Compare commits

..

2 Commits

Author SHA1 Message Date
Michael Yang
2d7e8e82ab tmp 2025-04-02 16:58:04 -07:00
Michael Yang
c8245f3ef3 fs: move ml.Config to fs package 2025-04-02 16:57:55 -07:00
56 changed files with 1282 additions and 2051 deletions

View File

@@ -51,7 +51,7 @@ see if the change were accepted.
The title should look like:
<package>: <short description>
<package>: <short description>
The package is the most affected Go package. If the change does not affect Go
code, then use the directory name instead. Changes to a single well-known

View File

@@ -104,8 +104,8 @@ COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm

View File

@@ -291,7 +291,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
- [big-AGI](https://github.com/enricoros/big-AGI)
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
- [Amica](https://github.com/semperai/amica)
- [chatd](https://github.com/BruceMacD/chatd)
@@ -348,7 +348,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
@@ -440,7 +440,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull and download models from Ollama Registry in your terminal.
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
### Apple Vision Pro

View File

@@ -163,65 +163,19 @@ func (t *ToolCallFunctionArguments) String() string {
type Tool struct {
Type string `json:"type"`
Items any `json:"items,omitempty"`
Function ToolFunction `json:"function"`
}
// PropertyType can be either a string or an array of strings
type PropertyType []string
// UnmarshalJSON implements the json.Unmarshaler interface
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
// Try to unmarshal as a string first
var s string
if err := json.Unmarshal(data, &s); err == nil {
*pt = []string{s}
return nil
}
// If that fails, try to unmarshal as an array of strings
var a []string
if err := json.Unmarshal(data, &a); err != nil {
return err
}
*pt = a
return nil
}
// MarshalJSON implements the json.Marshaler interface
func (pt PropertyType) MarshalJSON() ([]byte, error) {
if len(pt) == 1 {
// If there's only one type, marshal as a string
return json.Marshal(pt[0])
}
// Otherwise marshal as an array
return json.Marshal([]string(pt))
}
// String returns a string representation of the PropertyType
func (pt PropertyType) String() string {
if len(pt) == 0 {
return ""
}
if len(pt) == 1 {
return pt[0]
}
return fmt.Sprintf("%v", []string(pt))
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
} `json:"parameters"`
}

View File

@@ -231,144 +231,3 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
}
}
}
func TestToolFunction_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
wantErr string
}{
{
name: "valid enum with same types",
input: `{
"name": "test",
"description": "test function",
"parameters": {
"type": "object",
"required": ["test"],
"properties": {
"test": {
"type": "string",
"description": "test prop",
"enum": ["a", "b", "c"]
}
}
}
}`,
wantErr: "",
},
{
name: "empty enum array",
input: `{
"name": "test",
"description": "test function",
"parameters": {
"type": "object",
"required": ["test"],
"properties": {
"test": {
"type": "string",
"description": "test prop",
"enum": []
}
}
}
}`,
wantErr: "",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var tf ToolFunction
err := json.Unmarshal([]byte(tt.input), &tf)
if tt.wantErr != "" {
require.Error(t, err)
assert.Contains(t, err.Error(), tt.wantErr)
} else {
require.NoError(t, err)
}
})
}
}
func TestPropertyType_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
expected PropertyType
}{
{
name: "string type",
input: `"string"`,
expected: PropertyType{"string"},
},
{
name: "array of types",
input: `["string", "number"]`,
expected: PropertyType{"string", "number"},
},
{
name: "array with single type",
input: `["string"]`,
expected: PropertyType{"string"},
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var pt PropertyType
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
t.Errorf("Unexpected error: %v", err)
}
if len(pt) != len(test.expected) {
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
}
for i, v := range pt {
if v != test.expected[i] {
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
}
}
})
}
}
func TestPropertyType_MarshalJSON(t *testing.T) {
tests := []struct {
name string
input PropertyType
expected string
}{
{
name: "single type",
input: PropertyType{"string"},
expected: `"string"`,
},
{
name: "multiple types",
input: PropertyType{"string", "number"},
expected: `["string","number"]`,
},
{
name: "empty type",
input: PropertyType{},
expected: `[]`,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
data, err := json.Marshal(test.input)
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
if string(data) != test.expected {
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
}
})
}
}

View File

@@ -1381,6 +1381,7 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_NOPRUNE"],
envVars["OLLAMA_ORIGINS"],
envVars["OLLAMA_SCHED_SPREAD"],
envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_KV_CACHE_TYPE"],
envVars["OLLAMA_LLM_LIBRARY"],

View File

@@ -182,10 +182,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
var conv ModelConverter
switch p.Architectures[0] {
case "LlamaForCausalLM":
case "LlamaForCausalLM", "MistralForCausalLM":
conv = &llamaModel{}
case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{}
case "MixtralForCausalLM":
conv = &mixtralModel{}
case "GemmaForCausalLM":

View File

@@ -1,190 +0,0 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3Model struct {
ModelParameters
ImageTokenIndex uint32 `json:"image_token_index"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
VisionFeatureLayer int32 `json:"vision_feature_layer"`
TextModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
ImageSize uint32 `json:"image_size"`
NumChannels uint32 `json:"num_channels"`
PatchSize uint32 `json:"patch_size"`
HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"`
} `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"`
}
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
// Vision configuration
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
// Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
if p.ProjectorHiddenAct != "" {
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
}
return kv
}
func (p *mistral3Model) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
t.SetRepacker(p.repack)
}
}
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3Model) Replacements() []string {
return []string{
"language_model.model.norm", "output_norm",
"language_model.model.", "",
"language_model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, ".attn_q.weight") {
heads = p.TextModel.NumAttentionHeads
} else if strings.HasSuffix(name, ".attn_k.weight") {
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -62,7 +62,10 @@ func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
Pattern string
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
}{
{"*.safetensors", parseSafetensors},
{"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors},
{"adapters.safetensors", parseSafetensors},
{"adapter_model.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch},

