Compare commits

..

28 Commits

Author SHA1 Message Date
Daniel Hiltgen
ad118d8b13 ci: arm sbsa fixes (#11194) 2025-06-24 21:00:15 -07:00
Daniel Hiltgen
f08534137b ci: include dependencies 2025-06-24 20:27:43 -07:00
Daniel Hiltgen
4b4a90f233 ci: pick up arm sbsa cuda libs (#11192) 2025-06-24 18:59:22 -07:00
Daniel Hiltgen
03274a6b2f ci: recombine linux amd64 binaries (#11188)
Glue the rocm and archive builds back together.
2025-06-24 18:45:01 -07:00
Devon Rifkin
cc6463ebca Merge pull request #10238 from ollama/drifkin/array-head-count-simple
ggml: fix crash for array head counts
2025-06-24 17:50:02 -07:00
Daniel Hiltgen
405d2f628f ci: rocm parallel builds on windows (#11187)
The preset CMAKE_HIP_FLAGS isn't getting used on Windows.
This passes the parallel flag in through the C/CXX flags, along
with suppression for some log spew warnings to quiet down the build.
2025-06-24 15:27:09 -07:00
Devon Rifkin
a3f7dd3e98 Merge branch 'main' into drifkin/array-head-count-simple 2025-06-24 14:20:05 -07:00
Daniel Hiltgen
c85c0ebf89 CI: switch windows to vs 2022 (#11184)
* CI: switch windows to vs 2022

* ci: fix regex match
2025-06-24 13:26:55 -07:00
Daniel Hiltgen
10a8e04a8d avoid context overflow (#11175)
For smaller context models, make sure we do not exceed the training size.
2025-06-23 15:52:50 -07:00
Daniel Hiltgen
1c6669e64c Re-remove cuda v11 (#10694)
* Re-remove cuda v11

Revert the revert - drop v11 support requiring drivers newer than Feb 23

This reverts commit c6bcdc4223.

* Simplify layout

With only one version of the GPU libraries, we can simplify things down somewhat.  (Jetsons still require special handling)

* distinct sbsa variant for linux arm64

This avoids accidentally trying to load the sbsa cuda libraries on
a jetson system which results in crashes.

* temporary prevent rocm+cuda mixed loading
2025-06-23 14:07:00 -07:00
Devon Rifkin
b2b270ad5d Merge branch 'main' into drifkin/array-head-count-simple 2025-06-23 10:37:31 -07:00
AJ
2bb69b40c7 readme: add ai-hub to community integrations (#11169) 2025-06-23 09:21:12 -07:00
Daniel Hiltgen
65bff664cb build speedups (#11142)
Enable parallel building of the GPU architectures.
2025-06-20 12:32:51 -07:00
Michael Yang
c088ac0e79 convert: utility for merging tensors (#11069) 2025-06-20 11:12:01 -07:00
Michael Yang
0a066cfd91 Reapply "feat: incremental gguf parser (#10822)" (#11114) (#11119)
* Reapply "feat: incremental gguf parser (#10822)" (#11114)

This reverts commit a6e64fbdf2.

* fix older ggufs
2025-06-20 11:11:40 -07:00
Jesse Gross
87b7af6cee ggml: Check return status for computation.
We don't check the return status after computing the graph, which
can silently lead to bad outputs if we try to keep going and future
computation succeeds. This appears to happens in certain cases on
Apple M2 devices.

