Compare commits

..

2 Commits

Author SHA1 Message Date
ParthSareen
3bc9d42e2e rebase + fix tests 2025-04-03 17:31:21 -07:00
ParthSareen
4053c489b4 server: enable content streaming with tools 2025-04-03 17:09:59 -07:00
28 changed files with 457 additions and 733 deletions

View File

@@ -51,7 +51,7 @@ see if the change were accepted.
The title should look like:
<package>: <short description>
<package>: <short description>
The package is the most affected Go package. If the change does not affect Go
code, then use the directory name instead. Changes to a single well-known

View File

@@ -104,8 +104,8 @@ COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm

View File

@@ -291,7 +291,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
- [big-AGI](https://github.com/enricoros/big-AGI)
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
- [Amica](https://github.com/semperai/amica)
- [chatd](https://github.com/BruceMacD/chatd)
@@ -348,7 +348,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
@@ -440,7 +440,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull and download models from Ollama Registry in your terminal.
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
### Apple Vision Pro

View File

@@ -163,65 +163,19 @@ func (t *ToolCallFunctionArguments) String() string {
type Tool struct {
Type string `json:"type"`
Items any `json:"items,omitempty"`
Function ToolFunction `json:"function"`
}
// PropertyType can be either a string or an array of strings
type PropertyType []string
// UnmarshalJSON implements the json.Unmarshaler interface
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
// Try to unmarshal as a string first
var s string
if err := json.Unmarshal(data, &s); err == nil {
*pt = []string{s}
return nil
}
// If that fails, try to unmarshal as an array of strings
var a []string
if err := json.Unmarshal(data, &a); err != nil {
return err
}
*pt = a
return nil
}
// MarshalJSON implements the json.Marshaler interface
func (pt PropertyType) MarshalJSON() ([]byte, error) {
if len(pt) == 1 {
// If there's only one type, marshal as a string
return json.Marshal(pt[0])
}
// Otherwise marshal as an array
return json.Marshal([]string(pt))
}
// String returns a string representation of the PropertyType
func (pt PropertyType) String() string {
if len(pt) == 0 {
return ""
}
if len(pt) == 1 {
return pt[0]
}
return fmt.Sprintf("%v", []string(pt))
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
} `json:"parameters"`
}

View File

@@ -231,144 +231,3 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
}
}
}
func TestToolFunction_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
wantErr string
}{
{
name: "valid enum with same types",
input: `{
"name": "test",
"description": "test function",
"parameters": {
"type": "object",
"required": ["test"],
"properties": {
"test": {
"type": "string",
"description": "test prop",
"enum": ["a", "b", "c"]
}
}
}
}`,
wantErr: "",
},
{
name: "empty enum array",
input: `{
"name": "test",
"description": "test function",
"parameters": {
"type": "object",
"required": ["test"],
"properties": {
"test": {
"type": "string",
"description": "test prop",
"enum": []
}
}
}
}`,
wantErr: "",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var tf ToolFunction
err := json.Unmarshal([]byte(tt.input), &tf)
if tt.wantErr != "" {
require.Error(t, err)
assert.Contains(t, err.Error(), tt.wantErr)
} else {
require.NoError(t, err)
}
})
}
}
func TestPropertyType_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
expected PropertyType
}{
{
name: "string type",
input: `"string"`,
expected: PropertyType{"string"},
},
{
name: "array of types",
input: `["string", "number"]`,
expected: PropertyType{"string", "number"},
},
{
name: "array with single type",
input: `["string"]`,
expected: PropertyType{"string"},
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var pt PropertyType
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
t.Errorf("Unexpected error: %v", err)
}
if len(pt) != len(test.expected) {
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
}
for i, v := range pt {
if v != test.expected[i] {
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
}
}
})
}
}
func TestPropertyType_MarshalJSON(t *testing.T) {
tests := []struct {
name string
input PropertyType
expected string
}{
{
name: "single type",
input: PropertyType{"string"},
expected: `"string"`,
},
{
name: "multiple types",
input: PropertyType{"string", "number"},
expected: `["string","number"]`,
},
{
name: "empty type",
input: PropertyType{},
expected: `[]`,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
data, err := json.Marshal(test.input)
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
if string(data) != test.expected {
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
}
})
}
}

View File

@@ -1381,6 +1381,7 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_NOPRUNE"],
envVars["OLLAMA_ORIGINS"],
envVars["OLLAMA_SCHED_SPREAD"],
envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_KV_CACHE_TYPE"],
envVars["OLLAMA_LLM_LIBRARY"],