View File

@@ -26,6 +26,7 @@ When you run Ollama on **Windows**, there are a few different locations. You can
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
@@ -68,6 +69,10 @@ If you run into problems on Linux and want to install an older version, or you'd
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
```
## Linux tmp noexec
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
## Linux docker
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.

View File

@@ -62,6 +62,7 @@ the explorer window by hitting `<Ctrl>+R` and type in:
- *upgrade.log* contains log output for upgrades
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` contains models and configuration
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
## Uninstall

88
fs/fs.go Normal file
View File

@@ -0,0 +1,88 @@
package fs
import (
"fmt"
"io"
"log/slog"
"os"
"github.com/ollama/ollama/fs/ggml"
)
type DType int
type Model struct {
KV Config
Tensors map[string]TensorReader
}
func (m Model) LogValue() slog.Value {
return slog.GroupValue(
slog.String("architecture", m.KV.Architecture()),
)
}
type Tensor interface {
Name() string
Shape() []int
DType() DType
Size() int
}
type TensorReader interface {
Tensor
io.Reader
}
type shimTensorReader struct {
internal *ggml.Tensor
*io.SectionReader
}
func (t *shimTensorReader) Name() string {
return t.internal.Name
}
func (t *shimTensorReader) Shape() []int {
shape := make([]int, len(t.internal.Shape))
for i, s := range t.internal.Shape {
shape[i] = int(s)
}
return shape
}
func (t *shimTensorReader) Size() int {
return int(t.internal.Size())
}
func (t *shimTensorReader) DType() DType {
return DType(t.internal.Kind)
}
func ReadFrom(f *os.File) (*Model, error) {
bts, err := io.ReadAll(io.NewSectionReader(f, 0, 4))
if err != nil {
return nil, err
}
switch ggml.DetectContentType(bts[:4]) {
case "gguf":
c, _, err := ggml.Decode(f, -1)
if err != nil {
return nil, err
}
tensors := make(map[string]TensorReader, len(c.Tensors().Items()))
for _, t := range c.Tensors().Items() {
tensors[t.Name] = &shimTensorReader{
internal: t,
SectionReader: io.NewSectionReader(f, int64(c.Tensors().Offset+t.Offset), int64(t.Size())),
}
}
return &Model{KV: c.KV(), Tensors: tensors}, nil
default:
return nil, fmt.Errorf("unsupported file type")
}
}

View File

@@ -134,10 +134,7 @@ func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
}
func (kv KV) OllamaEngineRequired() bool {
return slices.Contains([]string{
"gemma3",
"mistral3",
}, kv.Architecture())
return kv.Architecture() == "gemma3"
}
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
@@ -641,7 +638,7 @@ func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
embeddingLength*numPatches*maxNumTiles +
9*embeddingLength*numPaddedPatches*maxNumTiles +
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
case "gemma3", "mistral3":
case "gemma3":
graphSize = 4 * (imageSize*imageSize*numChannels +
embeddingLength*patchSize +
numPatches*numPatches*headCount)

View File

@@ -52,8 +52,8 @@ func TestMaxQueue(t *testing.T) {
embedCtx := ctx
var genwg sync.WaitGroup
genwg.Add(1)
go func() {
genwg.Add(1)
defer genwg.Done()
slog.Info("Starting generate request")
DoGenerate(ctx, t, client, req, resp, 45*time.Second, 5*time.Second)
@@ -71,8 +71,8 @@ func TestMaxQueue(t *testing.T) {
counterMu := sync.Mutex{}
var embedwg sync.WaitGroup
for i := 0; i < threadCount; i++ {
embedwg.Add(1)
go func(i int) {
embedwg.Add(1)
defer embedwg.Done()
slog.Info("embed started", "id", i)
embedReq := api.EmbeddingRequest{

View File

@@ -56,9 +56,8 @@ type Cache interface {
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs. reserve is to preallocate memory
// without actually storing data in the cache.
StartForward(ctx ml.Context, batch input.Batch, reserve bool) error
// entry in positions and seqs.
StartForward(ctx ml.Context, batch input.Batch) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)

View File

@@ -146,60 +146,51 @@ func (c *Causal) Close() {
}
}
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch) error {
c.curBatchSize = len(batch.Positions)
c.curSequences = batch.Sequences
c.curPositions = batch.Positions
c.opts.Except = nil
if !reserve {
c.updateSlidingWindow()
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range batch.Positions {
seq := batch.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
} else {
// If we are reserving memory, don't update any of the cache metadata but set the size
// to the worst case.
c.curLoc = 0
c.curCellRange.min = 0
c.curCellRange.max = len(c.cells) - 1
}
c.updateSlidingWindow()
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range batch.Positions {
seq := batch.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
c.curMask, err = c.buildMask(ctx)
return err

View File

@@ -5,6 +5,7 @@ import (
"slices"
"testing"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
@@ -280,7 +281,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs}, false)
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs})
if err != nil {
panic(err)
}
@@ -314,7 +315,7 @@ func TestCanResume(t *testing.T) {
err := cache.StartForward(context, input.Batch{
Positions: []int32{0, 1, 2, 3},
Sequences: []int{0, 0, 0, 0},
}, false)
})
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
@@ -341,7 +342,7 @@ func TestCanResume(t *testing.T) {
err = cache.StartForward(context, input.Batch{
Positions: []int32{4, 5},
Sequences: []int{0, 0},
}, false)
})
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
@@ -371,8 +372,14 @@ func TestCanResume(t *testing.T) {
}
}
type testBackend struct {
ml.Backend
type testBackend struct{}
func (b *testBackend) Config() fs.Config {
panic("not implemented")
}
func (b *testBackend) Get(name string) ml.Tensor {
panic("not implemented")
}
func (b *testBackend) NewContext() ml.Context {
@@ -383,10 +390,12 @@ func (b *testBackend) NewContextSize(int) ml.Context {
return &testContext{}
}
type testContext struct {
ml.Context
func (b *testBackend) SystemInfo() string {
return "not implemented"
}
type testContext struct{}
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
total := 0
@@ -431,8 +440,6 @@ func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) Reserve() error { return nil }
func (c *testContext) MaxGraphNodes() int {
return 10
}
@@ -440,8 +447,6 @@ func (c *testContext) MaxGraphNodes() int {
func (c *testContext) Close() {}
type testTensor struct {
ml.Tensor
dtype ml.DType
elementSize int
data []float32
@@ -469,20 +474,16 @@ func (t *testTensor) DType() ml.DType {
return t.dtype
}
func (t *testTensor) Bytes() []byte {
panic("not implemented")
}
func (t *testTensor) Floats() []float32 {
out := make([]float32, len(t.data))
copy(out, t.data)
return out
}
func (t *testTensor) Neg(ctx ml.Context) ml.Tensor {
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
for i := range out.data {
out.data[i] = -t.data[i]
}
return out
}
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
@@ -493,6 +494,66 @@ func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return out
}
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool1D(ctx ml.Context, k, s, p int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
offset /= t.elementSize
@@ -515,6 +576,38 @@ func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
return view
}
func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
copy(t2.(*testTensor).data, t.data)
return nil

View File

@@ -27,11 +27,6 @@ type EncoderCache struct {
// anything will be stored)
curPos int32
// curReserve indicates that this forward pass is only for
// memory reservation and we should not update our metadata
// based on it.
curReserve bool
// ** cache metadata **
// was something stored in the cache?
@@ -88,14 +83,12 @@ func (c *EncoderCache) Close() {
}
}
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch) error {
// We work with the most recent image
if len(batch.Multimodal) > 0 {
c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
}
c.curReserve = reserve
return nil
}
@@ -112,10 +105,8 @@ func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
}
func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
if !c.curReserve {
c.encoderPos = c.curPos
c.encoderCached = true
}
c.encoderPos = c.curPos
c.encoderCached = true
if c.config.PermutedV {
value = value.Permute(ctx, 1, 2, 0, 3)

View File

@@ -41,9 +41,9 @@ func (c *WrapperCache) Close() {
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, batch, reserve)
err := cache.StartForward(ctx, batch)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {

View File

@@ -65,7 +65,6 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_CHAMELEON, "chameleon" },
{ LLM_ARCH_SOLAR, "solar" },
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -1372,22 +1371,6 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
},
},
{
LLM_ARCH_MISTRAL3,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
}
},
{
LLM_ARCH_UNKNOWN,
{

View File

@@ -69,7 +69,6 @@ enum llm_arch {
LLM_ARCH_CHAMELEON,
LLM_ARCH_SOLAR,
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_MISTRAL3,
LLM_ARCH_UNKNOWN,
};

View File

@@ -1277,7 +1277,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
} break;
case LLM_ARCH_MISTRAL3: break;
default: throw std::runtime_error("unsupported model architecture");
}
@@ -3538,7 +3537,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
} break;
case LLM_ARCH_MISTRAL3: break;
default:
throw std::runtime_error("unknown architecture");
}
@@ -4017,7 +4015,6 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_SOLAR:
case LLM_ARCH_MISTRAL3:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2

View File

@@ -738,8 +738,13 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// don't quantize vision stuff
quantize &= name.find("v.") == std::string::npos;
quantize &= name.find("mm.") == std::string::npos;
quantize &= name.find("v.blk.") == std::string::npos;
quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
quantize &= name.find("v.position_embedding.weight") == std::string::npos;
quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View File

@@ -1,19 +1,17 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Patrick Devine <patrick@infrahq.com>
Date: Fri, 14 Mar 2025 16:33:23 -0700
Subject: [PATCH] add model quantizations
Subject: [PATCH] gemma3 quantization
- gemma3
- mistral3
---
src/llama-arch.cpp | 36 ++++++++++++++++++++++++++++++++++++
src/llama-arch.h | 2 ++
src/llama-model.cpp | 10 ++++++++++
src/llama-quant.cpp | 4 ++++
4 files changed, 52 insertions(+)
src/llama-arch.cpp | 19 +++++++++++++++++++
src/llama-arch.h | 1 +
src/llama-model.cpp | 7 +++++++
src/llama-quant.cpp | 9 +++++++++
4 files changed, 36 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index b6f20286..13a0a988 100644
index b6f20286..b443fcd3 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
@@ -24,15 +22,7 @@ index b6f20286..13a0a988 100644
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -64,6 +65,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_CHAMELEON, "chameleon" },
{ LLM_ARCH_SOLAR, "solar" },
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
+ { LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -804,6 +806,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -804,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
},
},
@@ -57,31 +47,8 @@ index b6f20286..13a0a988 100644
{
LLM_ARCH_STARCODER2,
{
@@ -1352,6 +1372,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_POS_NET_ATTN_OUT, "posnet.%d.attn_output" },
},
},
+ {
+ LLM_ARCH_MISTRAL3,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ }
+ },
{
LLM_ARCH_UNKNOWN,
{
diff --git a/src/llama-arch.h b/src/llama-arch.h
index ec742224..8476ae0a 100644
index ec742224..aad92a5d 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -41,6 +41,7 @@ enum llm_arch {
@@ -92,16 +59,8 @@ index ec742224..8476ae0a 100644
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
@@ -68,6 +69,7 @@ enum llm_arch {
LLM_ARCH_CHAMELEON,
LLM_ARCH_SOLAR,
LLM_ARCH_WAVTOKENIZER_DEC,
+ LLM_ARCH_MISTRAL3,
LLM_ARCH_UNKNOWN,
};
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index ab1a07d1..db4f2685 100644
index ab1a07d1..70183041 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -114,15 +73,7 @@ index ab1a07d1..db4f2685 100644
case LLM_ARCH_STARCODER2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -1274,6 +1277,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
} break;
