cpuparams_batch.n_threads = std::stoi(argv[i]);
params.n_threads_batch = std::stoi(argv[i]);
}
else if (arg == "--threads-http")
{
@@ -2626,11 +2626,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
params.kv_overrides.back().key[0] = 0;
}
postprocess_cpu_params(params.cpuparams, nullptr);
postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
postprocess_cpu_params(params.draft_cpuparams, &params.cpuparams);
postprocess_cpu_params(params.draft_cpuparams_batch, &params.cpuparams_batch);
if (invalid_param)
{
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
@@ -2780,8 +2775,8 @@ int main(int argc, char **argv) {
{"commit", LLAMA_COMMIT}});
LOG_INFO("system info", {
{"n_threads", params.cpuparams.n_threads},
{"n_threads_batch", params.cpuparams_batch.n_threads},
{"n_threads", params.n_threads},
{"n_threads_batch", params.n_threads_batch},
{"total_threads", std::thread::hardware_concurrency()},
{"system_info", llama_print_system_info()},
});

View File

@@ -87,8 +87,6 @@ apply_patches() {
build() {
cmake -S ${LLAMACPP_DIR} -B ${BUILD_DIR} ${CMAKE_DEFS}
cmake --build ${BUILD_DIR} ${CMAKE_TARGETS} -j8
# remove unnecessary build artifacts
rm -f ${BUILD_DIR}/bin/ggml-common.h ${BUILD_DIR}/bin/ggml-metal.metal
}
compress() {

View File

@@ -19,7 +19,7 @@ sign() {
fi
}
COMMON_DARWIN_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DGGML_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DGGML_METAL_EMBED_LIBRARY=on -DGGML_OPENMP=off"
COMMON_DARWIN_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DGGML_METAL_EMBED_LIBRARY=on -DGGML_OPENMP=off"
case "${GOARCH}" in
"amd64")

1227
llm/llama.h vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
package llm
// #cgo CFLAGS: -Illama.cpp -Illama.cpp/include -Illama.cpp/ggml/include
// #cgo CPPFLAGS: -Illama.cpp/ggml/include
// #cgo LDFLAGS: -lllama -lggml -lstdc++ -lpthread
// #cgo darwin,arm64 LDFLAGS: -L${SRCDIR}/build/darwin/arm64_static -L${SRCDIR}/build/darwin/arm64_static/src -L${SRCDIR}/build/darwin/arm64_static/ggml/src -framework Accelerate -framework Metal
// #cgo darwin,amd64 LDFLAGS: -L${SRCDIR}/build/darwin/x86_64_static -L${SRCDIR}/build/darwin/x86_64_static/src -L${SRCDIR}/build/darwin/x86_64_static/ggml/src
@@ -9,12 +9,24 @@ package llm
// #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/linux/x86_64_static -L${SRCDIR}/build/linux/x86_64_static/src -L${SRCDIR}/build/linux/x86_64_static/ggml/src
// #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/linux/arm64_static -L${SRCDIR}/build/linux/arm64_static/src -L${SRCDIR}/build/linux/arm64_static/ggml/src
// #include <stdlib.h>
// #include <stdatomic.h>
// #include "llama.h"
// bool update_quantize_progress(float progress, void* data) {
// atomic_int* atomicData = (atomic_int*)data;
// int intProgress = *((int*)&progress);
// atomic_store(atomicData, intProgress);
// return true;
// }
import "C"
import (
"errors"
"fmt"
"sync/atomic"
"time"
"unsafe"
"github.com/ollama/ollama/api"
)
// SystemInfo is an unused example of calling llama.cpp functions using CGo
@@ -22,17 +34,49 @@ func SystemInfo() string {
return C.GoString(C.llama_print_system_info())
}
func Quantize(infile, outfile string, ftype fileType) error {
func Quantize(infile, outfile string, ftype fileType, fn func(resp api.ProgressResponse), tensorCount int) error {
cinfile := C.CString(infile)
defer C.free(unsafe.Pointer(cinfile))
coutfile := C.CString(outfile)
defer C.free(unsafe.Pointer(coutfile))
params := C.llama_model_quantize_default_params()
params.nthread = -1
params.ftype = ftype.Value()
// Initialize "global" to store progress
store := (*int32)(C.malloc(C.sizeof_int))
defer C.free(unsafe.Pointer(store))
// Initialize store value, e.g., setting initial progress to 0
atomic.StoreInt32(store, 0)
params.quantize_callback_data = unsafe.Pointer(store)
params.quantize_callback = (C.llama_progress_callback)(C.update_quantize_progress)
ticker := time.NewTicker(30 * time.Millisecond)
done := make(chan struct{})
defer close(done)
go func() {
defer ticker.Stop()
for {
select {
case <-ticker.C:
progressInt := atomic.LoadInt32(store)
progress := *(*float32)(unsafe.Pointer(&progressInt))
fn(api.ProgressResponse{
Status: fmt.Sprintf("quantizing model %d%%", 100*int(progress)/tensorCount),
})
case <-done:
fn(api.ProgressResponse{
Status: fmt.Sprintf("quantizing model 100%%"),
})
return
}
}
}()
if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
return errors.New("failed to quantize model. This model architecture may not be supported, or you may need to upgrade Ollama to the latest version")
}