View File

@@ -26,6 +26,7 @@ When you run Ollama on **Windows**, there are a few different locations. You can
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
@@ -68,6 +69,10 @@ If you run into problems on Linux and want to install an older version, or you'd
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
```
## Linux tmp noexec
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
## Linux docker
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.

View File

@@ -62,6 +62,7 @@ the explorer window by hitting `<Ctrl>+R` and type in:
- *upgrade.log* contains log output for upgrades
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
- `explorer %HOMEPATH%\.ollama` contains models and configuration
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
## Uninstall

View File

@@ -6,7 +6,6 @@ import (
"fmt"
"io"
"log/slog"
"reflect"
"slices"
"strings"
@@ -53,80 +52,32 @@ func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
}
func (kv KV) HeadCounts() []uint64 {
return kv.UintOrArrayAsArray("attention.head_count", kv.BlockCount(), 1)
func (kv KV) HeadCount() uint64 {
return uint64(kv.Uint("attention.head_count"))
}
func (kv KV) HeadCountKVs() []uint64 {
return kv.UintOrArrayAsArray("attention.head_count_kv", kv.BlockCount(), 1)
func (kv KV) HeadCountKV() uint64 {
return uint64(kv.Uint("attention.head_count_kv", 1))
}
func (kv KV) EmbeddingHeadCount() []uint64 {
headCount := kv.HeadCounts()
embeddingHeadCount := make([]uint64, len(headCount))
for i, heads := range headCount {
if heads == 0 {
embeddingHeadCount[i] = 0
} else {
embeddingHeadCount[i] = kv.EmbeddingLength() / heads
}
func (kv KV) EmbeddingHeadCount() uint64 {
if heads := kv.HeadCount(); heads > 0 {
return kv.EmbeddingLength() / heads
}
return embeddingHeadCount
return 0
}
func (kv KV) FillArrayOrDefault(key string, defaultValue []uint64) []uint64 {
length := len(defaultValue)
if v, ok := keyValueUntyped(kv, key); ok {
switch v := v.(type) {
case uint32:
return FillArray(uint64(v), length)
case uint64:
return FillArray(v, length)
case int32:
return FillArray(uint64(v), length)
default:
slog.Warn("unsupported type", "key", key, "type", reflect.TypeOf(v))
}
}
return defaultValue
func (kv KV) EmbeddingHeadCountK() uint64 {
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) EmbeddingHeadCountK() []uint64 {
return kv.FillArrayOrDefault("attention.key_length", kv.EmbeddingHeadCount())
func (kv KV) EmbeddingHeadCountV() uint64 {
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) EmbeddingHeadCountV() []uint64 {
return kv.FillArrayOrDefault("attention.value_length", kv.EmbeddingHeadCount())
}
func (kv KV) GQAMax() uint64 {
heads := kv.HeadCounts()
headsKV := kv.HeadCountKVs()
if len(heads) != len(headsKV) {
slog.Warn("head count and head count kv are not the same length")
return 0
}
if len(heads) == 0 {
slog.Warn("head count is empty")
return 0
}
maxGQA := uint64(0)
for i := range heads {
head := heads[i]
headKV := headsKV[i]
if head == 0 || headKV == 0 {
return 0
}
gqa := head / headKV
if gqa > maxGQA {
maxGQA = gqa
}
}
return maxGQA
func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV()
}
func (kv KV) ContextLength() uint64 {
@@ -153,41 +104,6 @@ func (kv KV) Bool(key string, defaultValue ...bool) bool {
return keyValue(kv, key, append(defaultValue, false)...)
}
func (kv KV) UintOrArrayAsArray(key string, n uint64, defaultSingleValue ...uint64) []uint64 {
var singleValue *uint64
if v, ok := keyValueUntyped(kv, key); ok {
switch v := v.(type) {
case *array:
switch v.values[0].(type) {
case int32, uint32, uint64:
values, ok := AsUint64Array(v.values)
if ok {
return values
}
default:
slog.Warn("unexpected array value type", "key", key, "type", reflect.TypeOf(v))
}
case uint32:
val := uint64(v)
singleValue = &val
case int32:
val := uint64(v)
singleValue = &val
}
}
if singleValue == nil {
slog.Warn("falling back to default")
singleValue = &defaultSingleValue[0]
}
values := make([]uint64, n)
for i := range values {
values[i] = *singleValue
}
return values
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
r := keyValue(kv, key, &array{})
s := make([]string, r.size)
@@ -225,24 +141,16 @@ func (kv KV) OllamaEngineRequired() bool {
}
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
if val, ok := keyValueUntyped(kv, key); ok {
return val.(T)
}
slog.Warn("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
}
func keyValueUntyped(kv KV, key string) (any, bool) {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
}
if val, ok := kv[key]; ok {
return val, true
return val.(T)
}
return nil, false
slog.Warn("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
}
type Tensors struct {
@@ -510,22 +418,12 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCounts()
headsKV := f.KV().HeadCountKVs()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
embeddingHeads := f.KV().EmbeddingHeadCount()
maxEmbeddingHeads, ok := MaxValue(embeddingHeads)
if !ok {
maxEmbeddingHeads = 1
slog.Warn("failed to get max embedding heads")
}
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
maxEmbeddingHeadsK, ok := MaxValue(embeddingHeadsK)
if !ok {
maxEmbeddingHeadsK = 1
slog.Warn("failed to get max embedding headsK")
}
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
layers := f.Tensors().GroupLayers()
@@ -533,30 +431,19 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
kv = make([]uint64, f.KV().BlockCount())
for i := range kv {
kv[i] = uint64(float64(context*(embeddingHeadsK[i]+embeddingHeadsV[i])*headsKV[i]) * bytesPerElement)
}
maxHeads, ok := MaxValue(heads)
if !ok {
maxHeads = 1
slog.Warn("failed to get max heads")
}
maxHeadsKV, ok := MaxValue(headsKV)
if !ok {
maxHeadsKV = 1
slog.Warn("failed to get max headsKV")
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
}
switch f.KV().Architecture() {
case "llama":
fullOffload = max(
4*batch*(1+4*embedding+context*(1+maxHeads)),
4*batch*(1+4*embedding+context*(1+heads)),
4*batch*(embedding+vocab),
)
partialOffload = 4 * batch * embedding
partialOffload += max(