Fixes #11070
2025-06-19 17:12:49 -07:00
Daniel Hiltgen
f2527b08fb int: add coverage for older models (#11137)
Verified these fail on 0.9.1 and pass on HEAD.
2025-06-19 12:10:19 -07:00
Jeffrey Morgan
8bcb3125c1 benchmark: remove unused benchmark test (#11120)
Removes a test under benchmark/ that is unused
2025-06-18 12:58:50 -07:00
Jeffrey Morgan
6baf1e31e2 Revert "Revert "ggml: Export GPU UUIDs" (#11115)" (#11117)
Reverts PR #11115. The original change was mistakingly reverted instead of #10822
2025-06-18 07:30:49 -07:00
Jeffrey Morgan
ed567ef43b Revert "ggml: Export GPU UUIDs" (#11115)
This reverts commit aaa7818000.
2025-06-18 05:45:00 -07:00
Jeffrey Morgan
a6e64fbdf2 Revert "feat: incremental gguf parser (#10822)" (#11114)
This reverts commit 6b04cad7e8.
2025-06-18 05:42:44 -07:00
曹家巧
60cfa2a203 cache: fix comment function name in cache.go (#11110) 2025-06-18 05:21:45 -07:00
Jeffrey Morgan
55bbf3b4a1 tools: return empty arguments object instead of null (#11113) 2025-06-18 05:20:43 -07:00
Jeffrey Morgan
6bda1d2479 tools: fix parsing tool calls without any parameters (#11101)
Fixes issue where tool calls that don't expect any parameters were
not being parsed. This also fixes two additional issues: one where
2+ tool calls would not be correctly parsed, and cases where tool calls
with invalid parameters would still get parsed
2025-06-17 10:51:43 -07:00
Jeffrey Morgan
9e125d884c model: treat 'user defined' tokens as special tokens (#11077) 2025-06-16 16:03:16 -07:00
Devon Rifkin
20c5fd39c8 Merge branch 'main' into drifkin/array-head-count-simple 2025-05-08 11:46:52 -07:00
Devon Rifkin
d2ee599dcf load arrays with up to 1024 elements when estimating
This mirrors the old behavior before #10382
2025-04-27 13:45:13 -07:00
Devon Rifkin
6ed8898590 ggml: fix crash for array head counts
If it's an array, it uses the max value in the array

If array values for head counts becomes more popular, we can consider a
more invasive change like #10225 to calculate more accurate estimates.

Fixes: #9984
2025-04-27 11:38:06 -07:00
37 changed files with 921 additions and 800 deletions

View File

@@ -103,21 +103,18 @@ jobs:
arch: [amd64]
preset: ['CPU']
include:
- os: windows
arch: amd64
preset: 'CUDA 11'
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
cuda-version: '11.3'
- os: windows
arch: amd64
preset: 'CUDA 12'
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
cuda-version: '12.8'
flags: ''
- os: windows
arch: amd64
preset: 'ROCm 6'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
rocm-version: '6.2'
flags: '-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
env:
@@ -160,6 +157,9 @@ jobs:
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: matrix.preset == 'CPU'
run: |
echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
@@ -178,9 +178,9 @@ jobs:
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
- name: Build target "${{ matrix.preset }}"
run: |
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}"
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
env:
@@ -246,7 +246,7 @@ jobs:
dist\${{ matrix.os }}-${{ matrix.arch }}-app.exe
windows-sign:
runs-on: windows-2022
runs-on: windows
environment: release
needs: [windows-depends, windows-build]
steps:
@@ -322,16 +322,21 @@ jobs:
- run: |
for COMPONENT in bin/* lib/ollama/*; do
case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v11) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v12) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_sbsa) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
esac
done
working-directory: dist/${{ matrix.os }}-${{ matrix.arch }}
- run: |
echo "Manifests"
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in ; do
echo $ARCHIVE
cat $ARCHIVE
done
- run: |
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do
tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz);
@@ -470,8 +475,18 @@ jobs:
- uses: actions/download-artifact@v4
with:
pattern: dist-linux-*
path: dist
merge-multiple: true
path: stage
merge-multiple: false
- name: Merge linux amd64 payload
working-directory: stage/dist-linux-amd64-archive
run: |
tar zxf ollama-linux-amd64.tgz
tar zxf ../dist-linux-amd64-rocm/ollama-linux-amd64.tgz
rm -f ollama-linux-amd64.tgz ../dist-linux-amd64-rocm/ollama-linux-amd64.tgz
tar -c -f- --owner 0 --group 0 . | pigz -9vc > ../ollama-linux-amd64.tgz
- name: Cleanup linux payloads
run: |
find stage -name ollama-linux\*.tgz -exec mv {} dist/ \;
- run: find . -type f -not -name 'sha256sum.txt' | xargs sha256sum | tee sha256sum.txt
working-directory: dist
- name: Create or update Release

View File

@@ -36,7 +36,7 @@ jobs:
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
}
echo changed=$(changed 'llama/llama.cpp/**' 'ml/backend/ggml/ggml/**') | tee -a $GITHUB_OUTPUT
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
linux:
needs: [changes]
@@ -46,7 +46,7 @@ jobs:
include:
- preset: CPU
- preset: CUDA
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
container: nvidia/cuda:12.8.1-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
@@ -78,11 +78,11 @@ jobs:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010'
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
runs-on: windows
steps:
- run: |
@@ -102,7 +102,7 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_12.8", "nvcc_12.8", "cublas_12.8", "cublas_dev_12.8")) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
@@ -120,6 +120,9 @@ jobs:
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
@@ -133,8 +136,8 @@ jobs:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
env:

View File

@@ -78,14 +78,13 @@ if(CMAKE_CUDA_COMPILER)
find_package(CUDAToolkit)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
)
endif()
@@ -116,7 +115,11 @@ if(CMAKE_HIP_COMPILER)
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCIES
RUNTIME_DEPENDENCY_SET rocm
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
)
install(RUNTIME_DEPENDENCY_SET rocm
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
PRE_EXCLUDE_REGEXES ".*"

View File

@@ -17,20 +17,12 @@
"name": "CUDA",
"inherits": [ "Default" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
}
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
@@ -58,6 +50,7 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"CMAKE_HIP_FLAGS": "-parallel-jobs=4",
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
}
@@ -78,11 +71,6 @@
"configurePreset": "CUDA",
"targets": [ "ggml-cuda" ]
},
{
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 11"
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],

View File

@@ -7,12 +7,13 @@ ARG JETPACK5VERSION=r35.4.1
ARG JETPACK6VERSION=r36.4.0
ARG CMAKEVERSION=3.31.2
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
# We require gcc v10 minimum. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
RUN yum install -y yum-utils \
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
&& dnf install -y ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
@@ -38,15 +39,6 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
FROM base AS cuda-11
ARG CUDA11VERSION=11.3
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' \
&& cmake --build --parallel --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel 8
FROM base AS cuda-12
ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
@@ -98,17 +90,15 @@ RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
FROM --platform=linux/amd64 scratch AS amd64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=cuda-12 dist/lib/ollama /lib/ollama
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/cuda_sbsa
COPY --from=jetpack-5 dist/lib/ollama /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama /lib/ollama/cuda_jetpack6
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
COPY --from=rocm-6 dist/lib/ollama /lib/ollama
FROM ${FLAVOR} AS archive
COPY --from=cpu dist/lib/ollama /lib/ollama

View File

@@ -409,6 +409,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
### Cloud

View File

@@ -1,178 +0,0 @@
package benchmark
import (
"context"
"flag"
"fmt"
"testing"
"time"
"github.com/ollama/ollama/api"
)
// Command line flags
var modelFlag string
func init() {
flag.StringVar(&modelFlag, "m", "", "Name of the model to benchmark")
flag.Lookup("m").DefValue = "model"
}
// modelName returns the model name from flags, failing the test if not set
func modelName(b *testing.B) string {
if modelFlag == "" {
b.Fatal("Error: -m flag is required for benchmark tests")
}
return modelFlag
}
type TestCase struct {
name string
prompt string
maxTokens int
}
// runGenerateBenchmark contains the common generate and metrics logic
func runGenerateBenchmark(b *testing.B, ctx context.Context, client *api.Client, req *api.GenerateRequest) {
start := time.Now()
var ttft time.Duration
var metrics api.Metrics
err := client.Generate(ctx, req, func(resp api.GenerateResponse) error {
if ttft == 0 && resp.Response != "" {
ttft = time.Since(start)
}
if resp.Done {
metrics = resp.Metrics
}
return nil
})
// Report custom metrics as part of the benchmark results
b.ReportMetric(float64(ttft.Milliseconds()), "ttft_ms")
b.ReportMetric(float64(metrics.LoadDuration.Milliseconds()), "load_ms")
// Token throughput metrics
promptThroughput := float64(metrics.PromptEvalCount) / metrics.PromptEvalDuration.Seconds()
genThroughput := float64(metrics.EvalCount) / metrics.EvalDuration.Seconds()
b.ReportMetric(promptThroughput, "prompt_tok/s")
b.ReportMetric(genThroughput, "gen_tok/s")
// Token counts
b.ReportMetric(float64(metrics.PromptEvalCount), "prompt_tokens")
b.ReportMetric(float64(metrics.EvalCount), "gen_tokens")
if err != nil {
b.Fatal(err)
}
}
// BenchmarkColdStart runs benchmarks with model loading from cold state
func BenchmarkColdStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/cold/%s", m, tt.name), func(b *testing.B) {
ctx := b.Context()
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
b.StopTimer()
// Ensure model is unloaded before each iteration
unload(client, m, b)
b.StartTimer()
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// BenchmarkWarmStart runs benchmarks with pre-loaded model
func BenchmarkWarmStart(b *testing.B) {
client := setup(b)
tests := []TestCase{
{"short_prompt", "Write a long story", 100},
{"medium_prompt", "Write a detailed economic analysis", 500},
{"long_prompt", "Write a comprehensive AI research paper", 1000},
}
m := modelName(b)
for _, tt := range tests {
b.Run(fmt.Sprintf("%s/warm/%s", m, tt.name), func(b *testing.B) {
ctx := b.Context()
// Pre-warm the model
warmup(client, m, tt.prompt, b)
// Set number of tokens as our throughput metric
b.SetBytes(int64(tt.maxTokens))
for b.Loop() {
req := &api.GenerateRequest{
Model: m,
Prompt: tt.prompt,
Options: map[string]any{"num_predict": tt.maxTokens, "temperature": 0.1},
}
runGenerateBenchmark(b, ctx, client, req)
}
})
}
}
// setup verifies server and model availability
func setup(b *testing.B) *api.Client {
client, err := api.ClientFromEnvironment()
if err != nil {
b.Fatal(err)
}
if _, err := client.Show(b.Context(), &api.ShowRequest{Model: modelName(b)}); err != nil {
b.Fatalf("Model unavailable: %v", err)
}
return client
}
// warmup ensures the model is loaded and warmed up
func warmup(client *api.Client, model string, prompt string, b *testing.B) {
for range 3 {
err := client.Generate(
context.Background(),
&api.GenerateRequest{
Model: model,
Prompt: prompt,
Options: map[string]any{"num_predict": 50, "temperature": 0.1},
},
func(api.GenerateResponse) error { return nil },
)
if err != nil {
b.Logf("Error during model warm-up: %v", err)
}
}
}
// unload forces model unloading using KeepAlive: 0 parameter
func unload(client *api.Client, model string, b *testing.B) {
req := &api.GenerateRequest{
Model: model,
KeepAlive: &api.Duration{Duration: 0},
}
if err := client.Generate(context.Background(), req, func(api.GenerateResponse) error { return nil }); err != nil {
b.Logf("Unload error: %v", err)
}
time.Sleep(1 * time.Second)
}