View File

@@ -1,8 +1,8 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 88355971..dd7d41ed 100644
index a207451f..2ddf431d 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -6083,16 +6083,7 @@ static void llm_load_vocab(
@@ -5347,16 +5347,7 @@ static void llm_load_vocab(
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
@@ -20,9 +20,9 @@ index 88355971..dd7d41ed 100644
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
@@ -6188,7 +6179,8 @@ static void llm_load_vocab(
tokenizer_pre == "exaone") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE;
@@ -5443,7 +5434,8 @@ static void llm_load_vocab(
tokenizer_pre == "codeshell") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
} else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);

View File

@@ -1,36 +1,37 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 88355971..d7db689b 100644
index 1fe2b9f7..a43312a7 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -15906,7 +15906,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
@@ -13689,7 +13689,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
- const bool has_logits = !cparams.embeddings;
+ const bool has_logits = cparams.causal_attn;
const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE));
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
@@ -16175,20 +16175,23 @@ static int llama_decode_internal(
@@ -13959,17 +13959,25 @@ static int llama_decode_internal(
// no output
res = nullptr;
embd = nullptr;
- } else if (cparams.embeddings) {
- res = nullptr; // do not extract logits for embedding case
- embd = nullptr;
- res = nullptr; // do not extract logits for embedding case
- embd = gf->nodes[gf->n_nodes - 1];
- if (strcmp(embd->name, "result_embd_pooled") != 0) {
- embd = gf->nodes[gf->n_nodes - 2];
+ }
+
+ if (cparams.embeddings) {
for (int i = gf->n_nodes - 1; i >= 0; --i) {
- if (strcmp(gf->nodes[i]->name, "result_embd_pooled") == 0) {
- embd = gf->nodes[i];
+ for (int i = gf->n_nodes - 1; i >= 0; --i) {
+ embd = gf->nodes[i];
+ if (strcmp(embd->name, "result_embd_pooled") == 0) {
break;
}
+ break;
+ }
}
- GGML_ASSERT(embd != nullptr && "missing embeddings tensor");
} else {
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
- } else {
+ } else {
embd = nullptr; // do not extract embeddings when not needed
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
}
@@ -38,6 +39,7 @@ index 88355971..d7db689b 100644
+ if (!cparams.causal_attn) {
+ res = nullptr; // do not extract logits when not needed
+ }
+
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
ggml_backend_sched_alloc_graph(lctx.sched, gf);