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*maxHeads+maxEmbeddingHeads*maxHeadsKV),
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
@@ -564,16 +451,16 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
// mixtral 8x22b
ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
partialOffload = max(
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+maxHeadsKV+embedding+context+maxEmbeddingHeads*maxHeadsKV),
4*(context*batch*maxHeads+context*maxEmbeddingHeads*maxHeadsKV+batch*1024+maxEmbeddingHeads*maxHeadsKV*batch),
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
)
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
// mixtral 8x7b
ffnGateWeight1 := ffnGateWeight.Shape[1]
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+maxHeads) + 2*maxHeadsKV + ffnGateWeight1)
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
partialOffload = max(
4*batch*(3+maxEmbeddingHeads*maxHeadsKV+embedding+context*(1+maxHeads)+ffnGateWeight1)+(embedding*embedding+3*embedding*maxHeadsKV*ffnGateWeight1)*9/16,
4*batch*(1+2*embedding+context*(1+maxHeads))+embedding*(6*context*maxHeadsKV/maxHeads+embedding*9/16),
4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
)
}
case "mllama":
@@ -582,7 +469,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
crossAttentionLayers := f.KV().Uints("attention.cross_attention_layers")
for i := range kv {
if slices.Contains(crossAttentionLayers, uint32(i)) {
kv[i] = headsKV[i] * (embeddingHeadsK[i] + embeddingHeadsV[i]) *
kv[i] = headsKV * (embeddingHeadsK + embeddingHeadsV) *
4 * // sizeof(float32)
visionTokens *
tiles
@@ -590,7 +477,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
}
fullOffload = max(
4*batch*(2+3*embedding+maxEmbeddingHeadsK*maxHeads+context*(1+maxHeads)),
4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
// vocab graph
4*batch*(embedding+vocab),
)
@@ -604,23 +491,23 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
partialOffload = max(
4*(batch*
(2*embedding+1+context*(1+maxHeads)+maxEmbeddingHeadsK*maxHeads)+
(2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
ropeFreqsCount+
maxEmbeddingHeadsK*context*maxHeadsKV),
embeddingHeadsK*context*headsKV),
// vocab graph
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma", "gemma2", "gemma3":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+context+context*maxHeads+2*embedding+2*maxEmbeddingHeadsK*maxHeads),
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
)
partialOffload = max(
4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
4*batch*(2*embedding+1+2*maxEmbeddingHeadsK*maxHeads+context+context*maxHeads)+
4*maxEmbeddingHeadsK*context*8+
embedding*embedding*maxEmbeddingHeadsK*maxHeads*9/16,
4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
4*embeddingHeadsK*context*8+
embedding*embeddingHeadsK*heads*9/16,
)
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
@@ -632,42 +519,42 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
// Every 6th layer is a global layer, which is the full context size that has already been set. The other
// layers are the smaller local (sliding) layers.
if (i+1)%gemma3GlobalCacheCount != 0 {
kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK[i]+embeddingHeadsV[i])*headsKV[i]) * bytesPerElement)
kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
}
}
}
case "command-r":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+4*embedding+context*(1+maxHeads)),
4*batch*(2+4*embedding+context*(1+heads)),
)
partialOffload = max(
4*batch*(embedding+vocab)+embedding*vocab*105/128,
4*batch*(1+2*embedding+context*(1+maxHeads))+4*embedding*context+embedding*embedding*9/16,
4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
)
case "qwen2":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(1+2*embedding+context+context*maxHeads),
4*batch*(1+2*embedding+context+context*heads),
)
partialOffload = max(
4*batch*(embedding+vocab)+embedding*vocab*105/128,
4*(batch*(1+2*embedding+context*(1+maxHeads))+embedding*(1+context)),
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
)
case "phi2":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(1+4*embedding+context+context*maxHeads),
4*batch*(1+4*embedding+context+context*heads),
)
partialOffload = max(
4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2+3*embedding+context+context*maxHeads),
4*batch*(2+3*embedding+context+context*heads),
)
case "stablelm":
fullOffload = 4 * batch * (context*(1+maxHeads) + 3*embedding + 2)
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
partialOffload = max(
4*batch*(vocab+2*embedding),
fullOffload,
@@ -675,12 +562,12 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
case "deepseek2":
fullOffload = max(
4*batch*(3*embedding+vocab),
4*batch*(3*embedding+2+context*(1+maxHeadsKV)+2*maxEmbeddingHeadsK*maxHeadsKV),
4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
)
partialOffload = max(
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2*embedding+1+2*maxEmbeddingHeadsK*maxHeadsKV+context+context*maxHeadsKV)+4*maxEmbeddingHeadsK*context*maxHeadsKV+embedding*embedding*maxEmbeddingHeadsK*maxHeadsKV*9/16,
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
)
case "chatglm":
fullOffload = 4 * batch * (embedding + vocab)
@@ -691,8 +578,8 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
4*batch*(2+
2*embedding+
context+
context*maxHeads+
maxEmbeddingHeadsK*maxHeads+
context*heads+
embeddingHeadsK*heads+
qkvBias.Shape[0]),
)
@@ -700,11 +587,11 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
partialOffload,
4*batch*(1+
2*embedding+
maxEmbeddingHeadsK*maxHeads+
embeddingHeadsK*heads+
context+
context*maxHeads)+
4*maxEmbeddingHeadsK*context+
4*context*maxEmbeddingHeadsK+
context*heads)+
4*embeddingHeadsK*context+
4*context*embeddingHeadsK+
4*qkvBias.Shape[0],
)
}
@@ -776,15 +663,9 @@ func (f GGML) SupportsFlashAttention() bool {
}
// Check head counts match and are non-zero
headCount := f.KV().HeadCounts()
embeddingHeadCountK := f.KV().EmbeddingHeadCountK()
embeddingHeadCountV := f.KV().EmbeddingHeadCountV()
for i := range headCount {
if embeddingHeadCountK[i] != embeddingHeadCountV[i] {