View File

@@ -2,9 +2,6 @@ package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
@@ -30,65 +27,38 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
}
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []*ggml.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, &ggml.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
merges := make([]merge, 0, p.NumHiddenLayers*6)
for i := range p.NumHiddenLayers {
merges = append(merges, merge{
fmt.Sprintf("blk.%d.*.w1.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w1.bias", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.bias", i),
}, merge{
fmt.Sprintf("blk.%d.*.w2.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w2.bias", i),
fmt.Sprintf("blk.%d.ffn_up_exps.bias", i),
}, merge{
fmt.Sprintf("blk.%d.*.w3.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w3.bias", i),
fmt.Sprintf("blk.%d.ffn_down_exps.bias", i),
})
}
out, ts := mergeTensors(ts, merges...)
return append(out, p.llamaModel.Tensors(ts)...)
}
func (p *mixtralModel) Replacements() []string {
return append(
p.llamaModel.Replacements(),
"model.layers", "blk",
"block_sparse_moe.gate", "ffn_gate_inp",
"block_sparse_moe.experts.", ".",
)
}
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

View File

@@ -2,7 +2,9 @@ package convert
import (
"cmp"
"io"
"iter"
"path"
"slices"
"strings"
@@ -74,3 +76,54 @@ func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
}
}
}
type merge struct {
pattern, name string
}
// mergeTensors merges tensors that match a given pattern into a single tensor.
func mergeTensors(unmatched []Tensor, merges ...merge) (out []*ggml.Tensor, _ []Tensor) {
var matched []Tensor
for i := range merges {
matched, unmatched = slicesSplitFunc(unmatched, func(t Tensor) bool {
matched, _ := path.Match(merges[i].pattern, t.Name())
return matched
})
if len(matched) > 0 {
out = append(out, &ggml.Tensor{
Name: merges[i].name,
Kind: matched[0].Kind(),
Shape: append([]uint64{uint64(len(matched))}, matched[0].Shape()...),
WriterTo: mergeGroup(matched),
})
}
}
return out, unmatched
}
// slicesSplitFunc splits a slice into two slices based on a predicate function.
func slicesSplitFunc[S ~[]E, E comparable](s S, fn func(e E) bool) (matched, unmatched S) {
for _, e := range s {
if fn(e) {
matched = append(matched, e)
} else {
unmatched = append(unmatched, e)
}
}
return matched, unmatched
}
type mergeGroup []Tensor
func (g mergeGroup) WriteTo(w io.Writer) (int64, error) {
for _, t := range g {
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