350
llm/patches/09-lora.diff Normal file
View File

@@ -0,0 +1,350 @@
diff --git a/common/common.cpp b/common/common.cpp
index 2e8374d5..70d0afde 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -2110,9 +2110,21 @@ struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
if (loaded_la.adapter == nullptr) {
fprintf(stderr, "%s: error: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
- llama_free(lctx);
- llama_free_model(model);
- return iparams;
+
+ // if that fails, try loading as ggla for compatibility
+ int err = llama_model_apply_lora_from_file(model,
+ la.path.c_str(),
+ la.scale,
+ nullptr,
+ params.n_threads);
+ if (err != 0) {
+ fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
+ llama_free(lctx);
+ llama_free_model(model);
+ return iparams;
+ } else {
+ break;
+ }
}
iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
}
diff --git a/include/llama.h b/include/llama.h
index 93fd77ca..b0fb37a6 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -1160,6 +1160,20 @@ extern "C" {
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
+ // Apply a LoRA adapter to a loaded model
+ // path_base_model is the path to a higher quality model to use as a base for
+ // the layers modified by the adapter. Can be NULL to use the current loaded model.
+ // The model needs to be reloaded before applying a new adapter, otherwise the adapter
+ // will be applied on top of the previous one
+ // Returns 0 on success
+ LLAMA_API int32_t llama_model_apply_lora_from_file(
+ const struct llama_model * model,
+ const char * path_lora,
+ float scale,
+ const char * path_base_model,
+ int32_t n_threads);
+
+
#ifdef __cplusplus
}
#endif
diff --git a/src/llama.cpp b/src/llama.cpp
index 80a0dd0f..9d7b0e17 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -21880,3 +21880,290 @@ static void llama_log_callback_default(ggml_log_level level, const char * text,
fputs(text, stderr);
fflush(stderr);
}
+
+static int llama_apply_lora_from_file_internal(
+ const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
+) {
+ LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
+
+ const int64_t t_start_lora_us = ggml_time_us();
+
+ llama_file fin(path_lora, "rb");
+
+ // verify magic and version
+ {
+ uint32_t magic = fin.read_u32();
+ if (magic != LLAMA_FILE_MAGIC_GGLA) {
+ LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
+ return 1;
+ }
+
+ uint32_t format_version = fin.read_u32();
+ if (format_version != 1) {
+ LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
+ return 1;
+ }
+ }
+
+ int32_t lora_r = fin.read_u32();
+ int32_t lora_alpha = fin.read_u32();
+ float scaling = scale * (float)lora_alpha / (float)lora_r;
+
+ LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
+
+ // load base model
+ std::unique_ptr<llama_model_loader> ml;
+ if (path_base_model) {
+ LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
+ ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
+ ml->init_mappings(/*prefetch*/ false); // no prefetching
+ }
+
+ struct tensor_meta {
+ std::string name;
+ ggml_type type;
+ int32_t ne[2];
+ size_t offset;
+ };
+ std::map<std::string, tensor_meta> tensor_meta_map;
+
+ // load all tensor meta
+ while (true) {
+ if (fin.tell() == fin.size) {
+ // eof
+ break;
+ }
+
+ int32_t n_dims;
+ int32_t name_len;
+ int32_t ftype;
+
+ fin.read_raw(&n_dims, sizeof(n_dims));
+ fin.read_raw(&name_len, sizeof(name_len));
+ fin.read_raw(&ftype, sizeof(ftype));
+
+ if (n_dims != 1 && n_dims != 2) {
+ LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
+ return 1;
+ }
+
+ int32_t ne[2] = { 1, 1 };
+ for (int i = 0; i < n_dims; ++i) {
+ fin.read_raw(&ne[i], sizeof(ne[i]));
+ }
+
+ std::string name;
+ {
+ GGML_ASSERT(name_len < GGML_MAX_NAME);
+ char buf[GGML_MAX_NAME];
+ fin.read_raw(buf, name_len);
+ name = std::string(buf, name_len);
+ }
+
+ // check for lora suffix
+ std::string lora_suffix;
+ if (name.length() > 6) {
+ lora_suffix = name.substr(name.length() - 6);
+ }
+ if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
+ LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
+ return 1;
+ }
+
+ // tensor type
+ ggml_type wtype;
+ switch (ftype) {
+ case 0: wtype = GGML_TYPE_F32; break;
+ case 1: wtype = GGML_TYPE_F16; break;
+ default:
+ {
+ LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
+ __func__, ftype);
+ return 1;
+ }
+ }
+
+ // data offset
+ size_t offset = fin.tell();
+ offset = (offset + 31) & -32;
+
+ // skip tensor data
+ fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
+
+ tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
+ }
+
+ bool warned = false;
+ int n_tensors = 0;
+
+ // apply
+ ggml_backend_t backend_cpu = ggml_backend_cpu_init();
+ if (backend_cpu == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
+ return 1;
+ }
+ ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
+
+ std::vector<no_init<uint8_t>> read_buf;
+ for (const auto & it : model.tensors_by_name) {
+ const std::string & base_name = it.first;
+ ggml_tensor * model_t = it.second;
+
+ if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
+ tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
+ continue;
+ }
+
+ tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
+ tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
+
+ ggml_init_params lora_init_params = {
+ /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
+ /* .mem_buffer */ nullptr,
+ /* .no_alloc */ true,
+ };
+ ggml_context * lora_ctx = ggml_init(lora_init_params);
+ if (lora_ctx == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ // create tensors
+ ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
+ ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
+ ggml_set_name(loraA, metaA.name.c_str());
+ ggml_set_name(loraB, metaB.name.c_str());
+
+ ggml_tensor * base_t;
+ if (ml) {
+ if (!ml->get_tensor_meta(base_name.c_str())) {
+ LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
+ return 1;
+ }
+ base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
+ } else {
+ base_t = ggml_dup_tensor(lora_ctx, model_t);
+ }
+ ggml_set_name(base_t, base_name.c_str());
+
+ // allocate in backend buffer
+ ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
+ if (lora_buf == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
+ return 1;
+ }
+
+ // load tensor data
+ auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
+ read_buf.resize(ggml_nbytes(tensor));
+ fin.seek(tensor_meta.offset, SEEK_SET);
+ fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
+ ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
+ };
+ load_tensor(metaA, loraA);
+ load_tensor(metaB, loraB);
+
+ // load base model tensor data
+ if (ml) {
+ ml->load_data_for(base_t);
+ } else {
+ ggml_backend_tensor_copy(model_t, base_t);
+ }
+
+ if (ggml_is_quantized(base_t->type) && !warned) {
+ LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
+ "use a f16 or f32 base model with --lora-base\n", __func__);
+ warned = true;
+ }
+
+ if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
+ LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
+ " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
+ ggml_free(lora_ctx);
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ auto build_lora_graph = [&]() {
+ // w = w + BA*s
+ ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
+ ggml_set_name(BA, "BA");
+
+ if (scaling != 1.0f) {
+ BA = ggml_scale(lora_ctx, BA, scaling);
+ ggml_set_name(BA, "BA_scaled");
+ }
+
+ ggml_tensor * r;
+ r = ggml_add_inplace(lora_ctx, base_t, BA);
+ ggml_set_name(r, "r_add");
+
+ if (base_t->type != model_t->type) {
+ // convert the result to the model type
+ r = ggml_cast(lora_ctx, r, model_t->type);
+ ggml_set_name(r, "r_cast");
+ }
+
+ return r;
+ };
+
+ ggml_cgraph * gf = ggml_new_graph(lora_ctx);
+ ggml_tensor * r = build_lora_graph();
+ ggml_build_forward_expand(gf, r);
+
+ ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
+ if (graph_buf == nullptr) {
+ LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
+ ggml_free(lora_ctx);
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_free(backend_cpu);
+ return 1;
+ }
+
+ ggml_backend_graph_compute(backend_cpu, gf);
+
+ ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
+
+#if 0
+ // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
+ //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
+
+ // sched compute
+ ggml_build_forward_expand(gf, build_graph());
+ ggml_backend_sched_init_measure(sched, gf);
+
+ // create the graph again, since the previous one was destroyed by the measure
+ ggml_graph_clear(gf);
+ ggml_build_forward_expand(gf, build_graph());
+ ggml_backend_sched_graph_compute(sched, gf);
+ ggml_backend_sched_free(sched);
+#endif
+
+ ggml_backend_buffer_free(lora_buf);
+ ggml_backend_buffer_free(graph_buf);
+ ggml_free(lora_ctx);
+
+ n_tensors++;
+ if (n_tensors % 4 == 0) {
+ LLAMA_LOG_INFO(".");
+ }
+ }
+
+ ggml_backend_free(backend_cpu);
+
+ const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
+ LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
+
+ return 0;
+}
+
+int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
+ try {
+ return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
+ return 1;
+ }
+}
\ No newline at end of file