return false
}
}
return true
headCountK := f.KV().EmbeddingHeadCountK()
headCountV := f.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
@@ -798,54 +679,3 @@ func kvCacheBytesPerElement(cacheType string) float64 {
return 2 // f16 (default)
}
}
func AsUint64Array(v []any) ([]uint64, bool) {
switch v[0].(type) {
case uint32:
values := make([]uint64, len(v))
for i, v := range v {
values[i] = uint64(v.(uint32))
}
return values, true
case uint64:
values := make([]uint64, len(v))
for i, v := range v {
values[i] = v.(uint64)
}
return values, true
case int32:
values := make([]uint64, len(v))
for i, val := range v {
val := val.(int32)
if val < 0 {
slog.Warn("negative value in int32 array", "value", val)
return nil, false
}
values[i] = uint64(val)
}
return values, true
}
return nil, false
}
func MaxValue(values []uint64) (uint64, bool) {
if len(values) == 0 {
return 0, false
}
max := values[0]
for _, v := range values {
if v > max {
max = v
}
}
return max, true
}
func FillArray[T any](value T, n int) []T {
values := make([]T, n)
for i := range values {
values[i] = value
}
return values
}

View File

@@ -52,8 +52,8 @@ func TestMaxQueue(t *testing.T) {
embedCtx := ctx
var genwg sync.WaitGroup
genwg.Add(1)
go func() {
genwg.Add(1)
defer genwg.Done()
slog.Info("Starting generate request")
DoGenerate(ctx, t, client, req, resp, 45*time.Second, 5*time.Second)
@@ -71,8 +71,8 @@ func TestMaxQueue(t *testing.T) {
counterMu := sync.Mutex{}
var embedwg sync.WaitGroup
for i := 0; i < threadCount; i++ {
embedwg.Add(1)
go func(i int) {
embedwg.Add(1)
defer embedwg.Done()
slog.Info("embed started", "id", i)
embedReq := api.EmbeddingRequest{

View File

@@ -56,9 +56,8 @@ type Cache interface {
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs. reserve is to preallocate memory
// without actually storing data in the cache.
StartForward(ctx ml.Context, batch input.Batch, reserve bool) error
// entry in positions and seqs.
StartForward(ctx ml.Context, batch input.Batch) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)

View File

@@ -146,60 +146,51 @@ func (c *Causal) Close() {
}
}
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch) error {
c.curBatchSize = len(batch.Positions)
c.curSequences = batch.Sequences
c.curPositions = batch.Positions
c.opts.Except = nil
if !reserve {
c.updateSlidingWindow()
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range batch.Positions {
seq := batch.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
} else {
// If we are reserving memory, don't update any of the cache metadata but set the size
// to the worst case.
c.curLoc = 0
c.curCellRange.min = 0
c.curCellRange.max = len(c.cells) - 1
}
c.updateSlidingWindow()
var err error
c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil {
return err
}
c.curCellRange = newRange()
for i, pos := range batch.Positions {
seq := batch.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq]
if !ok {
seqRange = newRange()
}
if c.curLoc+i > seqRange.max {
seqRange.max = c.curLoc + i
}
if seqRange.max > c.curCellRange.max {
c.curCellRange.max = seqRange.max
}
if c.curLoc+i < seqRange.min {
seqRange.min = c.curLoc + i
}
if seqRange.min < c.curCellRange.min {
c.curCellRange.min = seqRange.min
}
c.cellRanges[seq] = seqRange
}
c.curMask, err = c.buildMask(ctx)
return err

View File

@@ -5,6 +5,7 @@ import (
"slices"
"testing"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
@@ -280,7 +281,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs}, false)
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs})
if err != nil {
panic(err)
}
@@ -314,7 +315,7 @@ func TestCanResume(t *testing.T) {
err := cache.StartForward(context, input.Batch{
Positions: []int32{0, 1, 2, 3},
Sequences: []int{0, 0, 0, 0},
}, false)
})
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
@@ -341,7 +342,7 @@ func TestCanResume(t *testing.T) {
err = cache.StartForward(context, input.Batch{
Positions: []int32{4, 5},
Sequences: []int{0, 0},
}, false)
})
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
@@ -371,8 +372,14 @@ func TestCanResume(t *testing.T) {
}
}
type testBackend struct {
ml.Backend
type testBackend struct{}
func (b *testBackend) Config() fs.Config {
panic("not implemented")
}
func (b *testBackend) Get(name string) ml.Tensor {
panic("not implemented")
}
func (b *testBackend) NewContext() ml.Context {
@@ -383,10 +390,12 @@ func (b *testBackend) NewContextSize(int) ml.Context {
return &testContext{}
}
type testContext struct {
ml.Context
func (b *testBackend) SystemInfo() string {
return "not implemented"
}
type testContext struct{}
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
total := 0
@@ -431,8 +440,6 @@ func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) Reserve() error { return nil }
func (c *testContext) MaxGraphNodes() int {
return 10
}
@@ -440,8 +447,6 @@ func (c *testContext) MaxGraphNodes() int {
func (c *testContext) Close() {}
type testTensor struct {
ml.Tensor
dtype ml.DType
elementSize int
data []float32
@@ -469,6 +474,10 @@ func (t *testTensor) DType() ml.DType {
return t.dtype
}
func (t *testTensor) Bytes() []byte {
panic("not implemented")
}
func (t *testTensor) Floats() []float32 {
out := make([]float32, len(t.data))
copy(out, t.data)
@@ -493,6 +502,64 @@ func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return out
}
func (t *testTensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Softmax(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) LayerNorm(ctx ml.Context, weight, bias ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RMSNorm(ctx ml.Context, weight ml.Tensor, eps float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Scale(ctx ml.Context, s float64) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool1D(ctx ml.Context, k, s, p int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Conv2D(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, dim, ropeType uint32, base, scale float32) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) IM2Col(ctx ml.Context, weight ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Cos(ctx ml.Context) ml.Tensor { panic("not implemented") }