View File

@@ -9,6 +9,8 @@ import (
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
)
@@ -302,3 +304,99 @@ func TestSplitDim(t *testing.T) {
}
})
}
func TestMerge(t *testing.T) {
unmatched := []Tensor{
&fakeTensor{
name: "a.0.b",
shape: []uint64{5, 2},
data: []float32{10, 11, 12, 13, 14, 15, 16, 17, 18, 19},
},
&fakeTensor{
name: "a.1.b",
shape: []uint64{5, 2},
data: []float32{20, 21, 22, 23, 24, 25, 26, 27, 28, 29},
},
&fakeTensor{
name: "c.0.d",
shape: []uint64{5, 2},
data: []float32{30, 31, 32, 33, 34, 35, 36, 37, 38, 39},
},
&fakeTensor{
name: "c.1.d",
shape: []uint64{5, 2},
data: []float32{40, 41, 42, 43, 44, 45, 46, 47, 48, 49},
},
&fakeTensor{
name: "e.0.f",
shape: []uint64{5, 2},
data: []float32{50, 51, 52, 53, 54, 55, 56, 57, 58, 59},
},
}
checkMatched := func(t *testing.T, n int, matched []*ggml.Tensor) {
for i := range n {
got := matched[i]
if diff := cmp.Diff([]uint64{2, 5, 2}, got.Shape); diff != "" {
t.Errorf("unexpected (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := got.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, 20)
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
offset := 10 + (i * 20)
want := make([]float32, 20)
for j := range 20 {
want[j] = float32(offset + j)
}
if diff := cmp.Diff(want, f32s); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
}
t.Run("single merge", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"})
if len(unmatched) != 3 {
t.Error("expected 3 remaining tensors, got", len(unmatched))
}
if len(matched) != 1 {
t.Error("expected 1 merged tensor, got", len(matched))
}
checkMatched(t, 1, matched)
})
t.Run("multiple merges", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"}, merge{"c.*.d", "c.d"})
if len(unmatched) != 1 {
t.Error("expected 1 remaining tensors, got", len(unmatched))
}
if len(matched) != 2 {
t.Error("expected 2 merged tensor, got", len(matched))
}
checkMatched(t, 2, matched)
})
t.Run("no match", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"x.*.y", "x.y"})
if len(unmatched) != 5 {
t.Error("expected 5 remaining tensors, got", len(unmatched))
}
if len(matched) != 0 {
t.Error("expected no merged tensors, got", len(matched))
}
})
}

View File

@@ -3,6 +3,7 @@
package discover
import (
"fmt"
"log/slog"
"os"
"regexp"
@@ -55,10 +56,13 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
}
}
}
return "sbsa"
}
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
// The detected driver is older than Feb 2023
slog.Warn("old CUDA driver detected - please upgrade to a newer driver", "version", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor))
return "v11"
}
return "v12"

View File

@@ -12,7 +12,7 @@ import (
// '../lib/ollama' on Linux and the executable's directory on macOS
// note: distribution builds, additional GPU-specific libraries are
// found in subdirectories of the returned path, such as
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
// 'cuda_v12', 'rocm', etc.
var LibOllamaPath string = func() string {
exe, err := os.Executable()
if err != nil {

View File

@@ -1,59 +0,0 @@
# Benchmark
Go benchmark tests that measure end-to-end performance of a running Ollama server. Run these tests to evaluate model inference performance on your hardware and measure the impact of code changes.
## When to use
Run these benchmarks when:
- Making changes to the model inference engine
- Modifying model loading/unloading logic
- Changing prompt processing or token generation code
- Implementing a new model architecture
- Testing performance across different hardware setups
## Prerequisites
- Ollama server running locally with `ollama serve` on `127.0.0.1:11434`
## Usage and Examples
>[!NOTE]
>All commands must be run from the root directory of the Ollama project.
Basic syntax:
```bash
go test -bench=. ./benchmark/... -m $MODEL_NAME
```
Required flags:
- `-bench=.`: Run all benchmarks
- `-m`: Model name to benchmark
Optional flags:
- `-count N`: Number of times to run the benchmark (useful for statistical analysis)
- `-timeout T`: Maximum time for the benchmark to run (e.g. "10m" for 10 minutes)
Common usage patterns:
Single benchmark run with a model specified:
```bash
go test -bench=. ./benchmark/... -m llama3.3
```
## Output metrics
The benchmark reports several key metrics:
- `gen_tok/s`: Generated tokens per second
- `prompt_tok/s`: Prompt processing tokens per second
- `ttft_ms`: Time to first token in milliseconds
- `load_ms`: Model load time in milliseconds
- `gen_tokens`: Total tokens generated
- `prompt_tokens`: Total prompt tokens processed
Each benchmark runs two scenarios:
- Cold start: Model is loaded from disk for each test
- Warm start: Model is pre-loaded in memory
Three prompt lengths are tested for each scenario:
- Short prompt (100 tokens)
- Medium prompt (500 tokens)
- Long prompt (1000 tokens)