View File

@@ -0,0 +1,52 @@
From ed941590d59fc07b1ad21d6aa458588e47d1e446 Mon Sep 17 00:00:00 2001
From: Josh Yan <jyan00017@gmail.com>
Date: Wed, 10 Jul 2024 13:39:39 -0700
Subject: [PATCH] quantize progress
---
include/llama.h | 3 +++
src/llama.cpp | 8 ++++++++
2 files changed, 11 insertions(+)
diff --git a/include/llama.h b/include/llama.h
index bb4b05ba..613db68e 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -349,6 +349,9 @@ extern "C" {
bool keep_split; // quantize to the same number of shards
void * imatrix; // pointer to importance matrix data
void * kv_overrides; // pointer to vector containing overrides
+
+ llama_progress_callback quantize_callback; // callback to report quantization progress
+ void * quantize_callback_data; // user data for the callback
} llama_model_quantize_params;
// grammar types
diff --git a/src/llama.cpp b/src/llama.cpp
index 2b9ace28..ac640c02 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -18252,6 +18252,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
const auto tn = LLM_TN(model.arch);
new_ofstream(0);
for (int i = 0; i < ml.n_tensors; ++i) {
+ if (params->quantize_callback){
+ if (!params->quantize_callback(i, params->quantize_callback_data)) {
+ return;
+ }
+ }
+
auto weight = ml.get_weight(i);
struct ggml_tensor * tensor = weight->tensor;
if (weight->idx != cur_split && params->keep_split) {
@@ -18789,6 +18795,8 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
/*.keep_split =*/ false,
/*.imatrix =*/ nullptr,
/*.kv_overrides =*/ nullptr,
+ /*.quantize_callback =*/ nullptr,
+ /*.quantize_callback_data =*/ nullptr,
};
return result;
--
2.39.3 (Apple Git-146)