func (t *testTensor) Sin(ctx ml.Context) ml.Tensor { panic("not implemented") }
func (t *testTensor) Tanh(ctx ml.Context) ml.Tensor { panic("not implemented") }
func (t *testTensor) GELU(ctx ml.Context) ml.Tensor { panic("not implemented") }
func (t *testTensor) SILU(ctx ml.Context) ml.Tensor { panic("not implemented") }
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
offset /= t.elementSize
@@ -515,7 +582,43 @@ func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
return view
}
func (t *testTensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Contiguous(ctx ml.Context) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Repeat(ctx ml.Context, dim, n int) ml.Tensor { panic("not implemented") }
func (t *testTensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
panic("not implemented")
}
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
copy(t2.(*testTensor).data, t.data)
return nil
}
func (t *testTensor) Duplicate(ctx ml.Context) ml.Tensor { panic("not implemented") }

View File

@@ -27,11 +27,6 @@ type EncoderCache struct {
// anything will be stored)
curPos int32
// curReserve indicates that this forward pass is only for
// memory reservation and we should not update our metadata
// based on it.
curReserve bool
// ** cache metadata **
// was something stored in the cache?
@@ -88,14 +83,12 @@ func (c *EncoderCache) Close() {
}
}
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
func (c *EncoderCache) StartForward(ctx ml.Context, batch input.Batch) error {
// We work with the most recent image
if len(batch.Multimodal) > 0 {
c.curPos = batch.Positions[batch.Multimodal[len(batch.Multimodal)-1].Index]
}
c.curReserve = reserve
return nil
}
@@ -112,10 +105,8 @@ func (c *EncoderCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
}
func (c *EncoderCache) Put(ctx ml.Context, key, value ml.Tensor) {
if !c.curReserve {
c.encoderPos = c.curPos
c.encoderCached = true
}
c.encoderPos = c.curPos
c.encoderCached = true
if c.config.PermutedV {
value = value.Permute(ctx, 1, 2, 0, 3)

View File

@@ -41,9 +41,9 @@ func (c *WrapperCache) Close() {
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
func (c *WrapperCache) StartForward(ctx ml.Context, batch input.Batch) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, batch, reserve)
err := cache.StartForward(ctx, batch)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {

View File

@@ -149,7 +149,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
if graphPartialOffload == 0 {
graphPartialOffload = f.KV().GQAMax() * kvTotal / 6
graphPartialOffload = f.KV().GQA() * kvTotal / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload

View File

@@ -97,13 +97,6 @@ type Context interface {
Forward(...Tensor) Context
Compute(...Tensor)
// Reserve is analogous to Compute but rather than executing a
// graph, simply preallocates memory. Typically called with a
// worst case graph to ensure all resources are available for
// for future inference.
Reserve() error
MaxGraphNodes() int
Close()

View File

@@ -10,7 +10,6 @@ import "C"
import (
"context"
"errors"
"fmt"
"io"
"log/slog"
@@ -43,12 +42,8 @@ func devices() []*C.struct_ggml_backend_device {
}
type Backend struct {
meta *fsggml.GGML
sched *C.struct_ggml_backend_sched
schedBackends []*C.struct_ggml_backend
schedBufts []*C.struct_ggml_backend_buffer_type
meta *fsggml.GGML
sched *C.struct_ggml_backend_sched
tensors map[string]*C.struct_ggml_tensor
// input is the backend used for inputs
@@ -286,10 +281,6 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
if b == nil {
return nil, fmt.Errorf("unable to allocate memory from device %v for model weights", C.GoString(C.ggml_backend_buft_name(bt)))
}
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = b
}
@@ -328,14 +319,7 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
tts[i] = tt
}
// Create a new FD for each goroutine so that each FD is read sequentially, rather than
// seeking around within an FD shared between all goroutines.
file, err := os.Open(r.Name())
if err != nil {
return err
}
defer file.Close()
sr := io.NewSectionReader(file, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset+t.Offset), int64(t.Size()))
bts := make([]byte, 128*format.KibiByte)
var s uint64
@@ -394,6 +378,8 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
schedBackends = append(schedBackends, b)
schedBufts = append(schedBufts, bt)
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
if C.ggml_backend_is_cpu(b) {
// set number of threads for cpu backend
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
@@ -412,9 +398,7 @@ func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend,
C.size_t(maxGraphNodes),
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
),
schedBackends: schedBackends,
schedBufts: schedBufts,
input: deviceBufferTypes[input.d],
input: deviceBufferTypes[input.d],
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
m := make(map[int]*C.struct_ggml_backend_buffer_type)
for i, layer := range layers {
@@ -539,24 +523,6 @@ func (c Context) Compute(tensors ...ml.Tensor) {
}
}
func (c Context) Reserve() error {
if !C.ggml_backend_sched_reserve(c.b.sched, c.graph) {
C.ggml_backend_sched_reset(c.b.sched)
return errors.New("failed to reserve graph")
}
slog.Debug("compute graph", "nodes", C.ggml_graph_n_nodes(c.graph), "splits", C.ggml_backend_sched_get_n_splits(c.b.sched))
for i := range c.b.schedBackends {
size := C.ggml_backend_sched_get_buffer_size(c.b.sched, c.b.schedBackends[i])
slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(c.b.schedBackends[i])), "buffer_type", C.GoString(C.ggml_backend_buft_name(c.b.schedBufts[i])),
"size", format.HumanBytes2(uint64(size)))
}
C.ggml_backend_sched_reset(c.b.sched)
return nil
}
func (c Context) MaxGraphNodes() int {
return c.maxGraphNodes
}
@@ -574,9 +540,9 @@ func pad(length, pad C.size_t) C.size_t {
return ((length + pad - 1) / pad) * pad
}
func (c Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