View File

@@ -1,6 +1,6 @@
# GPU
## Nvidia
Ollama supports Nvidia GPUs with compute capability 5.0+.
Ollama supports Nvidia GPUs with compute capability 5.0+ and driver version 531 and newer.
Check your compute compatibility to see if your card is supported:
[https://developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus)

View File

@@ -43,7 +43,7 @@ Ollama includes multiple LLM libraries compiled for different GPUs and CPU vecto
In the server log, you will see a message that looks something like this (varies from release to release):
```
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v12 rocm_v5]
```
**Experimental LLM Library Override**

View File

@@ -34,7 +34,8 @@ func (kv KV) Kind() string {
}
func (kv KV) ParameterCount() uint64 {
return keyValue(kv, "general.parameter_count", uint64(0))
val, _ := keyValue(kv, "general.parameter_count", uint64(0))
return val
}
func (kv KV) FileType() FileType {
@@ -53,16 +54,27 @@ func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
}
func (kv KV) HeadCount() uint64 {
return uint64(kv.Uint("attention.head_count"))
func (kv KV) HeadCountMax() uint64 {
// TODO(drifkin): using the max value can cause an overestimation. In the
// future if array values become more popular, we can adapt the more invasive
// <https://github.com/ollama/ollama/pull/10225>
return uint64(kv.UintOrMaxArrayValue("attention.head_count", 1))
}
func (kv KV) HeadCountKV() uint64 {
return uint64(kv.Uint("attention.head_count_kv", 1))
func (kv KV) HeadCountMin() uint64 {
return uint64(kv.UintOrMinArrayValue("attention.head_count", 1))
}
func (kv KV) EmbeddingHeadCount() uint64 {
if heads := kv.HeadCount(); heads > 0 {
func (kv KV) HeadCountKVMax() uint64 {
return uint64(kv.UintOrMaxArrayValue("attention.head_count_kv", 1))
}
func (kv KV) HeadCountKVMin() uint64 {
return uint64(kv.UintOrMinArrayValue("attention.head_count_kv", 1))
}
func (kv KV) EmbeddingHeadCountMax() uint64 {
if heads := kv.HeadCountMin(); heads > 0 {
return kv.EmbeddingLength() / heads
}
@@ -70,15 +82,11 @@ func (kv KV) EmbeddingHeadCount() uint64 {
}
func (kv KV) EmbeddingHeadCountK() uint64 {
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCountMax())))
}
func (kv KV) EmbeddingHeadCountV() uint64 {
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV()
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCountMax())))
}
func (kv KV) ContextLength() uint64 {
@@ -90,35 +98,72 @@ func (kv KV) ChatTemplate() string {
}
func (kv KV) String(key string, defaultValue ...string) string {
return keyValue(kv, key, append(defaultValue, "")...)
val, _ := keyValue(kv, key, append(defaultValue, "")...)
return val
}
func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
return keyValue(kv, key, append(defaultValue, 0)...)
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
return val
}
func (kv KV) Float(key string, defaultValue ...float32) float32 {
return keyValue(kv, key, append(defaultValue, 0)...)
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
return val
}
func (kv KV) Bool(key string, defaultValue ...bool) bool {
return keyValue(kv, key, append(defaultValue, false)...)
val, _ := keyValue(kv, key, append(defaultValue, false)...)
return val
}
func (kv KV) UintOrMaxArrayValue(key string, defaultValue uint32) uint32 {
_, max := kv.UintOrArrayValue(key, defaultValue)
return max
}
func (kv KV) UintOrMinArrayValue(key string, defaultValue uint32) uint32 {
min, _ := kv.UintOrArrayValue(key, defaultValue)
return min
}
func (kv KV) UintOrArrayValue(key string, defaultValue uint32) (uint32, uint32) {
if u32, ok := keyValue(kv, key, uint32(0)); ok {
return u32, u32
} else if u32s, ok := keyValue(kv, key, &array[uint32]{}); ok {
min := slices.Min(u32s.values)
max := slices.Max(u32s.values)
return min, max
} else if i32s, ok := keyValue(kv, key, &array[int32]{}); ok {
min := slices.Min(i32s.values)
max := slices.Max(i32s.values)
if min < 0 || max < 0 {
slog.Warn("array values are unexpectedly negative", "key", key, "min", min, "max", max)
}
return uint32(min), uint32(max)
}
return defaultValue, defaultValue
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
return keyValue(kv, key, &array[string]{values: append(defaultValue, []string(nil))[0]}).values
val, _ := keyValue(kv, key, &array[string]{values: append(defaultValue, []string(nil))[0]})
return val.values
}
func (kv KV) Ints(key string, defaultValue ...[]int32) []int32 {
return keyValue(kv, key, &array[int32]{values: append(defaultValue, []int32(nil))[0]}).values
val, _ := keyValue(kv, key, &array[int32]{values: append(defaultValue, []int32(nil))[0]})
return val.values
}
func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
return keyValue(kv, key, &array[uint32]{values: append(defaultValue, []uint32(nil))[0]}).values
val, _ := keyValue(kv, key, &array[uint32]{values: append(defaultValue, []uint32(nil))[0]})
return val.values
}
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
return keyValue(kv, key, &array[float32]{values: append(defaultValue, []float32(nil))[0]}).values
val, _ := keyValue(kv, key, &array[float32]{values: append(defaultValue, []float32(nil))[0]})
return val.values
}
func (kv KV) OllamaEngineRequired() bool {
@@ -143,17 +188,17 @@ type arrayValueTypes interface {
*array[string] | *array[float32] | *array[float64] | *array[bool]
}
func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ...T) T {
func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ...T) (T, bool) {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
}
if val, ok := kv[key]; ok {
return val.(T)
if val, ok := kv[key].(T); ok {
return val, true
}
slog.Debug("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
slog.Debug("key with type not found", "key", key, "default", defaultValue[0])
return defaultValue[0], false
}
type Tensors struct {
@@ -425,11 +470,11 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
heads := f.KV().HeadCountMax()
headsKV := f.KV().HeadCountKVMax()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array[string]).size)
embeddingHeads := f.KV().EmbeddingHeadCount()
embeddingHeads := f.KV().EmbeddingHeadCountMax()
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
embeddingHeadsV := f.KV().EmbeddingHeadCountV()