+ case LLM_ARCH_MISTRAL3: break;
default: throw std::runtime_error("unsupported model architecture");
}
@@ -2537,6 +2541,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -2537,6 +2540,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
@@ -132,23 +83,7 @@ index ab1a07d1..db4f2685 100644
case LLM_ARCH_STARCODER2:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -3531,6 +3538,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
} break;
+ case LLM_ARCH_MISTRAL3: break;
default:
throw std::runtime_error("unknown architecture");
}
@@ -4009,6 +4017,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_SOLAR:
+ case LLM_ARCH_MISTRAL3:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
@@ -4029,6 +4038,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
@@ -4029,6 +4035,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
case LLM_ARCH_PHIMOE:
case LLM_ARCH_GEMMA:
case LLM_ARCH_GEMMA2:
@@ -157,16 +92,21 @@ index ab1a07d1..db4f2685 100644
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:
diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
index 6eb1da08..ebcbafa1 100644
index 6eb1da08..d2f3a510 100644
--- a/src/llama-quant.cpp
+++ b/src/llama-quant.cpp
@@ -737,6 +737,10 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
@@ -737,6 +737,15 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
+ // don't quantize vision stuff
+ quantize &= name.find("v.") == std::string::npos;
+ quantize &= name.find("mm.") == std::string::npos;
+ quantize &= name.find("v.blk.") == std::string::npos;
+
+ quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
+ quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
+ quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
+ quantize &= name.find("v.position_embedding.weight") == std::string::npos;
+ quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
+
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);

View File

@@ -1,75 +0,0 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <git@mxy.ng>
Date: Wed, 2 Apr 2025 15:26:15 -0700
Subject: [PATCH] metal: add op_neg
---
ggml/src/ggml-metal/ggml-metal.m | 15 +++++++++++++++
ggml/src/ggml-metal/ggml-metal.metal | 7 +++++++
2 files changed, 22 insertions(+)
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index e4c093f9..d8422f1b 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -423,6 +423,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_SQRT,
GGML_METAL_KERNEL_TYPE_SIN,
GGML_METAL_KERNEL_TYPE_COS,
+ GGML_METAL_KERNEL_TYPE_NEG,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
@@ -1039,6 +1040,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
@@ -1202,6 +1204,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_ELU:
+ case GGML_UNARY_OP_NEG:
return ggml_is_contiguous(op->src[0]);
default:
return false;
@@ -1873,6 +1876,18 @@ static void ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
+ case GGML_UNARY_OP_NEG:
+ {
+ id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
+
+ [encoder setComputePipelineState:pipeline];
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
+
+ const int64_t n = ggml_nelements(dst);
+
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
+ } break;
default:
{
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
index f38909d0..bb0ff668 100644
--- a/ggml/src/ggml-metal/ggml-metal.metal
+++ b/ggml/src/ggml-metal/ggml-metal.metal
@@ -945,6 +945,13 @@ kernel void kernel_cos(
dst[tpig] = cos(src0[tpig]);
}
+kernel void kernel_neg(
+ device const float * src0,
+ device float * dst,
+ uint tpig[[thread_position_in_grid]]) {
+ dst[tpig] = -src0[tpig];
+}
+
kernel void kernel_sum_rows(
device const float * src0,
device float * dst,

View File

@@ -675,32 +675,9 @@ type CompletionRequest struct {
Grammar string // set before sending the request to the subprocess
}
// DoneReason represents the reason why a completion response is done
type DoneReason int
const (
// DoneReasonStop indicates the completion stopped naturally
DoneReasonStop DoneReason = iota
// DoneReasonLength indicates the completion stopped due to length limits
DoneReasonLength
// DoneReasonConnectionClosed indicates the completion stopped due to the connection being closed
DoneReasonConnectionClosed
)
func (d DoneReason) String() string {
switch d {
case DoneReasonLength:
return "length"
case DoneReasonStop:
return "stop"
default:
return "" // closed
}
}
type CompletionResponse struct {
Content string `json:"content"`
DoneReason DoneReason `json:"done_reason"`
DoneReason string `json:"done_reason"`
Done bool `json:"done"`
PromptEvalCount int `json:"prompt_eval_count"`
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
@@ -809,6 +786,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
continue
}
// slog.Debug("got line", "line", string(line))
evt, ok := bytes.CutPrefix(line, []byte("data: "))
if !ok {
evt = line

View File

@@ -97,13 +97,6 @@ type Context interface {
Forward(...Tensor) Context
Compute(...Tensor)
// Reserve is analogous to Compute but rather than executing a
// graph, simply preallocates memory. Typically called with a
// worst case graph to ensure all resources are available for
// for future inference.
Reserve() error
MaxGraphNodes() int
Close()
@@ -125,7 +118,6 @@ type Tensor interface {
Bytes() []byte
Floats() []float32
Neg(ctx Context) Tensor
Add(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
@@ -140,10 +132,7 @@ type Tensor interface {
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
Sin(ctx Context) Tensor
Cos(ctx Context) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor
SILU(ctx Context) Tensor
@@ -158,13 +147,9 @@ type Tensor interface {
Unpad(ctx Context, shape ...int) Tensor
Stack(ctx Context, dim int, s ...Tensor) Tensor
// Repeat repeats the tensor n times along dimension dim
Repeat(ctx Context, dim, n int) Tensor
Concat(ctx Context, t2 Tensor, dim int) Tensor
Rows(ctx Context, t2 Tensor) Tensor
Copy(ctx Context, t2 Tensor) Tensor
Duplicate(ctx Context) Tensor
}
// ScaledDotProductAttention implements a fused attention
@@ -229,7 +214,7 @@ func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeF16, DTypeQ80, DTypeQ40:
f32 := ctx.Input().Empty(DTypeF32, t.Shape()...)
f32 := ctx.Empty(DTypeF32, t.Shape()...)
f32 = t.Copy(ctx, f32)
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)

View File

@@ -9,6 +9,7 @@ package ggml
import "C"
import (
"bytes"
"context"
"errors"
"fmt"
@@ -20,6 +21,7 @@ import (
"slices"
"strconv"
"strings"
"sync"
"sync/atomic"
"unicode"
"unsafe"
@@ -43,12 +45,8 @@ func devices() []*C.struct_ggml_backend_device {
}
type Backend struct {
meta *fsggml.GGML
sched *C.struct_ggml_backend_sched
schedBackends []*C.struct_ggml_backend
schedBufts []*C.struct_ggml_backend_buffer_type
meta *fsggml.GGML
sched *C.struct_ggml_backend_sched
tensors map[string]*C.struct_ggml_tensor
// input is the backend used for inputs
@@ -286,10 +284,6 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
if b == nil {
return nil, fmt.Errorf("unable to allocate memory from device %v for model weights", C.GoString(C.ggml_backend_buft_name(bt)))
}
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = b
}
@@ -308,6 +302,11 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
var doneBytes atomic.Uint64
totalBytes := uint64(n) - meta.Tensors().Offset
pool := sync.Pool{
New: func() any {
return new(bytes.Buffer)
},
}
g, ctx := errgroup.WithContext(ctx)
g.SetLimit(runtime.GOMAXPROCS(0))
@@ -328,27 +327,33 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
tts[i] = tt
}
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
// seeking around within an FD shared between all goroutines.
file, err := os.Open(r.Name())
if err != nil {
return err
}
defer file.Close()
sr := io.NewSectionReader(file, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
bts := make([]byte, 128*format.KibiByte)
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
// bts := make([]byte, 128*format.KibiByte)
var s uint64
for s < t.Size() {
n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
if err != nil {
b := pool.Get().(*bytes.Buffer)
b.Reset()
// n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))])
// if err != nil {
// return err
// }
n, err := io.CopyN(b, sr, 256*format.KibiByte)
if n > 0 {
} else if errors.Is(err, io.EOF) {
break
} else if err != nil {
return err
}
bts := b.Bytes()
for _, tt := range tts {
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n))
}
pool.Put(b)
s += uint64(n)
if params.Progress != nil {
@@ -394,6 +399,8 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
schedBackends = append(schedBackends, b)
schedBufts = append(schedBufts, bt)
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
if C.ggml_backend_is_cpu(b) {
// set number of threads for cpu backend
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
@@ -412,9 +419,7 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
C.size_t(maxGraphNodes),
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
),
schedBackends: schedBackends,
schedBufts: schedBufts,
input: deviceBufferTypes[input.d],
input: deviceBufferTypes[input.d],
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
m := make(map[int]*C.struct_ggml_backend_buffer_type)
for i, layer := range layers {
@@ -539,24 +544,6 @@ func (c Context) Compute(tensors ...ml.Tensor) {
}
}
func (c Context) Reserve() error {
if !C.ggml_backend_sched_reserve(c.b.sched, c.graph) {
C.ggml_backend_sched_reset(c.b.sched)
return errors.New("failed to reserve graph")
}
slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
for i := range c.b.schedBackends {
size := C.ggml_backend_sched_get_buffer_size(c.b.sched, c.b.schedBackends[i])
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
"size", format.HumanBytes2(uint64(size)))
}
C.ggml_backend_sched_reset(c.b.sched)
return nil
}
func (c Context) MaxGraphNodes() int {
return c.maxGraphNodes
}
@@ -574,9 +561,9 @@ func pad(length, pad C.size_t) C.size_t {
return ((length + pad - 1) / pad) * pad
}
func (c Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
if c.buft == nil {
panic("set Input or Layer before creating tensors")
panic("set Input, Output, or Layer before creating tensors")
}
var cdtype uint32
@@ -597,7 +584,7 @@ func (c Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}, nil
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
} else if len(shape) > 4 {
panic("unsupported number of dimensions")
}
@@ -611,29 +598,16 @@ func (c Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
if b == nil {
return nil, fmt.Errorf("unable to allocate %v from device %v for new tensor", format.HumanBytes2(uint64(size)), C.GoString(C.ggml_backend_buft_name(c.buft)))
}
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}, nil
return &Tensor{b: c.b, t: t}
}
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
t, err := c.newTensor(dtype, shape)
if err != nil {
panic(err)
}
return t
return c.newTensor(dtype, shape)
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t, err := c.newTensor(dtype, shape)
if err != nil {
panic(err)
}
t := c.newTensor(dtype, shape)
C.ggml_set_zero(t.(*Tensor).t)
return t
}
@@ -661,11 +635,7 @@ func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
return nil, err
}
t, err := c.newTensor(ml.DTypeF32, shape)
if err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeF32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
@@ -678,11 +648,7 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return nil, err
}
t, err := c.newTensor(ml.DTypeI32, shape)
if err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeI32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
@@ -766,13 +732,6 @@ func (t *Tensor) DType() ml.DType {
}
}
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_neg(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
@@ -780,27 +739,6 @@ func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor {
if dim < 0 || dim >= C.GGML_MAX_DIMS {
panic("invalid dimension")
}
shape := make([]C.int64_t, C.GGML_MAX_DIMS)
for i := range C.GGML_MAX_DIMS {
if i == dim {
shape[i] = C.int64_t(t.Dim(i) * n)
} else {
shape[i] = C.int64_t(t.Dim(i))
}
}
tmpl := C.ggml_new_tensor(ctx.(*Context).ctx, t.t._type, C.int(len(shape)), unsafe.SliceData(shape))
return &Tensor{
b: t.b,
t: C.ggml_repeat(ctx.(*Context).ctx, t.t, tmpl),
}
}
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
if len(s) > 0 {
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