if c.buft == nil {
panic("set Input or Layer before creating tensors")
panic("set Input, Output, or Layer before creating tensors")
}
var cdtype uint32
@@ -597,7 +563,7 @@ func (c Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}, nil
return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
} else if len(shape) > 4 {
panic("unsupported number of dimensions")
}
@@ -611,29 +577,16 @@ func (c Context) newTensor(dtype ml.DType, shape []int) (ml.Tensor, error) {
t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
if b == nil {
return nil, fmt.Errorf("unable to allocate %v from device %v for new tensor", format.HumanBytes2(uint64(size)), C.GoString(C.ggml_backend_buft_name(c.buft)))
}
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
return &Tensor{b: c.b, t: t}, nil
return &Tensor{b: c.b, t: t}
}
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
t, err := c.newTensor(dtype, shape)
if err != nil {
panic(err)
}
return t
return c.newTensor(dtype, shape)
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t, err := c.newTensor(dtype, shape)
if err != nil {
panic(err)
}
t := c.newTensor(dtype, shape)
C.ggml_set_zero(t.(*Tensor).t)
return t
}
@@ -661,11 +614,7 @@ func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
return nil, err
}
t, err := c.newTensor(ml.DTypeF32, shape)
if err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeF32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}
@@ -678,11 +627,7 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return nil, err
}
t, err := c.newTensor(ml.DTypeI32, shape)
if err != nil {
return nil, err
}
t := c.newTensor(ml.DTypeI32, shape)
if len(s) > 0 {
C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
}

View File

@@ -299,7 +299,7 @@ func Forward(ctx ml.Context, m Model, inputs []int32, batch input.Batch) (ml.Ten
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, batch, false)
err := cache.StartForward(ctx, batch)
if err != nil {
return nil, err
}

View File

@@ -281,31 +281,27 @@ func TestChatMiddleware(t *testing.T) {
Description: "Get the current weather",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Required: []string{"location"},
Properties: map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
}{
"location": {
Type: api.PropertyType{"string"},
Type: "string",
Description: "The city and state",
},
"unit": {
Type: api.PropertyType{"string"},
Enum: []any{"celsius", "fahrenheit"},
Type: "string",
Enum: []string{"celsius", "fahrenheit"},
},
},
},

View File

@@ -11,13 +11,10 @@ import (
"os"
"os/user"
"path/filepath"
"runtime"
"slices"
"strconv"
"strings"
"sync"
"golang.org/x/sync/errgroup"
"golang.org/x/text/encoding/unicode"
"golang.org/x/text/transform"
@@ -147,25 +144,12 @@ func fileDigestMap(path string) (map[string]string, error) {
files = []string{path}
}
var mu sync.Mutex
var g errgroup.Group
g.SetLimit(max(runtime.GOMAXPROCS(0)-1, 1))
for _, f := range files {
g.Go(func() error {
digest, err := digestForFile(f)
if err != nil {
return err
}
mu.Lock()
defer mu.Unlock()
fl[f] = digest
return nil
})
}
if err := g.Wait(); err != nil {
return nil, err
digest, err := digestForFile(f)
if err != nil {
return nil, err
}
fl[f] = digest
}
return fl, nil

View File

@@ -448,7 +448,7 @@ func (m *mockCache) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor)
func (m *mockCache) Put(ctx ml.Context, key, value ml.Tensor) {}
func (m *mockCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {}
func (m *mockCache) Close() {}
func (m *mockCache) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error { return nil }
func (m *mockCache) StartForward(ctx ml.Context, batch input.Batch) error { return nil }
func (m *mockCache) CopyPrefix(srcSeq, dstSeq int, len int32) {}
func (m *mockCache) SetConfig(ml.CacheConfig) {}
func (m *mockCache) CanResume(seq int, pos int32) bool { return true }

View File

@@ -728,51 +728,6 @@ func (m *multiLPath) String() string {
return strings.Join(*m, ", ")
}
func (s *Server) reserveWorstCaseGraph() error {
ctx := s.model.Backend().NewContext()
defer ctx.Close()
var batch input.Batch
inputs := make([]int32, s.batchSize)
batch.Positions = make([]int32, len(inputs))
batch.Sequences = make([]int, len(inputs))
for i := range inputs {
batch.Positions[i] = int32(i)
}
batch.Outputs = make([]int32, s.parallel)
for i := range batch.Outputs {
batch.Outputs[i] = int32(i)
}
var err error
batch.Inputs, err = ctx.Input().FromIntSlice(inputs, len(inputs))
if err != nil {
return err
}
cache := s.model.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, batch, true)
if err != nil {
return err
}
}
t, err := s.model.Forward(ctx, batch)
if err != nil {
return err
}
err = ctx.Forward(t).Reserve()
if err != nil {
return err
}
return nil
}
func (s *Server) loadModel(
ctx context.Context,
mpath string,
@@ -810,11 +765,6 @@ func (s *Server) loadModel(
s.seqs = make([]*Sequence, s.parallel)
s.seqsSem = semaphore.NewWeighted(int64(s.parallel))
err = s.reserveWorstCaseGraph()
if err != nil {
panic(err)
}
s.status = llm.ServerStatusReady
s.ready.Done()
}

View File

@@ -20,6 +20,7 @@ import (
"slices"
"strconv"
"strings"
"text/template/parse"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
@@ -62,6 +63,7 @@ type Model struct {
Digest string
Options map[string]any
Messages []api.Message
ToolPrefix string
Template *template.Template
}
@@ -260,7 +262,7 @@ func GetModel(name string) (*Model, error) {
return nil, err
}
model := &Model{
m := &Model{
Name: mp.GetFullTagname(),
ShortName: mp.GetShortTagname(),
Digest: digest,
@@ -279,7 +281,7 @@ func GetModel(name string) (*Model, error) {
}
defer configFile.Close()
if err := json.NewDecoder(configFile).Decode(&model.Config); err != nil {
if err := json.NewDecoder(configFile).Decode(&m.Config); err != nil {
return nil, err
}
}
@@ -292,16 +294,16 @@ func GetModel(name string) (*Model, error) {
switch layer.MediaType {
case "application/vnd.ollama.image.model":
model.ModelPath = filename
model.ParentModel = layer.From
m.ModelPath = filename
m.ParentModel = layer.From
case "application/vnd.ollama.image.embed":