View File

@@ -269,3 +269,33 @@ func TestKeyValue(t *testing.T) {
t.Errorf("unexpected uint8s (-got +want):\n%s", diff)
}
}
func TestHeadCount(t *testing.T) {
valuesArray := []int32{1, 5, 3, 4}
cases := []struct {
kv KV
want uint64
}{
{
kv: KV{
"general.architecture": "abc",
"abc.attention.head_count": &array[int32]{values: valuesArray, size: len(valuesArray)},
},
want: uint64(5),
},
{
kv: KV{
"general.architecture": "abc",
"abc.attention.head_count": uint32(3),
},
want: uint64(3),
},
}
for _, tt := range cases {
got := tt.kv.HeadCountMax()
if got != tt.want {
t.Errorf("unexpected max value: got=%d want=%d", got, tt.want)
}
}
}

View File

@@ -65,7 +65,7 @@ func Open(path string) (f *File, err error) {
return nil, err
}
if f.Version != 3 {
if f.Version < 2 {
return nil, fmt.Errorf("%w version %v", ErrUnsupported, f.Version)
}

View File

@@ -45,6 +45,8 @@ var (
"qwen2.5-coder:latest",
"qwen:latest",
"solar-pro:latest",
"codellama:latest",
"nous-hermes:latest",
}
)