View File

@@ -0,0 +1,43 @@
From 6eedae4cf2fcc8015dac79cb3f28f61fcabacab2 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Wed, 31 Jul 2024 14:57:04 -0700
Subject: [PATCH] phi3 sliding window
---
src/llama.cpp | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index a207451f..f2872d4e 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -4893,7 +4893,7 @@ static void llm_load_hparams(
} break;
case LLM_ARCH_PHI3:
{
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
+ ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
@@ -10762,7 +10762,7 @@ struct llm_build_context {
struct ggml_tensor * inp_pos = build_inp_pos();
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
+ struct ggml_tensor * KQ_mask = hparams.n_swa > 0 ? build_inp_KQ_mask_swa() : build_inp_KQ_mask();
for (int il = 0; il < n_layer; ++il) {
auto residual = inpL;
@@ -10820,7 +10820,7 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
model.layers[il].wo, model.layers[il].bo,
- Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
}
if (il == n_layer - 1) {
--
2.45.2

View File

@@ -98,7 +98,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
systemTotalMemory = systemMemInfo.TotalMemory
systemFreeMemory = systemMemInfo.FreeMemory
systemSwapFreeMemory = systemMemInfo.FreeSwap
slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
slog.Debug("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
}
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info

View File

@@ -38,7 +38,7 @@ IS_WSL2=false
KERN=$(uname -r)
case "$KERN" in
*icrosoft*WSL2 | *icrosoft*wsl2) IS_WSL2=true;;
*icrosoft) error "Microsoft WSL1 is not currently supported. Please use WSL2 with 'wsl --set-version <distro> 2'" ;;
*icrosoft) error "Microsoft WSL1 is not currently supported. Please upgrade to WSL2 with 'wsl --set-version <distro> 2'" ;;
*) ;;
esac

View File

@@ -30,7 +30,7 @@ if grep -i "centos" /etc/system-release >/dev/null; then
dnf install -y rh-git227-git
ln -s /opt/rh/rh-git227/root/usr/bin/git /usr/local/bin/git
fi
dnf install -y devtoolset-10-gcc devtoolset-10-gcc-c++ pigz findutils
dnf install -y devtoolset-10-gcc devtoolset-10-gcc-c++ pigz
elif grep -i "rocky" /etc/system-release >/dev/null; then
# Temporary workaround until rocky 8 AppStream ships GCC 10.4 (10.3 is incompatible with NVCC)
cat << EOF > /etc/yum.repos.d/Rocky-Vault.repo
@@ -45,7 +45,6 @@ EOF
dnf install -y git \
gcc-toolset-10-gcc-10.2.1-8.2.el8 \
gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 \
findutils \
pigz
else
echo "ERROR Unexpected distro"

View File

@@ -435,11 +435,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
return err
}
tensorCount := len(baseLayer.GGML.Tensors().Items)
ft := baseLayer.GGML.KV().FileType()
if !slices.Contains([]string{"F16", "F32"}, ft.String()) {
return errors.New("quantization is only supported for F16 and F32 models")
} else if want != ft {
fn(api.ProgressResponse{Status: fmt.Sprintf("quantizing %s model to %s", ft, quantization)})
fn(api.ProgressResponse{
Status: "quantizing model tensors",
})
blob, err := GetBlobsPath(baseLayer.Digest)
if err != nil {
@@ -453,7 +456,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
defer temp.Close()
defer os.Remove(temp.Name())
if err := llm.Quantize(blob, temp.Name(), want); err != nil {
if err := llm.Quantize(blob, temp.Name(), want, fn, tensorCount); err != nil {
return err
}