// Deprecated in versions > 0.1.2
// TODO: remove this warning in a future version
slog.Info("WARNING: model contains embeddings, but embeddings in modelfiles have been deprecated and will be ignored.")
case "application/vnd.ollama.image.adapter":
model.AdapterPaths = append(model.AdapterPaths, filename)
m.AdapterPaths = append(m.AdapterPaths, filename)
case "application/vnd.ollama.image.projector":
model.ProjectorPaths = append(model.ProjectorPaths, filename)
m.ProjectorPaths = append(m.ProjectorPaths, filename)
case "application/vnd.ollama.image.prompt",
"application/vnd.ollama.image.template":
bts, err := os.ReadFile(filename)
@@ -309,7 +311,7 @@ func GetModel(name string) (*Model, error) {
return nil, err
}
model.Template, err = template.Parse(string(bts))
m.Template, err = template.Parse(string(bts))
if err != nil {
return nil, err
}
@@ -319,7 +321,7 @@ func GetModel(name string) (*Model, error) {
return nil, err
}
model.System = string(bts)
m.System = string(bts)
case "application/vnd.ollama.image.params":
params, err := os.Open(filename)
if err != nil {
@@ -328,7 +330,7 @@ func GetModel(name string) (*Model, error) {
defer params.Close()
// parse model options parameters into a map so that we can see which fields have been specified explicitly
if err = json.NewDecoder(params).Decode(&model.Options); err != nil {
if err = json.NewDecoder(params).Decode(&m.Options); err != nil {
return nil, err
}
case "application/vnd.ollama.image.messages":
@@ -338,7 +340,7 @@ func GetModel(name string) (*Model, error) {
}
defer msgs.Close()
if err = json.NewDecoder(msgs).Decode(&model.Messages); err != nil {
if err = json.NewDecoder(msgs).Decode(&m.Messages); err != nil {
return nil, err
}
case "application/vnd.ollama.image.license":
@@ -346,11 +348,50 @@ func GetModel(name string) (*Model, error) {
if err != nil {
return nil, err
}
model.License = append(model.License, string(bts))
m.License = append(m.License, string(bts))
}
}
return model, nil
capabilities := m.Capabilities()
if slices.Contains(capabilities, model.CapabilityTools) {
m.addToolPrefix()
}
return m, nil
}
// HasToolPrefix checks if the completion starts with the tool prefix, ignoring whitespace
func (m *Model) HasToolPrefix(sb strings.Builder) bool {
text := strings.ReplaceAll(strings.TrimSpace(sb.String()), " ", "")
toolString := strings.ReplaceAll(strings.TrimSpace(m.ToolPrefix), " ", "")
if len(text) < len(toolString) {
return text == toolString[:len(text)]
}
return text[:len(toolString)] == toolString
}
// Figure out what's between the start of the tools block, and the json response, and use it as a marker. Usually that's
// {- if .ToolCalls}this text{ range .ToolCalls}or maybe this text{{.name}}
func (m *Model) addToolPrefix() {
// create a subtree from the node that ranges over .ToolCalls
var previousNode parse.Node
toolCallsTemplate := m.Template.Subtree(func(node parse.Node) bool {
if rangeNode, ok := node.(*parse.RangeNode); ok {
return slices.Contains(template.Identifiers(rangeNode.Pipe), "ToolCalls")
}
previousNode = node
return false
})
if textNode, ok := previousNode.(*parse.TextNode); ok {
m.ToolPrefix = strings.TrimSpace(textNode.String())
}
if len(m.ToolPrefix) == 0 && len(toolCallsTemplate.Root.Nodes) > 0 {
rangeNode, ok := toolCallsTemplate.Root.Nodes[0].(*parse.RangeNode)
if ok && len(rangeNode.List.Nodes) > 0 {
m.ToolPrefix = rangeNode.List.Nodes[0].String()
}
}
}
func CopyModel(src, dst model.Name) error {

View File

@@ -6,6 +6,7 @@ import (
"fmt"
"os"
"path/filepath"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
@@ -28,19 +29,20 @@ func readFile(t *testing.T, base, name string) *bytes.Buffer {
func TestExecuteWithTools(t *testing.T) {
p := filepath.Join("testdata", "tools")
cases := []struct {
model string
output string
ok bool
model string
output string
ok bool
wellFormed bool
}{
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true, true},
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]
The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`, true},
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"To }]`, false},
The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`, true, false},
{"mistral", `[TOOL_CALLS] [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"To }]`, false, false},
{"mistral", `I'm not aware of that information. However, I can suggest searching for the weather using the "get_current_weather" function:
[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"mistral", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true, false},
{"mistral", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false, false},
{"command-r-plus", "Action: ```json" + `
[
{
@@ -58,16 +60,17 @@ The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`,
}
}
]
` + "```", true},
{"command-r-plus", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
{"firefunction", ` functools[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true},
{"firefunction", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false},
` + "```", true, true},
{"command-r-plus", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false, false},
{"firefunction", ` functools[{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]`, true, true},
{"firefunction", " The weather in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.", false, false},
{"llama3-groq-tool-use", `<tool_call>
{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}}
{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}
</tool_call>`, true},
{"xlam", `{"tool_calls": [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]}`, true},
{"nemotron", `<toolcall>{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]} </toolcall>`, true},
</tool_call>`, true, true},
{"xlam", `### Response:
{"tool_calls": [{"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]}`, true, true},
{"nemotron", `<toolcall> {"name": "get_current_weather", "arguments": {"format":"fahrenheit","location":"San Francisco, CA"}},{"name": "get_current_weather", "arguments": {"format":"celsius","location":"Toronto, Canada"}}]} </toolcall>`, true, true},