@@ -937,20 +875,6 @@ func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
}
}
func (t *Tensor) Sin(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_sin(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Cos(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cos(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1039,13 +963,6 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
}
}
func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_im2col(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1), true, C.GGML_TYPE_F32),
}
}
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
@@ -1114,10 +1031,3 @@ func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.T
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
}
}
func (t *Tensor) Duplicate(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_dup(ctx.(*Context).ctx, t.t),
}
}

View File

@@ -3083,13 +3083,6 @@ kernel void kernel_cos(
dst[tpig] = cos(src0[tpig]);
}
kernel void kernel_neg(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = -src0[tpig];
}
kernel void kernel_sum_rows(
device const float * src0,
device float * dst,

View File

@@ -423,7 +423,6 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_SQRT,
GGML_METAL_KERNEL_TYPE_SIN,
GGML_METAL_KERNEL_TYPE_COS,
GGML_METAL_KERNEL_TYPE_NEG,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
@@ -1040,7 +1039,6 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQRT, sqrt, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
@@ -1204,7 +1202,6 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_NEG:
return ggml_is_contiguous(op->src[0]);
default:
return false;
@@ -1876,18 +1873,6 @@ static void ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_UNARY_OP_NEG:
{
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NEG].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst);
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
default:
{
GGML_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));

View File

@@ -945,13 +945,6 @@ kernel void kernel_cos(
dst[tpig] = cos(src0[tpig]);
}
kernel void kernel_neg(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = -src0[tpig];
}
kernel void kernel_sum_rows(
device const float * src0,
device float * dst,

273
ml/backend/ggml/ggml2.go Normal file
View File

@@ -0,0 +1,273 @@
package ggml
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"
import (
"bytes"
"context"
"errors"
"io"
"log/slog"
"runtime"
"sync"
"unsafe"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"golang.org/x/sync/errgroup"
)
type backend struct {
gpus, cpus []*C.struct_ggml_backend_device
bufts map[*C.struct_ggml_backend_device][]*C.struct_ggml_backend_buffer_type
ctxs map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context
bbs map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_backend_buffer
readers map[*C.struct_ggml_tensor]io.Reader
reserved map[*C.struct_ggml_context]uint64
onceScheduler sync.Once
scheduler *scheduler
}
var _ ml.Backend2 = (*backend)(nil)
func New2() (ml.Backend2, error) {
ggml.OnceLoad()
var cpus, accels, gpus []*C.struct_ggml_backend_device
for i := range C.ggml_backend_dev_count() {
d := C.ggml_backend_dev_get(C.size_t(i))
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
// only the first cpu device should be used
if len(cpus) > 0 {
continue
}
cpus = append(cpus, d)
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
accels = append(accels, d)
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
gpus = append(gpus, d)
}
}
bufts := make(map[*C.struct_ggml_backend_device][]*C.struct_ggml_backend_buffer_type)
cpu := C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)
for _, d := range append(accels, cpus...) {
bufts[cpu] = append(bufts[cpu], C.ggml_backend_dev_buffer_type(d))
}
for _, d := range gpus {
bufts[d] = append(bufts[d], append([]*C.struct_ggml_backend_buffer_type{C.ggml_backend_dev_buffer_type(d)}, bufts[cpu]...)...)
}
return &backend{
// merge accels and cpus
gpus: gpus,
cpus: append(accels, cpus...),
bufts: bufts,
ctxs: make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context, len(bufts)),
bbs: make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_backend_buffer, len(bufts)),
readers: make(map[*C.struct_ggml_tensor]io.Reader),
reserved: make(map[*C.struct_ggml_context]uint64),
}, nil
}
func (b *backend) Close() {
}
func (b *backend) NewContext() ml.Context {
return &Context{
b: &Backend{
input: b.bufts[b.cpus[0]][0],
output: b.bufts[b.cpus[0]][0],
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
m := make(map[int]*C.struct_ggml_backend_buffer_type)
for i := range 100 {
m[i] = b.bufts[b.gpus[0]][0]
}
return m
}(),
sched: func() *C.struct_ggml_backend_sched {
return b.Scheduler().(*scheduler).s
}(),
maxGraphNodes: 8192,
},
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.ggml_tensor_overhead() * C.size_t(4000),
no_alloc: true,
}),
buft: b.bufts[b.cpus[0]][0],
maxGraphNodes: 8192,
}
}
func (b *backend) Get(tensorReader fs.TensorReader, preferredDevice ml.Device) ml.Tensor {
var ctx *C.struct_ggml_context
var devices []*C.struct_ggml_backend_device
if preferredDevice == ml.GPU {
devices = b.gpus
}
for _, d := range append(devices, b.cpus...) {
var free, total C.size_t
C.ggml_backend_dev_memory(d, &free, &total)
for _, buft := range b.bufts[d] {
if _, ok := b.ctxs[buft]; !ok {
b.ctxs[buft] = C.ggml_init(C.struct_ggml_init_params{
mem_size: C.ggml_tensor_overhead() * C.size_t(1000),
no_alloc: true,
})
}
ctx = b.ctxs[buft]
if free > 0 && b.reserved[ctx]+uint64(tensorReader.Size()) >= uint64(free) {
slog.Info("no space available", "device", C.GoString(C.ggml_backend_dev_name(d)), "free", format.HumanBytes2(uint64(free)), "total", format.HumanBytes2(uint64(total)), "reserve", format.HumanBytes2(b.reserved[ctx]), "size", format.HumanBytes2(uint64(tensorReader.Size())))
continue
}
cname := C.CString(tensorReader.Name())
defer C.free(unsafe.Pointer(cname))
if t := C.ggml_get_tensor(ctx, cname); t != nil {
slog.Info("using existing tensor in buffer type", "name", tensorReader.Name(), "buffer_type", C.GoString(C.ggml_backend_buft_name(buft)))
return &Tensor{t: t}
}
shape := make([]C.int64_t, len(tensorReader.Shape()))
for i, s := range tensorReader.Shape() {
shape[i] = C.int64_t(s)
}
t := C.ggml_new_tensor(ctx, uint32(tensorReader.DType()), C.int(len(tensorReader.Shape())), unsafe.SliceData(shape))
C.ggml_set_name(t, cname)
b.readers[t] = tensorReader
b.reserved[ctx] += uint64(tensorReader.Size())
slog.Info("creating new tensor in buffer type", "name", tensorReader.Name(), "buffer_type", C.GoString(C.ggml_backend_buft_name(buft)), "reserve", format.HumanBytes2(b.reserved[ctx]))
return &Tensor{t: t}
}
}
panic("no device available")
}
func (b *backend) LoadAll(ctx context.Context) error {
// allocate buffers for each context
for buft, ctx := range b.ctxs {
if C.ggml_get_first_tensor(ctx) == nil {
continue
}
bb := C.ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft)
C.ggml_backend_buffer_set_usage(bb, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
b.bbs[buft] = bb
}
for _, bb := range b.bbs {
slog.Info("", "buffer.size", C.ggml_backend_buffer_get_size(bb), "buffer.usage", C.ggml_backend_buffer_get_usage(bb))
}
pool := sync.Pool{
New: func() any {
return new(bytes.Buffer)
},
}
g, ctx := errgroup.WithContext(context.Background())
g.SetLimit(runtime.GOMAXPROCS(0))
for t, r := range b.readers {
g.Go(func() error {
var s uint64
for {
b := pool.Get().(*bytes.Buffer)
b.Reset()
n, err := io.CopyN(b, r, 32*format.KibiByte)
if n > 0 {
} else if errors.Is(err, io.EOF) {
break
} else if err != nil {
return err
}
C.ggml_backend_tensor_set(t, unsafe.Pointer(&b.Bytes()[0]), C.size_t(s), C.size_t(n))
pool.Put(b)
}
return nil
})
}
go func() {
<-ctx.Done()
g.Go(func() error {
return ctx.Err()
})
}()
return g.Wait()
}
type scheduler struct {
s *C.struct_ggml_backend_sched
}
var (
_ ml.Scheduler = (*scheduler)(nil)
_ ml.Reserver = (*scheduler)(nil)
)
func (b *backend) Scheduler() ml.Scheduler {
b.onceScheduler.Do(func() {
devices := append(b.gpus, b.cpus...)
backends := make([]C.ggml_backend_t, len(devices))
bufts := make([]C.ggml_backend_buffer_type_t, len(devices))
for i, device := range devices {
backend := C.ggml_backend_dev_init(device, nil)
buft := C.ggml_backend_get_default_buffer_type(backend)
if d := C.ggml_backend_get_device(backend); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(b.gpus) > 0 {
if hbt := C.ggml_backend_dev_host_buffer_type(b.gpus[0]); hbt != nil {
buft = hbt
}
}
slog.Info("scheduler", "backend", C.GoString(C.ggml_backend_name(backend)), "buffer_type", C.GoString(C.ggml_backend_buft_name(buft)))
backends[i] = backend
bufts[i] = buft
}
maxGraphNodes := max(8192, 1)
b.scheduler = &scheduler{
s: C.ggml_backend_sched_new(
unsafe.SliceData(backends),
unsafe.SliceData(bufts),
C.int(len(backends)),
C.size_t(maxGraphNodes),
C._Bool(len(b.gpus) > 1),
),
}
})
return b.scheduler
}
func (s scheduler) Schedule() {
}
func (s scheduler) Reserve() {
}

25
ml/backend2.go Normal file
View File

@@ -0,0 +1,25 @@
package ml
import (
"context"
"github.com/ollama/ollama/fs"
)
type Device int
const (
CPU Device = iota
GPU
)
type Backend2 interface {
Close()
NewContext() Context
Scheduler() Scheduler
Get(fs.TensorReader, Device) Tensor
LoadAll(context.Context) error
}

11
ml/scheduler.go Normal file
View File

@@ -0,0 +1,11 @@
package ml
// Scheduler is an interface that can be implemented by a Backend to schedule resources.
type Scheduler interface {
Schedule()
}
// Reserver is an optional interface that can be implemented by a Scheduler to reserve resources for the compute graph.
type Reserver interface {
Reserve()
}

View File

@@ -256,16 +256,23 @@ func setPointer(base Base, v reflect.Value, tags []Tag) {
type Tag struct {
Name string
Alternate []string
Root bool
Device ml.Device
}
func ParseTags(s string) (tag Tag) {
parts := strings.Split(s, ",")
if len(parts) > 0 {
tag.Name = parts[0]
tag.Device = ml.GPU
for _, part := range parts[1:] {
if value, ok := strings.CutPrefix(part, "alt:"); ok {
tag.Alternate = append(tag.Alternate, value)
} else if value, ok := strings.CutPrefix(part, "root:"); ok {
tag.Root, _ = strconv.ParseBool(value)
} else if part == "cpu" {
tag.Device = ml.CPU
}
}
}
@@ -299,7 +306,7 @@ func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Ten
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, batch, false)
err := cache.StartForward(ctx, batch)
if err != nil {
return nil, err
}

139
model/model2.go Normal file
View File

@@ -0,0 +1,139 @@
package model
import (
"fmt"
"reflect"
"strconv"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
)
type Model2 struct {
ml.Backend2
Model
}
func New2(cfg *fs.Model, b ml.Backend2) (*Model2, error) {
fn, ok := models[cfg.KV.Architecture()]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", cfg.KV.Architecture())
}
m, err := fn(cfg.KV)
if err != nil {
return nil, err
}
// TODO: load tensors from the model into the backend
v := reflect.ValueOf(m)
v.Elem().Set(temp(b, cfg.Tensors, v.Elem()))
if r, ok := b.Scheduler().(ml.Reserver); ok {
// TODO: build a graph of the model and reserve the necessary resources
r.Reserve()
}
return &Model2{b, m}, nil
}
func temp(b ml.Backend2, tensors map[string]fs.TensorReader, v reflect.Value, tags ...Tag) reflect.Value {
t := v.Type()
if t.Kind() != reflect.Struct {
return v
}
allNil := true
for i := range t.NumField() {
tt := t.Field(i).Type
vv := v.Field(i)
if !vv.CanSet() {
continue
}
tagsCopy := tags
if s := t.Field(i).Tag.Get("gguf"); s != "" {
tag := ParseTags(s)
if tag.Root {
tagsCopy = []Tag{tag}
} else {
tagsCopy = append(tagsCopy, ParseTags(s))
}
}
switch {
case tt == reflect.TypeOf((*ml.Tensor)(nil)).Elem():
var permute func([]Tag) [][]string
permute = func(tags []Tag) (values [][]string) {
if len(tags) < 1 {
return nil
}
values = [][]string{{tags[0].Name}}
for _, alt := range tags[0].Alternate {
values = append(values, []string{alt})
}
for i, value := range values {
for _, rest := range permute(tags[1:]) {
value = append(value, rest...)
}
values[i] = value
}
return values
}
names := permute(tagsCopy)
for _, name := range names {
if tensor, ok := tensors[strings.Join(name, ".")]; ok {
vv.Set(reflect.ValueOf(b.Get(tensor, tags[0].Device)))
break
}
}
case tt.Kind() == reflect.Pointer || tt.Kind() == reflect.Interface:
setPointer2(b, tensors, vv, tagsCopy)
case tt.Kind() == reflect.Slice || tt.Kind() == reflect.Array:
for i := vv.Len() - 1; i >= 0; i-- {
vvv := vv.Index(i)
if vvv.Kind() == reflect.Pointer || vvv.Kind() == reflect.Interface {
setPointer2(b, tensors, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)}))
} else {
vvv.Set(temp(b, tensors, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
}
}
}
if !canNil(tt) || !vv.IsNil() {
allNil = false
}
}
if allNil {
return reflect.Zero(t)
}
return v
}
func setPointer2(b ml.Backend2, tensors map[string]fs.TensorReader, v reflect.Value, tags []Tag) {
vv := v
if v.Kind() == reflect.Interface {
if v.IsNil() {
return
}
vv = vv.Elem()
}
vv = vv.Elem()
if v.IsNil() {
vv = reflect.New(v.Type().Elem()).Elem()
}
if f := temp(b, tensors, vv, tags...); f.CanAddr() {
v.Set(f.Addr())
}
}

View File

@@ -11,7 +11,7 @@ import (
"github.com/ollama/ollama/model/input"
)
type TextConfig struct {
type TextOptions struct {
hiddenSize, numHeads, numKVHeads int
attnKeyLen, attnValLen int
eps, ropeScale float32
@@ -28,7 +28,7 @@ type TextModel struct {
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*TextConfig
*TextOptions
}
const (
@@ -55,7 +55,7 @@ func newTextModel(c fs.Config) *TextModel {
},
),
Layers: make([]TextLayer, numBlocks),
TextConfig: &TextConfig{
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
@@ -84,7 +84,7 @@ type TextSelfAttention struct {
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(2)
@@ -120,12 +120,12 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeBase := m.TextConfig.ropeLocalBase
ropeBase := m.TextOptions.ropeLocalBase
if (layer+1)%gemmaGlobalCacheCount == 0 {
ropeBase = m.TextConfig.ropeGlobalBase
ropeBase = m.TextOptions.ropeGlobalBase
}
return key.RoPE(ctx, shift, nil, uint32(m.TextConfig.attnKeyLen), uint32(2), ropeBase, m.TextConfig.ropeScale), nil
return key.RoPE(ctx, shift, nil, uint32(m.TextOptions.attnKeyLen), uint32(2), ropeBase, m.TextOptions.ropeScale), nil
}
type TextMLP struct {
@@ -134,7 +134,7 @@ type TextMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextConfig) ml.Tensor {
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -148,7 +148,7 @@ type TextLayer struct {
PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
}
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextConfig) ml.Tensor {
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
@@ -173,7 +173,7 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
// set image embeddings
var except []int
@@ -206,7 +206,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)

View File

@@ -23,7 +23,7 @@ type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TokenEmbedding *nn.Embedding `gguf:"token_embd,cpu"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
@@ -61,7 +61,7 @@ func New(c fs.Config) (model.Model, error) {
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
// m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}
@@ -71,7 +71,7 @@ type SelfAttention struct {
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
RopeFactors ml.Tensor `gguf:"rope_freqs.weight,root:true"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
@@ -91,7 +91,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
kqv := nn.Attention(ctx, q, k, v, scaleFactor, nil)
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, kqv)
@@ -154,7 +154,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
// m.Cache.SetLayer(i)
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {

View File

@@ -1,56 +0,0 @@
package mistral3
import (
"image"
_ "image/jpeg"
_ "image/png"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/model/imageproc"
)
type ImageProcessor struct {
imageSize int
patchSize int
numChannels int
longestEdge int
}
func newImageProcessor(c fs.Config) ImageProcessor {
return ImageProcessor{
imageSize: int(c.Uint("vision.image_size", 1540)),
patchSize: int(c.Uint("vision.patch_size", 14)),
numChannels: int(c.Uint("vision.num_channels", 3)),
longestEdge: int(c.Uint("vision.longest_edge", 1540)),
}
}
// ProcessImage prepares an image for the vision model by:
// 1. Compositing transparent images
// 2. Resizing to fit model constraints while preserving aspect ratio
// 3. Normalizing pixel values
// Returns normalized image data and the final size in pixels
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, image.Point, error) {
img = imageproc.Composite(img)
size := img.Bounds().Size()
ratio := max(float64(size.Y)/float64(p.longestEdge), float64(size.X)/float64(p.longestEdge))
if ratio > 1.0 {
size = image.Point{
int(math.Floor(float64(size.X) / ratio)),
int(math.Floor(float64(size.Y) / ratio)),
}
}
patchesX := (size.X-1)/p.patchSize + 1
patchesY := (size.Y-1)/p.patchSize + 1
size = image.Point{
patchesX * p.patchSize,
patchesY * p.patchSize,
}
img = imageproc.Resize(img, size, imageproc.ResizeBilinear)
data := imageproc.Normalize(img, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
return data, size, nil
}

View File

@@ -1,189 +0,0 @@
package mistral3
import (
"bytes"
"image"
"slices"
"sync"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
*TextModel
*VisionModel `gguf:"v,vision"`
*MultiModalProjector `gguf:"mm"`
ImageProcessor
}
// Implement MultimodalProcessor interface
var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
textModel, err := NewTextModel(c)
if err != nil {
return nil, err
}
m := &Model{
TextModel: textModel,
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
MultiModalProjector: newMultiModalProjector(c),
}
m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
return m, nil
}
type PatchMerger struct {
MergingLayer *nn.Linear `gguf:"merging_layer"`
}
func (pm *PatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point, spatialMergeSize int) ml.Tensor {
d := visionOutputs.Dim(0)
imageGrid := visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Reshape(ctx, size.X, size.Y, d)
kernel := ctx.Input().Empty(ml.DTypeF32, spatialMergeSize, spatialMergeSize, d)
patches := kernel.IM2Col(ctx, imageGrid, spatialMergeSize, spatialMergeSize, 0, 0, 1, 1)
reshaped := patches.Reshape(ctx, d*spatialMergeSize*spatialMergeSize, patches.Dim(1)*patches.Dim(2))
return pm.MergingLayer.Forward(ctx, reshaped)
}
type MultiModalProjector struct {
Norm *nn.RMSNorm `gguf:"norm"`
Linear1 *nn.Linear `gguf:"linear_1"`
Linear2 *nn.Linear `gguf:"linear_2"`
PatchMerger *PatchMerger `gguf:"patch_merger"`
spatialMergeSize int
eps float32
patchSize int
}
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, size image.Point) (ml.Tensor, image.Point) {
visionOutputs = p.Norm.Forward(ctx, visionOutputs, p.eps)
patchSizes := image.Point{size.X / p.patchSize, size.Y / p.patchSize}
visionOutputs = p.PatchMerger.Forward(ctx, visionOutputs, patchSizes, p.spatialMergeSize)
visionOutputs = p.Linear1.Forward(ctx, visionOutputs)
visionOutputs = visionOutputs.GELU(ctx)
return p.Linear2.Forward(ctx, visionOutputs), image.Point{patchSizes.X / p.spatialMergeSize, patchSizes.Y / p.spatialMergeSize}
}
func newMultiModalProjector(c fs.Config) *MultiModalProjector {
return &MultiModalProjector{
spatialMergeSize: int(c.Uint("spatial_merge_size", 2)),
eps: c.Float("text_config.rms_norm_eps", 1e-5),
patchSize: int(c.Uint("vision.patch_size", 14)),
}
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, size, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
features, size := m.MultiModalProjector.Forward(ctx, visionOutputs, size)
// split into patches to be sent to the text transformer
parent := imageFeatures{tensor: features}
rows := make([]*imageRow, size.Y)
for i := range rows {
rows[i] = &imageRow{parent: &parent, s: i, shape: []int{features.Dim(0), size.X}}
}
return rows, nil
}
type imageFeatures struct {
tensor ml.Tensor
dataOnce sync.Once
data []float32
}
type imageRow struct {
parent *imageFeatures
s int
shape []int
}
func (r *imageRow) data() []float32 {
n := 1
for _, s := range r.shape {
n *= s
}
return r.parent.data[r.s*n : (r.s+1)*n]
}
// PostTokenize arranges Mistral 3's inputs for the forward pass
// In Mistral 3 and Pixtral, the input patches are arranged as follows:
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
// Each sequence of [IMG]...[IMG] is a set of patches of vision embeddings
// that can be processed together.
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
for _, inp := range inputs {
if inp.Multimodal == nil {
result = append(result, inp)
} else {
inputMultimodal := inp.Multimodal.([]*imageRow)
for i, row := range inputMultimodal {
// [IMG]
result = append(result, input.Input{Token: 10, Multimodal: row, MultimodalHash: inp.MultimodalHash, SameBatch: row.shape[1]})
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.shape[1]-1)...)
if i == len(inputMultimodal)-1 {
// [IMG_END]
result = append(result, input.Input{Token: 13})
} else {
// [IMG_BREAK]
result = append(result, input.Input{Token: 12})
}
}
}
}
return result, nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
if err != nil {
return nil, err
}
outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if err != nil {
return nil, err
}
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}
func init() {
model.Register("mistral3", New)
}

View File

@@ -1,177 +0,0 @@
package mistral3
import (
"fmt"
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type TextOptions struct {
hiddenSize, numHeads, numKVHeads, headDim int
eps, ropeBase, ropeScale float32
ropeDim uint32
}
type TextModel struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*TextOptions
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
ropeType := uint32(0)
headDim := opts.headDim
if headDim == 0 {
headDim = opts.hiddenSize / opts.numHeads
}
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
kqv := nn.Attention(ctx, q, k, v, 1.0/math.Sqrt(float64(headDim)), cache)
kqv = kqv.Reshape(ctx, headDim*opts.numHeads, batchSize)
return sa.Output.Forward(ctx, kqv)
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(ctx, shift, nil, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *SelfAttention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
// In the final layer (outputs != nil), optimize by pruning to just the token positions
// we need logits for.
if outputs != nil {
hiddenState = hiddenState.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)
// image embeddings
for _, image := range batch.Multimodal {
row := image.Multimodal.(*imageRow)
row.parent.dataOnce.Do(func() {
// use a new, throwaway context so the image tensor is not added to the graph
temp := m.Backend().NewContext()
temp.Forward(row.parent.tensor).Compute(row.parent.tensor)
row.parent.data = row.parent.tensor.Floats()
temp.Close()
})
imageFeature, err := ctx.Input().FromFloatSlice(row.data(), row.shape...)
if err != nil {
panic(err)
}
ctx.Forward(imageFeature.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), imageFeature.Dim(0)*imageFeature.Dim(1))))
}
for i, layer := range m.Layers {
cache.SetLayer(i)
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState)
}
func NewTextModel(c fs.Config) (*TextModel, error) {
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
}
textModel := &TextModel{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id", 1)),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id", 2)),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
},
),
Layers: make([]Layer, c.Uint("block_count")),
TextOptions: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
},
}
return textModel, nil
}

View File

@@ -1,186 +0,0 @@
package mistral3
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
var batchSize int = 1
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3)).Contiguous(ctx)
return x2.Neg(ctx).Concat(ctx, x1, 0)
}
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
}
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionModelOptions) ml.Tensor {
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1), batchSize)
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim)), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
return sa.Output.Forward(ctx, attention)
}
type VisionMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type VisionEncoderLayer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *VisionSelfAttention
FFNNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *VisionMLP
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts *VisionModelOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, cos, sin, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = e.FFNNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