View File

@@ -139,7 +139,6 @@ The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`,
func TestParseFromFileFromLayer(t *testing.T) {
tempModels := t.TempDir()
t.Setenv("OLLAMA_MODELS", tempModels)
file, err := os.CreateTemp(tempModels, "")
if err != nil {
@@ -190,7 +189,6 @@ func TestParseFromFileFromLayer(t *testing.T) {
func TestParseLayerFromCopy(t *testing.T) {
tempModels := t.TempDir()
t.Setenv("OLLAMA_MODELS", tempModels)
file2, err := os.CreateTemp(tempModels, "")
if err != nil {

View File

@@ -73,6 +73,18 @@ func ParseModelPath(name string) ModelPath {
var errModelPathInvalid = errors.New("invalid model path")
func (mp ModelPath) Validate() error {
if mp.Repository == "" {
return fmt.Errorf("%w: model repository name is required", errModelPathInvalid)
}
if strings.Contains(mp.Tag, ":") {
return fmt.Errorf("%w: ':' (colon) is not allowed in tag names", errModelPathInvalid)
}
return nil
}
func (mp ModelPath) GetNamespaceRepository() string {
return fmt.Sprintf("%s/%s", mp.Namespace, mp.Repository)
}
@@ -93,11 +105,7 @@ func (mp ModelPath) GetShortTagname() string {
// GetManifestPath returns the path to the manifest file for the given model path, it is up to the caller to create the directory if it does not exist.
func (mp ModelPath) GetManifestPath() (string, error) {
if p := filepath.Join(mp.Registry, mp.Namespace, mp.Repository, mp.Tag); filepath.IsLocal(p) {
return filepath.Join(envconfig.Models(), "manifests", p), nil
}
return "", errModelPathInvalid
return filepath.Join(envconfig.Models(), "manifests", mp.Registry, mp.Namespace, mp.Repository, mp.Tag), nil
}
func (mp ModelPath) BaseURL() *url.URL {

View File

@@ -1,7 +1,6 @@
package server
import (
"errors"
"os"
"path/filepath"
"testing"
@@ -155,10 +154,3 @@ func TestParseModelPath(t *testing.T) {
})
}
}
func TestInsecureModelpath(t *testing.T) {
mp := ParseModelPath("../../..:something")
if _, err := mp.GetManifestPath(); !errors.Is(err, errModelPathInvalid) {
t.Errorf("expected error: %v", err)
}
}

View File

@@ -593,9 +593,9 @@ func TestCreateDetectTemplate(t *testing.T) {
checkFileExists(t, filepath.Join(p, "blobs", "*"), []string{
filepath.Join(p, "blobs", "sha256-0d79f567714c62c048378f2107fb332dabee0135d080c302d884317da9433cc5"),
filepath.Join(p, "blobs", "sha256-35360843d0c84fb1506952a131bbef13cd2bb4a541251f22535170c05b56e672"),
filepath.Join(p, "blobs", "sha256-553c4a3f747b3d22a4946875f1cc8ed011c2930d83f864a0c7265f9ec0a20413"),
filepath.Join(p, "blobs", "sha256-de3959f841e9ef6b4b6255fa41cb9e0a45da89c3066aa72bdd07a4747f848990"),
filepath.Join(p, "blobs", "sha256-c608dc615584cd20d9d830363dabf8a4783ae5d34245c3d8c115edb3bc7b28e4"),
filepath.Join(p, "blobs", "sha256-ea34c57ba5b78b740aafe2aeb74dc6507fc3ad14170b64c26a04fb9e36c88d75"),
})
})

View File

@@ -1,2 +1 @@
{{- range .Messages }}<start_{{ .Role }}>{{ .Content }}<end_message>
{{- end }}<start_assistant>
{{ if .System }}<start_system>{{ .System }}<end_message>{{ end }}{{ if .Prompt }}<start_user>{{ .Prompt }}<end_message>{{ end }}<start_assistant>{{ .Response }}<end_message>

View File

@@ -1,18 +1,8 @@
{{- $system := "" }}
{{- range .Messages }}
{{- if eq .Role "system" }}
{{- if not $system }}{{ $system = .Content }}
{{- else }}{{ $system = printf "%s\n\n%s" $system .Content }}
{{- end }}
{{- else if eq .Role "user" }}
{{- if $system }}{{ $system }}
{{ if .System }}{{ .System }}
{{ $system = "" }}
{{- end }}### Instruction:
{{ .Content }}
{{ end }}{{ if .Prompt }}### Instruction:
{{ .Prompt }}
{{ else if eq .Role "assistant" }}### Response:
{{ .Content }}
{{ end }}### Response:
{{ .Response }}
{{ end }}
{{- end }}### Response:

View File

@@ -1,3 +1,6 @@
{{- range .Messages }}<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ .Response }}<|im_end|>