}
var tools []api.Tool
@@ -119,6 +122,21 @@ The temperature in San Francisco, CA is 70°F and in Toronto, Canada is 20°C.`,
}
})
t.Run("prefix", func(t *testing.T) {
m := &Model{Template: tmpl}
m.addToolPrefix()
if tt.wellFormed {
if len(m.ToolPrefix) == 0 {
t.Fatalf("No tool prefix detected")
}
if !strings.HasPrefix(strings.TrimSpace(tt.output), m.ToolPrefix) {
t.Fatalf("incorrect tool prefix: \"%s\", \"%s\"", m.ToolPrefix, tt.output)
}
}
})
t.Run("parse", func(t *testing.T) {
m := &Model{Template: tmpl}
actual, ok := m.parseToolCalls(tt.output)
@@ -177,3 +195,64 @@ func TestParseObjects(t *testing.T) {
})
}
}
func TestAddToolPrefix(t *testing.T) {
tests := []struct {
name string
template string
want string
}{
{
name: "prefix_from_previous_text_node",
template: `Previous text node{{- range .ToolCalls}}{{.name}}{{end}}`,
want: "Previous text node",
},
{
name: "prefix_from_range_node",
template: `{{- range .ToolCalls}}[TOOL_CALLS]{{.name}}{{end}}`,
want: "[TOOL_CALLS]",
},
{
name: "prefix_with_extra_whitespace",
template: ` Previous text with spaces {{- range .ToolCalls}}{{.name}}{{end}}`,
want: "Previous text with spaces",
},
{
name: "prefix_with_newlines",
template: "First line\nSecond line\n{{- range .ToolCalls}}{{.name}}{{end}}",
want: "First line\nSecond line",
},
{
name: "tool_calls_json_template",
template: `{{ if .Content }}{{ .Content }}{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}{{ end }}</tool_call>
{{ end }}`,
want: `<tool_call>`,
},
{
name: "mistral_tool_calls_template",
template: `{{- if .Content }} {{ .Content }}
{{- else if .ToolCalls }}[TOOL_CALLS] [
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{- end }}]
{{- end }}</s>`,
want: "[TOOL_CALLS] [",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
tmpl, err := template.Parse(tt.template)
if err != nil {
t.Fatalf("failed to parse template: %v", err)
}
m := &Model{Template: tmpl}
m.addToolPrefix()
if m.ToolPrefix != tt.want {
t.Errorf("incorrect tool prefix:\ngot: %q\nwant: %q", m.ToolPrefix, tt.want)
}
})
}
}

View File

@@ -1526,6 +1526,8 @@ func (s *Server) ChatHandler(c *gin.Context) {
defer close(ch)
var sb strings.Builder
var toolCallIndex int = 0
var mightBeTools bool = true
buf := make([]api.ChatResponse, 0)
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
@@ -1551,18 +1553,29 @@ func (s *Server) ChatHandler(c *gin.Context) {
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
// TODO: tool call checking and filtering should be moved outside of this callback once streaming
// however this was a simple change for now without reworking streaming logic of this (and other)
// handlers
if req.Stream != nil && !*req.Stream || len(req.Tools) == 0 {
// If we know we're not streaming
if req.Stream != nil && !*req.Stream || len(req.Tools) == 0 || !mightBeTools {
ch <- res
return
}
sb.WriteString(r.Content)
// Buffer up responses while we're unsure whether to stream.
buf = append(buf, res)
// not a tools response, continue streaming.
if !m.HasToolPrefix(sb) {
mightBeTools = false
for _, item := range buf {
ch <- item
}
return
}
// Streaming tool calls:
// If tools are recognized, use a flag to track the sending of a tool downstream
// This ensures that content is cleared from the message on the last chunk sent
sb.WriteString(r.Content)
if toolCalls, ok := m.parseToolCalls(sb.String()); ok {
res.Message.ToolCalls = toolCalls
for i := range toolCalls {
@@ -1573,8 +1586,12 @@ func (s *Server) ChatHandler(c *gin.Context) {
sb.Reset()
ch <- res
return
} else {
if !strings.HasPrefix(sb.String(), "{") {
ch <- res
return
}
}
if r.Done {
// Send any remaining content if no tool calls were detected
if toolCallIndex == 0 {

View File

@@ -370,31 +370,27 @@ func TestGenerateChat(t *testing.T) {
Description: "Get the current weather",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Required: []string{"location"},
Properties: map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
}{
"location": {
Type: api.PropertyType{"string"},
Type: "string",
Description: "The city and state",
},
"unit": {
Type: api.PropertyType{"string"},
Enum: []any{"celsius", "fahrenheit"},
Type: "string",
Enum: []string{"celsius", "fahrenheit"},
},
},
},
@@ -471,31 +467,27 @@ func TestGenerateChat(t *testing.T) {
Description: "Get the current weather",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Required: []string{"location"},
Properties: map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
}{
"location": {
Type: api.PropertyType{"string"},
Type: "string",
Description: "The city and state",
},
"unit": {
Type: api.PropertyType{"string"},
Enum: []any{"celsius", "fahrenheit"},
Type: "string",
Enum: []string{"celsius", "fahrenheit"},
},
},
},

View File

@@ -667,19 +667,13 @@ func (runner *runnerRef) waitForVRAMRecovery() chan any {
return finished
}
type ByDurationAndName []*runnerRef
type ByDuration []*runnerRef
func (a ByDurationAndName) Len() int { return len(a) }
func (a ByDurationAndName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByDurationAndName) Less(i, j int) bool {
// Primary sort by session duration (uint64 to handle negatives)
d1 := uint64(a[i].sessionDuration)
d2 := uint64(a[j].sessionDuration)
if d1 != d2 {
return d1 < d2
}
// Secondary sort by model path lex order
return a[i].modelPath < a[j].modelPath
func (a ByDuration) Len() int { return len(a) }
func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByDuration) Less(i, j int) bool {
// uint64 to turn negative time (never unload) to largest
return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration)
}
// TODO - future consideration to pick runners based on size
@@ -781,7 +775,7 @@ func (s *Scheduler) findRunnerToUnload() *runnerRef {
// In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
// e.g., if we have multiple options, will one make room for the request?
sort.Sort(ByDurationAndName(runnerList))
sort.Sort(ByDuration(runnerList))
// First try to find a runner that's already idle
for _, runner := range runnerList {