type VisionModelOptions struct {
hiddenSize int
numHeads int
headDim int
intermediateSize int
imageSize int
patchSize int
numChannels int
eps float32
ropeBase float32
}
type VisionModel struct {
PatchEmbedding *nn.Conv2D `gguf:"patch_conv"`
EncoderNorm *nn.RMSNorm `gguf:"encoder_norm"`
Layers []VisionEncoderLayer `gguf:"blk"`
*VisionModelOptions
}
func (m *VisionModel) positionalEmbedding(ctx ml.Context, positionIDs ml.Tensor) ml.Tensor {
maxPatchesPerSide := m.imageSize / m.patchSize
frequencies := m.headDim / 2
frequenciesHeight := make([]float32, frequencies/2*maxPatchesPerSide)
frequenciesWidth := make([]float32, frequencies/2*maxPatchesPerSide)
for i := range frequencies {
for j := range maxPatchesPerSide {
frequency := float32(j) / float32(math.Pow(float64(m.ropeBase), float64(i)*2/float64(m.headDim)))
if i%2 == 0 {
frequenciesHeight[i/2*maxPatchesPerSide+j] = frequency
} else {
frequenciesWidth[i/2*maxPatchesPerSide+j] = frequency
}
}
}
h, err := ctx.Input().FromFloatSlice(frequenciesHeight, maxPatchesPerSide, frequencies/2)
if err != nil {
panic(err)
}
w, err := ctx.Input().FromFloatSlice(frequenciesWidth, maxPatchesPerSide, frequencies/2)
if err != nil {
panic(err)
}
h = h.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
w = w.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
h = h.Repeat(ctx, 1, maxPatchesPerSide)
h = h.Reshape(ctx, frequencies/2, maxPatchesPerSide, maxPatchesPerSide).Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
w = w.Repeat(ctx, 2, maxPatchesPerSide)
inverseFrequencies := h.Concat(ctx, w, 0).Reshape(ctx, frequencies, maxPatchesPerSide*maxPatchesPerSide)
inverseFrequencies = inverseFrequencies.Concat(ctx, inverseFrequencies, 0)
return inverseFrequencies.Rows(ctx, positionIDs)
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
numPatchesW := pixelValues.Dim(0) / m.patchSize
numPatchesH := pixelValues.Dim(1) / m.patchSize
numPatches := numPatchesW * numPatchesH
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
hiddenStates = hiddenStates.Reshape(ctx, numPatches, m.hiddenSize)
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
hiddenStates = m.EncoderNorm.Forward(ctx, hiddenStates, m.VisionModelOptions.eps)
// Prepare position IDs for 2D rope
positions := make([]int32, numPatches)
for h := range numPatchesH {
for w := range numPatchesW {
idx := h*numPatchesW + w
positions[idx] = int32(h*m.imageSize/m.patchSize + w)
}
}
positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
if err != nil {
panic(err)
}
positionEmbedding := m.positionalEmbedding(ctx, positionIDs)
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
cos = cos.Reshape(ctx, cos.Dim(0), 1, cos.Dim(1))
sin = sin.Reshape(ctx, sin.Dim(0), 1, sin.Dim(1))
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, m.VisionModelOptions)
}
return hiddenStates
}
func newVisionModel(c fs.Config) *VisionModel {
return &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 24)),
VisionModelOptions: &VisionModelOptions{
hiddenSize: int(c.Uint("vision.embedding_length", 1024)),
numHeads: int(c.Uint("vision.attention.head_count", 16)),
headDim: int(c.Uint("vision.attention.key_length", 64)),
intermediateSize: int(c.Uint("vision.feed_forward_length", 4096)),
imageSize: int(c.Uint("vision.image_size", 1540)),
patchSize: int(c.Uint("vision.patch_size", 14)),
numChannels: int(c.Uint("vision.num_channels", 3)),
eps: c.Float("vision.attention.layer_norm_epsilon", 1e-5),
ropeBase: c.Float("vision.rope.freq_base", 10000.0),
},
}
}

View File

@@ -186,7 +186,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
hiddenState = m.ClassEmbedding.Repeat(ctx, 2, m.numTiles).Concat(ctx, hiddenState, 1)
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, m.numTiles-1)...).Concat(ctx, hiddenState, 1)
hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)

View File

@@ -4,6 +4,5 @@ import (
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/llama"
_ "github.com/ollama/ollama/model/models/mistral3"
_ "github.com/ollama/ollama/model/models/mllama"
)

View File

@@ -0,0 +1,68 @@
package pixtral
import (
"fmt"
"image"
_ "image/jpeg"
_ "image/png"
"io"
"math"
"github.com/ollama/ollama/model/imageproc"
)
func getNumImageTokens(imageSize, patchSize image.Point) image.Point {
return image.Point{
(imageSize.X-1)/patchSize.X + 1,
(imageSize.Y-1)/patchSize.Y + 1,
}
}
func getResizeOutputImageSize(img image.Image, longestEdge int, patchSize image.Point) image.Point {
b := img.Bounds()
le := float64(longestEdge)
ratio := math.Max(float64(b.Max.Y)/le, float64(b.Max.X)/le)
newSize := img.Bounds().Max
if ratio > 1.0 {
newSize = image.Point{
int(math.Ceil(float64(b.Max.X) / ratio)),
int(math.Ceil(float64(b.Max.Y) / ratio)),
}
}
tokens := getNumImageTokens(newSize, patchSize)
return image.Point{
tokens.X * patchSize.X,
tokens.Y * patchSize.Y,
}
}
func resizeImage(img image.Image, format string, longestEdge int, patchSize image.Point) image.Image {
if format == "png" {
img = imageproc.Composite(img)
}
newSize := getResizeOutputImageSize(img, longestEdge, patchSize)
// todo should be ResizeBicubic, but it doesn't exist
return imageproc.Resize(img, newSize, imageproc.ResizeBilinear)
}
func Preprocess(imageData io.Reader) ([]float32, map[string]any, error) {
img, format, err := image.Decode(imageData)
if err != nil {
return nil, nil, fmt.Errorf("failed to decode image: %w", err)
}
longestEdge := 1024
patchSize := image.Point{16, 16}
img = resizeImage(img, format, longestEdge, patchSize)
data := imageproc.Normalize(img, imageproc.ClipDefaultMean, imageproc.ClipDefaultSTD, true, true)
opts := map[string]any{}
return data, opts, nil
}

View File

@@ -0,0 +1,219 @@
package pixtral
import (
"bytes"
"encoding/binary"
"image"
"image/png"
"math"
"os"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestGetNumImageTokens(t *testing.T) {
type numImageTokensCase struct {
ImageSize image.Point
PatchSize image.Point
Expected image.Point
}
cases := []numImageTokensCase{
{
ImageSize: image.Point{1024, 764},
PatchSize: image.Point{16, 16},
Expected: image.Point{64, 48},
},
{
ImageSize: image.Point{800, 600},
PatchSize: image.Point{16, 16},
Expected: image.Point{50, 38},
},
{
ImageSize: image.Point{640, 480},
PatchSize: image.Point{16, 16},
Expected: image.Point{40, 30},
},
{
ImageSize: image.Point{320, 200},
PatchSize: image.Point{16, 16},
Expected: image.Point{20, 13},
},
{
ImageSize: image.Point{1320, 200},
PatchSize: image.Point{16, 16},
Expected: image.Point{83, 13},
},
{
ImageSize: image.Point{2000, 200},
PatchSize: image.Point{16, 16},
Expected: image.Point{125, 13},
},
{
ImageSize: image.Point{10000, 200},
PatchSize: image.Point{16, 16},
Expected: image.Point{625, 13},
},
{
ImageSize: image.Point{1131, 577},
PatchSize: image.Point{16, 16},
Expected: image.Point{71, 37},
},
{
ImageSize: image.Point{16, 16},
PatchSize: image.Point{16, 16},
Expected: image.Point{1, 1},
},
}
for _, c := range cases {
actual := getNumImageTokens(c.ImageSize, c.PatchSize)
if diff := cmp.Diff(actual, c.Expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
}
}
func TestGetResizeOutputImageSize(t *testing.T) {
type resizeCase struct {
Image image.Image
LongestEdge int
PatchSize image.Point
Expected image.Point
}
cases := []resizeCase{
{
Image: image.NewRGBA(image.Rect(0, 0, 1024, 768)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.Point{1024, 768},
},
{
Image: image.NewRGBA(image.Rect(0, 0, 1162, 690)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.Point{1024, 624},
},
{
Image: image.NewRGBA(image.Rect(0, 0, 300, 200)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.Point{304, 208},
},
{
Image: image.NewRGBA(image.Rect(0, 0, 1862, 522)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.Point{1024, 288},
},
}
for _, c := range cases {
actual := getResizeOutputImageSize(c.Image, c.LongestEdge, c.PatchSize)
if diff := cmp.Diff(actual, c.Expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
}
}
func TestResize(t *testing.T) {
type resizeCase struct {
Image image.Image
LongestEdge int
PatchSize image.Point
Expected image.Image
}
cases := []resizeCase{
{
Image: image.NewRGBA(image.Rect(0, 0, 1862, 522)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.NewRGBA(image.Rect(0, 0, 1024, 288)),
},
{
Image: image.NewRGBA(image.Rect(0, 0, 10, 10)),
LongestEdge: 1024,
PatchSize: image.Point{16, 16},
Expected: image.NewRGBA(image.Rect(0, 0, 16, 16)),
},
}
for _, c := range cases {
actual := resizeImage(c.Image, "png", c.LongestEdge, c.PatchSize)
if actual.Bounds() != c.Expected.Bounds() {
t.Errorf("image size incorrect: '%#v': expected: '%#v'", actual.Bounds(), c.Expected.Bounds())
}
}
}
func TestPreprocess(t *testing.T) {
type preprocessCase struct {
TestImage image.Image
ExpectedLen int
}
cases := []preprocessCase{
{
TestImage: image.NewRGBA(image.Rect(0, 0, 10, 10)),
ExpectedLen: 16 * 16 * 3 * 1,
},
{
TestImage: image.NewRGBA(image.Rect(0, 0, 2000, 2000)),
ExpectedLen: 1024 * 1024 * 3 * 1,
},
}
for _, c := range cases {
var buf bytes.Buffer
err := png.Encode(&buf, c.TestImage)
if err != nil {
t.Fatal(err)
}
imgData, _, err := Preprocess(&buf)
if err != nil {
t.Fatalf("error processing: %q", err)
}
switch len(imgData) {
case 0:
t.Errorf("no image data returned")
case c.ExpectedLen:
// ok
default:
t.Errorf("unexpected image data length: %d, expected: %d", len(imgData), c.ExpectedLen)
}
}
}
func TestPreprocessImages(t *testing.T) {
for _, testFile := range []string{"flight.png", "sportsball.png"} {
f, err := os.Open(testFile)
if err != nil {
t.Skipf("skipping test, no test image found at %s", testFile)
}
defer f.Close()
imgData, _, err := Preprocess(f)
if err != nil {
t.Fatalf("error processing: %q", err)
}
byteData := make([]byte, len(imgData)*4) // float32 is 4 bytes
for i, f := range imgData {
binary.LittleEndian.PutUint32(byteData[i*4:], math.Float32bits(f))
}
outputPath := "processed_" + testFile + ".bin"
err = os.WriteFile(outputPath, byteData, 0o644)
if err != nil {
t.Fatalf("error writing processed image: %q", err)
}
}
}

View File

@@ -263,10 +263,6 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
continue
}
if id := bpe.vocab.Encode(pair.value); id < 0 {
continue
}
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil

View File

@@ -281,31 +281,27 @@ func TestChatMiddleware(t *testing.T) {
Description: "Get the current weather",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Required: []string{"location"},
Properties: map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
}{
"location": {
Type: api.PropertyType{"string"},
Type: "string",
Description: "The city and state",
},
"unit": {
Type: api.PropertyType{"string"},
Enum: []any{"celsius", "fahrenheit"},
Type: "string",
Enum: []string{"celsius", "fahrenheit"},
},
},
},

View File

@@ -11,13 +11,10 @@ import (
"os"
"os/user"
"path/filepath"
"runtime"
"slices"
"strconv"
"strings"
"sync"
"golang.org/x/sync/errgroup"
"golang.org/x/text/encoding/unicode"
"golang.org/x/text/transform"
@@ -147,25 +144,12 @@ func fileDigestMap(path string) (map[string]string, error) {
files = []string{path}
}
var mu sync.Mutex
var g errgroup.Group
g.SetLimit(max(runtime.GOMAXPROCS(0)-1, 1))
for _, f := range files {
g.Go(func() error {
digest, err := digestForFile(f)
if err != nil {
return err
}
mu.Lock()
defer mu.Unlock()
fl[f] = digest
return nil
})
}
if err := g.Wait(); err != nil {
return nil, err
digest, err := digestForFile(f)
if err != nil {
return nil, err
}
fl[f] = digest
}
return fl, nil
@@ -227,10 +211,16 @@ func filesForModel(path string) ([]string, error) {
}
var files []string
if st, _ := glob(filepath.Join(path, "*.safetensors"), "application/octet-stream"); len(st) > 0 {
if st, _ := glob(filepath.Join(path, "model*.safetensors"), "application/octet-stream"); len(st) > 0 {
// safetensors files might be unresolved git lfs references; skip if they are
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapters.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapter_model.safetensors
files = append(files, st...)
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
// pytorch files might also be unresolved git lfs references; skip if they are
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin

View File

@@ -83,7 +83,7 @@ type Sequence struct {
// true if an embedding are to be returned instead of text generation
embeddingOnly bool
doneReason llm.DoneReason