View File

@@ -1,7 +1,6 @@
{{- range .Messages }}
{{- if eq .Role "system" }}System:
{{- else if eq .Role "user" }}User:
{{- else if eq .Role "assistant" }}Assistant:
{{- end }} {{ .Content }}
{{ if .System }}System: {{ .System }}
{{ end }}{{ if .Prompt }}User: {{ .Prompt }}
{{ end }}Assistant: {{ .Response }}
{{ end }}Assistant:

View File

@@ -1,10 +1,10 @@
{{- range .Messages }}Source:
{{- if eq .Role "system" }} system
{{- else if eq .Role "user" }} user
{{- else if eq .Role "assistant" }} assistant
{{ if .System }}Source: system
{{ .System }} <step> {{ end }}Source: user
{{ .Prompt }} <step> Source: assistant
{{- if not .Response }}
Destination: user
{{- end }}
{{ .Content }} <step> {{ end }}Source: assistant
Destination: user
{{ .Response }} <step>

View File

@@ -1,8 +1,5 @@
{{- range .Messages }}
{{- if eq .Role "system" }}System: {{ .Content }}
{{ continue }}
{{- else if eq .Role "user" }}User:
{{- else if eq .Role "assistant" }}Falcon:
{{- end }}
{{ .Content }}
{{ if .System }}System: {{ .System }}
{{ end }}{{ if .Prompt }}User:
{{ .Prompt }}
{{ end }}Falcon:
{{ .Response }}

View File

@@ -1,16 +1,5 @@
{{- $system := "" }}
{{- range .Messages }}
{{- if eq .Role "system" }}
{{- if not $system }}{{ $system = .Content }}
{{- else }}{{ $system = printf "%s\n\n%s" $system .Content }}
{{- end }}
{{- continue }}
{{- else if eq .Role "user" }}<start_of_turn>user
{{- if $system }}
{{ $system }}
{{- $system = "" }}
{{- end }}
{{- else if eq .Role "assistant" }}<start_of_turn>model
{{- end }}
{{ .Content }}<end_of_turn>
{{ end }}<start_of_turn>model
<start_of_turn>user
{{ if .System }}{{ .System }}
{{ end }}{{ .Prompt }}<end_of_turn>
<start_of_turn>model
{{ .Response }}<end_of_turn>

View File

@@ -1,8 +1,9 @@
{{- range .Messages }}
{{- if eq .Role "system" }}System:
{{- else if eq .Role "user" }}Question:
{{- else if eq .Role "assistant" }}Answer:
{{- end }}
{{ .Content }}
{{ if .System }}System:
{{ .System }}
{{ end }}{{ if .Prompt }}Question:
{{ .Prompt }}
{{ end }}Answer:
{{ .Response }}

View File

@@ -91,10 +91,6 @@
"template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
"name": "llama3-instruct"
},
{
"template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
"name": "llama3-instruct"
},
{
"template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ 'Question:\n' + message['content'] + '\n\n' }}{% elif message['role'] == 'system' %}\n{{ 'System:\n' + message['content'] + '\n\n' }}{% elif message['role'] == 'assistant' %}{{ 'Answer:\n' + message['content'] + '\n\n' }}{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ 'Answer:\n' }}{% endif %}{% endfor %}",
"name": "granite-instruct"

View File

@@ -1,14 +1,6 @@
{{- $system := "" }}[INST] {{ range .Messages }}
{{- if eq .Role "system" }}
{{- if not $system }}{{ $system = .Content }}
{{- else }}{{ $system = printf "%s\n\n%s" $system .Content }}
{{- end }}
{{- else if eq .Role "user" }}<<SYS>>
{{- if $system }}
{{ $system }}
{{ $system = "" }}
{{- end }}<</SYS>>
[INST] <<SYS>>
{{- if .System }}
{{ .System }}
{{ end }}<</SYS>>
{{ .Content }} [/INST]
{{- else if eq .Role "assistant" }} {{ .Content }}</s><s>[INST] {{ end }}
{{- end }}
{{ .Prompt }} [/INST] {{ .Response }}</s><s>

View File

@@ -1,5 +1,7 @@
{{- range .Messages }}<|start_header_id|>{{ .Role }}<|end_header_id|>
{{ if .System }}<|start_header_id|>system<|end_header_id|>
{{ .Content }}<|eot_id|>
{{- end }}<|start_header_id|>assistant<|end_header_id|>
{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
{{ .Response }}<|eot_id|>