doneReason string
// Metrics
startProcessingTime time.Time
@@ -301,7 +301,7 @@ func flushPending(seq *Sequence) bool {
}
}
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
func (s *Server) removeSequence(seqIndex int, reason string) {
seq := s.seqs[seqIndex]
flushPending(seq)
@@ -380,7 +380,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, llm.DoneReasonLength)
s.removeSequence(seqIdx, "limit")
continue
}
@@ -482,7 +482,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
seq.embedding <- embed
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "")
continue
}
@@ -499,7 +499,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
// as it's important for the /api/generate context
// seq.responses <- piece
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "stop")
continue
}
@@ -530,7 +530,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "stop")
continue
}
@@ -543,7 +543,7 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
if !flushPending(seq) {
s.removeSequence(i, llm.DoneReasonConnectionClosed)
s.removeSequence(i, "connection")
}
}
@@ -657,9 +657,14 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
flusher.Flush()
} else {
// Send the final response
doneReason := "stop"
if seq.doneReason == "limit" {
doneReason = "length"
}
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Done: true,
DoneReason: seq.doneReason,
DoneReason: doneReason,
PromptEvalCount: seq.numPromptInputs,
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
EvalCount: seq.numDecoded,

View File

@@ -448,7 +448,7 @@ func (m *mockCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor)
func (m *mockCache) Put(ctx ml.Context, key, value ml.Tensor) {}
func (m *mockCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {}
func (m *mockCache) Close() {}
func (m *mockCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error { return nil }
func (m *mockCache) StartForward(ctx ml.Context, batch input.Batch) error { return nil }
func (m *mockCache) CopyPrefix(srcSeq, dstSeq int, len int32) {}
func (m *mockCache) SetConfig(ml.CacheConfig) {}
func (m *mockCache) CanResume(seq int, pos int32) bool { return true }

View File

@@ -82,7 +82,7 @@ type Sequence struct {
// true if an embedding are to be returned instead of text generation
embeddingOnly bool
doneReason llm.DoneReason
doneReason string
// Metrics
startProcessingTime time.Time
@@ -341,7 +341,7 @@ func flushPending(seq *Sequence) bool {
}
}
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
func (s *Server) removeSequence(seqIndex int, reason string) {
seq := s.seqs[seqIndex]
flushPending(seq)
@@ -391,7 +391,7 @@ func (s *Server) processBatch() error {
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, llm.DoneReasonLength)
s.removeSequence(seqIdx, "limit")
continue
}
@@ -510,7 +510,7 @@ func (s *Server) processBatch() error {
if seq.embeddingOnly {
// TODO(jessegross): Embedding support
slog.Warn("generation of embedding outputs not yet supported")
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "")
continue
}
@@ -528,7 +528,7 @@ func (s *Server) processBatch() error {
// as it's important for the /api/generate context
// seq.responses <- piece
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "stop")
continue
}
@@ -564,7 +564,7 @@ func (s *Server) processBatch() error {
}
seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
s.removeSequence(i, llm.DoneReasonStop)
s.removeSequence(i, "stop")
continue
}
@@ -577,7 +577,7 @@ func (s *Server) processBatch() error {
}
if !flushPending(seq) {
s.removeSequence(i, llm.DoneReasonConnectionClosed)
s.removeSequence(i, "connection")
}
}
@@ -690,9 +690,14 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
flusher.Flush()
} else {
// Send the final response
doneReason := "stop"
if seq.doneReason == "limit" {
doneReason = "length"
}
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Done: true,
DoneReason: seq.doneReason,
DoneReason: doneReason,
PromptEvalCount: seq.numPromptInputs,
PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
EvalCount: seq.numPredicted,
@@ -728,51 +733,6 @@ func (m *multiLPath) String() string {
return strings.Join(*m, ", ")
}
func (s *Server) reserveWorstCaseGraph() error {
ctx := s.model.Backend().NewContext()
defer ctx.Close()
var batch input.Batch
inputs := make([]int32, s.batchSize)
batch.Positions = make([]int32, len(inputs))
batch.Sequences = make([]int, len(inputs))
for i := range inputs {
batch.Positions[i] = int32(i)
}
batch.Outputs = make([]int32, s.parallel)
for i := range batch.Outputs {
batch.Outputs[i] = int32(i)
}
var err error
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
if err != nil {
return err
}
cache := s.model.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, batch, true)
if err != nil {
return err
}
}
t, err := s.model.Forward(ctx, batch)
if err != nil {
return err
}
err = ctx.Forward(t).Reserve()
if err != nil {
return err
}
return nil
}
func (s *Server) loadModel(
ctx context.Context,
mpath string,
@@ -810,11 +770,6 @@ func (s *Server) loadModel(
s.seqs = make([]*Sequence, s.parallel)
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))
err = s.reserveWorstCaseGraph()
if err != nil {
panic(err)
}
s.status = llm.ServerStatusReady
s.ready.Done()
}

View File

@@ -10,7 +10,6 @@ import (
"log/slog"
"net/http"
"os"
"regexp"
"slices"
"strings"
"text/template/parse"
@@ -154,342 +153,99 @@ func parseObjects(s string) []map[string]any {
return objs
}
// Get tool call token from model template
func (m *Model) TemplateToolToken() (string, string, bool) {
// Try to detect the tool call format from the model's template
// parseToolCalls attempts to parse a JSON string into a slice of ToolCalls.
// mxyng: this only really works if the input contains tool calls in some JSON format
func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) {
// create a subtree from the node that ranges over .ToolCalls
tmpl := m.Template.Subtree(func(n parse.Node) bool {
if t, ok := n.(*parse.RangeNode); ok {
return slices.Contains(template.Identifiers(t.Pipe), "ToolCalls")
}
return false
})
// fmt.Println("tool call template", tmpl)
if tmpl != nil {
// Execute template with test data to see the format
var b bytes.Buffer
if err := tmpl.Execute(&b, map[string][]api.ToolCall{
"ToolCalls": {
{
Function: api.ToolCallFunction{
Name: "function_name",
Arguments: api.ToolCallFunctionArguments{
"argument1": "value1",
// "argument2": "value2",
},
},
},
},
}); err == nil {
// Look for special tokens in the template output
output := strings.TrimSpace(b.String())
slog.Debug("tool call template output", "output", output)
if strings.Contains(output, "<") {
// Extract the special token between < and >
start := strings.Index(output, "<")
end := strings.Index(output, ">")
if start >= 0 && end > start {
token := output[start : end+1]
return output, token, true
}
} else if strings.Contains(output, "[") {
// Check if it's a tool call token rather than JSON array
start := strings.Index(output, "[")
end := strings.Index(output, "]")
if start >= 0 && end > start {
token := output[start : end+1]
// Only consider it a token if it's not valid JSON
var jsonTest any
if err := json.Unmarshal([]byte(token), &jsonTest); err != nil {
return output, token, true
}
}
}
}
}
return "", "", false
}
func parsePythonFunctionCall(s string) ([]api.ToolCall, bool) {
re := regexp.MustCompile(`(\w+)\((.*?)\)`)
matches := re.FindAllStringSubmatchIndex(s, -1)
if len(matches) == 0 {
if tmpl == nil {
return nil, false
}
var toolCalls []api.ToolCall
for _, match := range matches {
name := s[match[2]:match[3]]
args := s[match[4]:match[5]]
var b bytes.Buffer
if err := tmpl.Execute(&b, map[string][]api.ToolCall{
"ToolCalls": {
{
Function: api.ToolCallFunction{
Name: "@@name@@",
Arguments: api.ToolCallFunctionArguments{
"@@argument@@": 1,
},
},
},
},
}); err != nil {
return nil, false
}
arguments := make(api.ToolCallFunctionArguments)
if strings.Contains(args, "=") { // Keyword args
pairs := strings.SplitSeq(args, ",")
for pair := range pairs {
pair = strings.TrimSpace(pair)
kv := strings.Split(pair, "=")
if len(kv) == 2 {
key := strings.TrimSpace(kv[0])
value := strings.TrimSpace(kv[1])
arguments[key] = value
}
templateObjects := parseObjects(b.String())
if len(templateObjects) == 0 {
return nil, false
}
// find the keys that correspond to the name and arguments fields
var name, arguments string
for k, v := range templateObjects[0] {
switch v.(type) {
case string:
name = k
case map[string]any:
arguments = k
}
}
if name == "" || arguments == "" {
return nil, false
}
responseObjects := parseObjects(s)
if len(responseObjects) == 0 {
return nil, false
}
// collect all nested objects
var collect func(any) []map[string]any
collect = func(obj any) (all []map[string]any) {
switch o := obj.(type) {
case map[string]any:
all = append(all, o)
for _, v := range o {
all = append(all, collect(v)...)
}
case []any:
for _, v := range o {
all = append(all, collect(v)...)
}
}
return all
}
var objs []map[string]any
for _, p := range responseObjects {
objs = append(objs, collect(p)...)
}
var toolCalls []api.ToolCall
for _, kv := range objs {
n, nok := kv[name].(string)
a, aok := kv[arguments].(map[string]any)
if nok && aok {
toolCalls = append(toolCalls, api.ToolCall{
Function: api.ToolCallFunction{
Name: name,
Arguments: arguments,
Name: n,
Arguments: a,
},
})
}
}
if len(toolCalls) > 0 {
return toolCalls, true
}
return nil, false
}
// ToolCallFormat represents different possible formats for tool calls
type toolCallFormat struct {
// Direct format
Name string `json:"name,omitempty"`
Arguments map[string]any `json:"arguments,omitempty"`
// Command-r-plus format
ToolName string `json:"tool_name,omitempty"`
Parameters map[string]any `json:"parameters,omitempty"`
// Function format
Function *struct {
Name string `json:"name"`
Arguments map[string]any `json:"arguments,omitempty"`
Parameters map[string]any `json:"parameters,omitempty"`
} `json:"function,omitempty"`
// Xlam format
ToolCalls []toolCallFormat `json:"tool_calls,omitempty"`
}
func parseJSONToolCalls(obj map[string]any) ([]api.ToolCall, bool) {
// Helper to convert any to []any safely
toArray := func(v any) []any {
if arr, ok := v.([]any); ok {
return arr
}
return nil
}
// Convert a single format to a tool call
makeToolCall := func(f toolCallFormat) (api.ToolCall, bool) {
switch {
case f.Name != "" && f.Arguments != nil:
return api.ToolCall{
Function: api.ToolCallFunction{
Name: f.Name,
Arguments: f.Arguments,
},
}, true
case f.Name != "" && f.Parameters != nil: // Handle parameters field
return api.ToolCall{
Function: api.ToolCallFunction{
Name: f.Name,
Arguments: f.Parameters,
},
}, true
case f.ToolName != "" && f.Parameters != nil:
return api.ToolCall{
Function: api.ToolCallFunction{
Name: f.ToolName,
Arguments: f.Parameters,
},
}, true
case f.Function != nil && f.Function.Name != "":
args := f.Function.Arguments
if args == nil {
args = f.Function.Parameters
}
if args != nil {
return api.ToolCall{
Function: api.ToolCallFunction{
Name: f.Function.Name,
Arguments: args,
},
}, true
}
}
return api.ToolCall{}, false
}
// Try parsing as array first
if arr := toArray(obj); arr != nil {
var calls []api.ToolCall
for _, item := range arr {
if itemMap, ok := item.(map[string]any); ok {
var format toolCallFormat
data, _ := json.Marshal(itemMap)
if err := json.Unmarshal(data, &format); err == nil {
if call, ok := makeToolCall(format); ok {
calls = append(calls, call)
}
}
}
}
if len(calls) > 0 {
return calls, true
}
}
// Try parsing as single object
var format toolCallFormat
data, _ := json.Marshal(obj)
if err := json.Unmarshal(data, &format); err != nil {
return nil, false
}
// Handle xlam format (tool_calls array)
if len(format.ToolCalls) > 0 {
var calls []api.ToolCall
for _, f := range format.ToolCalls {
if call, ok := makeToolCall(f); ok {
calls = append(calls, call)
}
}
if len(calls) > 0 {
return calls, true
}
}
// Try as single tool call
if call, ok := makeToolCall(format); ok {
return []api.ToolCall{call}, true
}
return nil, false
}
// token, partial, success
func deriveToolToken(s string, prefix string) (string, bool, bool) {
// There shouldn't be spaces in a tool token
if len(strings.Fields(s)) > 1 {
return "", false, false
}
if prefix == "[" && len(s) > 1 && s[len(s)-1] == ']' {
return s, false, true
} else if prefix == "<" && len(s) > 1 && s[len(s)-1] == '>' {
return s, false, true
}
return "", true, true
}
func parseJSON(s string) ([]api.ToolCall, bool) {
objs := parseObjects(s)
tcs := []api.ToolCall{}
for _, obj := range objs {
toolCalls, ok := parseJSONToolCalls(obj)
if ok {
tcs = append(tcs, toolCalls...)
}
}
if len(tcs) > 0 {
return tcs, true
}
return nil, false
}
// returns tool calls, partial, success
func (m *Model) ParseToolCalls(s string, toolToken *string) ([]api.ToolCall, bool, bool) {
// [ case can either be JSON, Python or a Tool Token
s = strings.TrimSpace(s)
fmt.Printf("ParseToolCallsNew input: %q\n", s)
if len(s) == 0 {
return nil, false, false
}
if strings.HasPrefix(s, "[") {
fmt.Println("Found [ prefix")
// JSON case
// we do not consider array JSONs as tool calls
if strings.HasPrefix(s, "[{") {
fmt.Println("Found [{ prefix - attempting JSON parse")
// TODO: mark as JSON partial
if calls, ok := parseJSON(s); ok {
fmt.Printf("Successfully parsed JSON, found %d calls\n", len(calls))
return calls, false, true
}
return nil, true, true
}
// Python Case
// We just do a full python check here
fmt.Println("Attempting Python function parse")
tc, ok := parsePythonFunctionCall(s)
if ok {
fmt.Printf("Successfully parsed Python function: %+v\n", tc)
return tc, false, true
}
// Tool Token Case - this is okay if it's a real tool token and we couldn't get from template
fmt.Println("Attempting to derive tool token")
if toolToken == nil || *toolToken == "" {
toolTok, partial, ok := deriveToolToken(s, "[")
if !ok {
return nil, false, false
}
if partial {
return nil, true, true
}
*toolToken = toolTok
}
fmt.Printf("Found tool token: %q\n", *toolToken)
s = strings.TrimSpace(s[len(*toolToken):])
fmt.Printf("Recursing with remaining string: %q\n", s)
if toolCalls, partial, ok := m.ParseToolCalls(s, toolToken); ok {
return toolCalls, partial, true
}
return nil, true, true
} else if strings.HasPrefix(s, "{") || strings.HasPrefix(s, "```") {
// // TODO: temp fix
// if strings.HasPrefix(s, "```") && len(s) == 3 {
// return nil, false, false
// }
fmt.Println("Found { prefix - attempting JSON parse with ", s)
if calls, ok := parseJSON(s); ok {
fmt.Printf("Successfully parsed JSON object, found %d calls\n", len(calls))
return calls, false, true
}
fmt.Println("Failed to parse JSON in JSON case")
// TODO: possible case where it never finishes parsing - then what?
return nil, true, true
} else if strings.HasPrefix(s, "<") {
fmt.Println("Found < prefix - attempting to derive tool token")
if toolToken == nil || *toolToken == "" {
toolTok, partial, ok := deriveToolToken(s, "<")
if !ok {
return nil, false, false
}
if partial {
return nil, true, true
}
*toolToken = toolTok
fmt.Printf("Found tool token: %q\n", *toolToken)
}
fmt.Printf("Found tool token: %q\n", *toolToken)
s = strings.TrimSpace(s[len(*toolToken):])
fmt.Printf("Recursing with remaining string: %q\n", s)
if toolCalls, partial, ok := m.ParseToolCalls(s, toolToken); ok {
return toolCalls, partial, true
}
return nil, true, true
} else if strings.Contains(s, "(") || len(strings.Fields(s)) == 1 {
fmt.Println("Attempting Python function parse")
tc, ok := parsePythonFunctionCall(s)
if ok {
fmt.Printf("Successfully parsed Python function: %+v\n", tc)
return tc, false, true
}
fmt.Printf("Failed to parse Python function: %q, returning partial", s)
return nil, true, true
}
fmt.Println("No successful parse paths found")
fmt.Printf("failed string: %q\n", s)
return nil, false, false
return toolCalls, len(toolCalls) > 0
}

View File

@@ -308,10 +308,11 @@ func (s *Server) GenerateHandler(c *gin.Context) {
Options: opts,
}, func(cr llm.CompletionResponse) {
res := api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Response: cr.Content,
Done: cr.Done,
Model: req.Model,
CreatedAt: time.Now().UTC(),
Response: cr.Content,
Done: cr.Done,
DoneReason: cr.DoneReason,
Metrics: api.Metrics{
PromptEvalCount: cr.PromptEvalCount,
PromptEvalDuration: cr.PromptEvalDuration,
@@ -325,7 +326,6 @@ func (s *Server) GenerateHandler(c *gin.Context) {
}
if cr.Done {
res.DoneReason = cr.DoneReason.String()
res.TotalDuration = time.Since(checkpointStart)
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
@@ -1526,17 +1526,6 @@ func (s *Server) ChatHandler(c *gin.Context) {
defer close(ch)
var sb strings.Builder
var toolCallIndex int = 0
var sentWithTools int = 0
// var prefix string
// var templateToolToken string
_, templateToolToken, _ := m.TemplateToolToken()
// fmt.Println("special token", templateToolToken)
var minDuration time.Duration = math.MaxInt64
var maxDuration time.Duration
var totalDuration time.Duration
var checkCount int
const maxToolTokens = 1
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
@@ -1544,10 +1533,11 @@ func (s *Server) ChatHandler(c *gin.Context) {
Options: opts,
}, func(r llm.CompletionResponse) {
res := api.ChatResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Message: api.Message{Role: "assistant", Content: r.Content},
Done: r.Done,
Model: req.Model,
CreatedAt: time.Now().UTC(),
Message: api.Message{Role: "assistant", Content: r.Content},
Done: r.Done,
DoneReason: r.DoneReason,
Metrics: api.Metrics{
PromptEvalCount: r.PromptEvalCount,
PromptEvalDuration: r.PromptEvalDuration,
@@ -1557,15 +1547,6 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
if r.Done {
slog.Debug("min duration", "duration", minDuration)
slog.Debug("max duration", "duration", maxDuration)
slog.Debug("total duration", "duration", totalDuration)
slog.Debug("check count", "count", checkCount)
// slog.Debug("average duration", "duration", totalDuration/time.Duration(checkCount))
// if sb.Len() > 0 {
// res.Message.Content = sb.String()
// }
res.DoneReason = r.DoneReason.String()
res.TotalDuration = time.Since(checkpointStart)
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
@@ -1582,48 +1563,25 @@ func (s *Server) ChatHandler(c *gin.Context) {
// If tools are recognized, use a flag to track the sending of a tool downstream
// This ensures that content is cleared from the message on the last chunk sent
sb.WriteString(r.Content)
startTime := time.Now()
// TODO: work max tool tok logic
if len(req.Tools) > 0 && sentWithTools < maxToolTokens {
toolCalls, partial, ok := m.ParseToolCalls(sb.String(), &templateToolToken)
duration := time.Since(startTime)
checkCount++
minDuration = min(minDuration, duration)
maxDuration = max(maxDuration, duration)
totalDuration += duration
slog.Debug("tool call duration", "duration", duration)
if ok {
// fmt.Println("toolCalls", toolCalls, partial, ok, duration)
if partial {
// If the tool call is partial, we need to wait for the next chunk
return
}
slog.Debug("toolCalls", "toolCalls", toolCalls, "partial", partial, "ok", ok)
res.Message.ToolCalls = toolCalls
for i := range toolCalls {
toolCalls[i].Function.Index = toolCallIndex
toolCallIndex++
}
sentWithTools = 0
// prefix = ""
templateToolToken = ""
res.Message.Content = ""
sb.Reset()
ch <- res
// TODO: revisit this
sentWithTools++
slog.Debug("fired on tool call", "toolCalls", toolCalls, "toolCallIndex", toolCallIndex)
return
if toolCalls, ok := m.parseToolCalls(sb.String()); ok {
res.Message.ToolCalls = toolCalls
for i := range toolCalls {
toolCalls[i].Function.Index = toolCallIndex
toolCallIndex++
}
res.Message.Content = ""
sb.Reset()
ch <- res
return
}
// Send any remaining content if no tool calls were detected
// if toolCallIndex == 0 {
// fmt.Println("toolCallIndex", toolCallIndex)
sentWithTools++
res.Message.Content = sb.String()
sb.Reset()
ch <- res
if r.Done {
// Send any remaining content if no tool calls were detected
if toolCallIndex == 0 {
res.Message.Content = sb.String()
}
ch <- res
}
}); err != nil {
ch <- gin.H{"error": err.Error()}
}
@@ -1632,33 +1590,11 @@ func (s *Server) ChatHandler(c *gin.Context) {
if req.Stream != nil && !*req.Stream {
var resp api.ChatResponse
var sb strings.Builder
var toolCalls []api.ToolCall
const MAX_TOOL_TOKENS = 1
sentWithTools := 0
var tb strings.Builder
_, templateToolToken, _ := m.TemplateToolToken()
for rr := range ch {
switch t := rr.(type) {
case api.ChatResponse:
sb.WriteString(t.Message.Content)
resp = t
// TODO: work max tool tok logic
if len(req.Tools) > 0 && sentWithTools < MAX_TOOL_TOKENS {
tb.WriteString(t.Message.Content)
if tcs, partial, ok := m.ParseToolCalls(tb.String(), &templateToolToken); ok {
if !partial {
// resp.Message.ToolCalls = toolCalls
toolCalls = append(toolCalls, tcs...)
resp.Message.Content = ""
tb.Reset()
}
} else {
// equivalent to no partial - send the content downstream
tb.Reset()
sentWithTools++
}
}
case gin.H:
msg, ok := t["error"].(string)
if !ok {
@@ -1674,17 +1610,13 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
resp.Message.Content = sb.String()
if len(toolCalls) > 0 {
resp.Message.ToolCalls = toolCalls
// resp.Message.Content = ""
}
// if len(req.Tools) > 0 {
// if toolCalls, ok := m.ParseToolCalls(sb.String()); ok {
// resp.Message.ToolCalls = toolCalls
// resp.Message.Content = ""
// }
// }
if len(req.Tools) > 0 {
if toolCalls, ok := m.parseToolCalls(sb.String()); ok {
resp.Message.ToolCalls = toolCalls
resp.Message.Content = ""
}
}
c.JSON(http.StatusOK, resp)
return

View File

@@ -58,7 +58,7 @@ func TestGenerateChat(t *testing.T) {
mock := mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: llm.DoneReasonStop,
DoneReason: "stop",
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
@@ -370,31 +370,27 @@ func TestGenerateChat(t *testing.T) {
Description: "Get the current weather",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Required: []string{"location"},
Properties: map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
}{
"location": {
Type: api.PropertyType{"string"},
Type: "string",
Description: "The city and state",
},
"unit": {
Type: api.PropertyType{"string"},
Enum: []any{"celsius", "fahrenheit"},
Type: "string",
Enum: []string{"celsius", "fahrenheit"},
},
},
},
@@ -405,7 +401,7 @@ func TestGenerateChat(t *testing.T) {
mock.CompletionResponse = llm.CompletionResponse{
Content: `{"name":"get_weather","arguments":{"location":"Seattle, WA","unit":"celsius"}}`,
Done: true,
DoneReason: llm.DoneReasonStop,
DoneReason: "done",
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,
@@ -471,31 +467,27 @@ func TestGenerateChat(t *testing.T) {
Description: "Get the current weather",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Required: []string{"location"},
Properties: map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
}{
"location": {
Type: api.PropertyType{"string"},
Type: "string",
Description: "The city and state",
},
"unit": {
Type: api.PropertyType{"string"},
Enum: []any{"celsius", "fahrenheit"},
Type: "string",
Enum: []string{"celsius", "fahrenheit"},
},
},
},
@@ -527,7 +519,7 @@ func TestGenerateChat(t *testing.T) {
{
Content: `, WA","unit":"celsius"}}`,
Done: true,
DoneReason: llm.DoneReasonStop,
DoneReason: "tool_call",
PromptEvalCount: 3,
PromptEvalDuration: 1,
},
@@ -602,7 +594,7 @@ func TestGenerate(t *testing.T) {
mock := mockRunner{
CompletionResponse: llm.CompletionResponse{
Done: true,
DoneReason: llm.DoneReasonStop,
DoneReason: "stop",
PromptEvalCount: 1,
PromptEvalDuration: 1,
EvalCount: 1,

View File

@@ -667,19 +667,13 @@ func (runner *runnerRef) waitForVRAMRecovery() chan any {
return finished
}
type ByDurationAndName []*runnerRef
type ByDuration []*runnerRef
func (a ByDurationAndName) Len() int { return len(a) }
func (a ByDurationAndName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByDurationAndName) Less(i, j int) bool {
// Primary sort by session duration (uint64 to handle negatives)
d1 := uint64(a[i].sessionDuration)
d2 := uint64(a[j].sessionDuration)
if d1 != d2 {
return d1 < d2
}
// Secondary sort by model path lex order
return a[i].modelPath < a[j].modelPath
func (a ByDuration) Len() int { return len(a) }
func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByDuration) Less(i, j int) bool {
// uint64 to turn negative time (never unload) to largest
return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration)
}
// TODO - future consideration to pick runners based on size
@@ -781,7 +775,7 @@ func (s *Scheduler) findRunnerToUnload() *runnerRef {
// In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
// e.g., if we have multiple options, will one make room for the request?
sort.Sort(ByDurationAndName(runnerList))
sort.Sort(ByDuration(runnerList))
// First try to find a runner that's already idle
for _, runner := range runnerList {