View File

@@ -1,17 +1,8 @@
{{- $system := "" }}
{{- range .Messages }}
{{- if eq .Role "system" }}
{{- if not $system }}{{ $system = .Content }}
{{- else }}{{ $system = printf "%s\n\n%s" $system .Content }}
{{- end }}
{{- continue }}
{{- else if eq .Role "user" }}
{{- if $system }}{{ $system }}
{{ if .System }}{{ .System }}
{{ $system = "" }}
{{- end }}@@ Instruction
{{- else if eq .Role "assistant" }}@@ Response
{{- end }}
{{ .Content }}
{{ end }}{{ if .Prompt }}@@ Instruction
{{ .Prompt }}
{{ end }}@@ Response
{{ .Response }}

View File

@@ -1,6 +1,3 @@
[INST] {{ range $index, $_ := .Messages }}
{{- if eq .Role "system" }}{{ .Content }}
[INST] {{ if .System }}{{ .System }}
{{ else if eq .Role "user" }}{{ .Content }}[/INST]
{{- else if eq .Role "assistant" }} {{ .Content }}</s>[INST] {{ end }}
{{- end }}
{{ end }}{{ .Prompt }}[/INST] {{ .Response }}</s>

View File

@@ -1,6 +1 @@
{{- range .Messages }}GPT4 Correct
{{- if eq .Role "system" }} System:
{{- else if eq .Role "user" }} User:
{{- else if eq .Role "assistant" }} Assistant:
{{- end }} {{ .Content }}<|end_of_turn|>
{{- end }}GPT4 Correct Assistant:
{{ if .System }}GPT4 Correct System: {{ .System }}<|end_of_turn|>{{ end }}GPT4 Correct User: {{ .Prompt }}<|end_of_turn|>GPT4 Correct Assistant: {{ .Response }}<|end_of_turn|>

View File

@@ -1,3 +1,6 @@
{{- range .Messages }}<|{{ .Role }}|>
{{ .Content }}<|end|>
{{ if .System }}<|system|>
{{ .System }}<|end|>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|end|>
{{ end }}<|assistant|>
{{ .Response }}<|end|>

View File

@@ -1,11 +1,9 @@
{{- range .Messages }}
{{- if eq .Role "system" }}### System:
{{- else if eq .Role "user" }}### User:
{{- else if eq .Role "assistant" }}### Assistant:
{{ .Content }}</s>
{{ if .System }}### System:
{{ .System }}
{{ continue }}
{{- end }}
{{ .Content }}
{{ end }}{{ if .Prompt }}### User:
{{ .Prompt }}
{{ end }}### Assistant:
{{ .Response }}</s>

View File

@@ -1,18 +1,8 @@
{{- $system := "" }}
{{- range .Messages }}
{{- if eq .Role "system" }}
{{- if not $system }}{{ $system = .Content }}
{{- else }}{{ $system = printf "%s\n\n%s" $system .Content }}
{{- end }}
{{- else if eq .Role "user" }}
{{- if $system }}{{ $system }}
{{ if .System }}{{ .System }}
{{ $system = "" }}
{{- end }}### Instruction
{{ .Content }}
{{ end }}{{ if .Prompt }}### Instruction
{{ .Prompt }}
{{ else if eq .Role "assistant" }}### Response
{{ .Content }}<|endoftext|>
{{ end }}### Response
{{ .Response }}<|endoftext|>
{{ end }}
{{- end }}### Response

View File

@@ -1,14 +1,4 @@
{{- $system := "" }}
{{- range .Messages }}
{{- if eq .Role "system" }}
{{- if not $system }}{{ $system = .Content }}
{{- else }}{{ $system = printf "%s\n\n%s" $system .Content }}
{{- end }}
{{- else if eq .Role "user" }}
{{- if $system }}{{ $system }}
{{ if .System }}{{ .System }}
{{ $system = "" }}
{{- end }}USER: {{ .Content }}
{{ else if eq .Role "assistant" }}ASSISTANT: {{ .Content }}</s>
{{ end }}
{{- end }}ASSISTANT:
{{ end }}{{ if .Prompt }}USER: {{ .Prompt }}
{{ end }}ASSISTANT: {{ .Response }}</s>

View File

@@ -1,3 +1,6 @@
{{- range .Messages }}<|{{ .Role }}|>
{{ .Content }}</s>
{{ if .System }}<|system|>
{{ .System }}</s>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}</s>
{{ end }}<|assistant|>
{{ .Response }}</s>