View File

@@ -0,0 +1,32 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Hiltgen <daniel@ollama.com>
Date: Sun, 22 Jun 2025 09:22:05 -0700
Subject: [PATCH] temporary prevent rocm+cuda mixed loading
---
ggml/src/ggml-backend-reg.cpp | 12 ++++++++++--
1 file changed, 10 insertions(+), 2 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 4e67d243..8f49f084 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -573,8 +573,16 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
ggml_backend_load_best("blas", silent, dir_path);
ggml_backend_load_best("cann", silent, dir_path);
- ggml_backend_load_best("cuda", silent, dir_path);
- ggml_backend_load_best("hip", silent, dir_path);
+
+ // Avoid mixed hip+cuda configurations
+ const char * hip_devices = std::getenv("HIP_VISIBLE_DEVICES");
+ const char * rocr_devices = std::getenv("ROCR_VISIBLE_DEVICES");
+ if (!hip_devices && !rocr_devices) {
+ ggml_backend_load_best("cuda", silent, dir_path);
+ } else {
+ ggml_backend_load_best("hip", silent, dir_path);
+ }
+
ggml_backend_load_best("kompute", silent, dir_path);
ggml_backend_load_best("metal", silent, dir_path);
ggml_backend_load_best("rpc", silent, dir_path);

View File

@@ -151,7 +151,12 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
}
if graphPartialOffload == 0 {
graphPartialOffload = f.KV().GQA() * kvTotal / 6
headsKV := f.KV().HeadCountKVMin()
if headsKV == 0 {
headsKV = 1
}
gqa := f.KV().HeadCountMax() / headsKV
graphPartialOffload = gqa * kvTotal / 6
}
if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload

View File

@@ -139,6 +139,13 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
gpus = discover.GetCPUInfo()
}
// Verify the requested context size is <= the model training size
trainCtx := f.KV().ContextLength()
if opts.NumCtx/numParallel > int(trainCtx) && trainCtx > 0 {
slog.Warn("requested context size too large for model", "num_ctx", opts.NumCtx, "num_parallel", numParallel, "n_ctx_train", trainCtx)
opts.NumCtx = int(trainCtx) * numParallel
}
estimate := EstimateGPULayers(gpus, f, projectors, opts, numParallel)
if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch {
@@ -311,7 +318,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, a
params = append(params, "--mmproj", projectors[0])
}
// iterate through compatible GPU libraries such as 'cuda_v12', 'cuda_v11', 'rocm', etc.
// iterate through compatible GPU libraries such as 'cuda_v12', 'rocm', etc.
// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
// without any LD_LIBRARY_PATH flags
for {

View File

@@ -602,7 +602,9 @@ func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
}
func (c *Context) Compute(tensors ...ml.Tensor) {
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
if status := C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph); status != C.GGML_STATUS_SUCCESS {
panic(fmt.Errorf("error computing ggml graph: %v", status))
}
C.ggml_backend_sched_reset(c.b.sched)
needSync := true

View File

@@ -573,8 +573,16 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
ggml_backend_load_best("blas", silent, dir_path);
ggml_backend_load_best("cann", silent, dir_path);
ggml_backend_load_best("cuda", silent, dir_path);
ggml_backend_load_best("hip", silent, dir_path);
// Avoid mixed hip+cuda configurations
const char * hip_devices = std::getenv("HIP_VISIBLE_DEVICES");
const char * rocr_devices = std::getenv("ROCR_VISIBLE_DEVICES");
if (!hip_devices && !rocr_devices) {
ggml_backend_load_best("cuda", silent, dir_path);
} else {
ggml_backend_load_best("hip", silent, dir_path);
}
ggml_backend_load_best("kompute", silent, dir_path);
ggml_backend_load_best("metal", silent, dir_path);
ggml_backend_load_best("rpc", silent, dir_path);

View File

@@ -87,7 +87,7 @@ func (v *Vocabulary) Decode(id int32) string {
func (v *Vocabulary) SpecialVocabulary() []string {
v.specialOnce.Do(func() {
for i := range v.Values {
if v.Types[i] == TOKEN_TYPE_CONTROL {
if v.Types[i] == TOKEN_TYPE_CONTROL || v.Types[i] == TOKEN_TYPE_USER_DEFINED {
v.special = append(v.special, v.Values[i])
}
}

16
model/vocabulary_test.go Normal file
View File

@@ -0,0 +1,16 @@
package model
import "testing"
func TestVocabulary_SpecialVocabulary(t *testing.T) {
vocab := &Vocabulary{
Values: []string{"<|startoftext|>", "<|endoftext|>", "<|tool_call_start|>", "<|tool_call_end|>", "hi"},
Types: []int32{TOKEN_TYPE_CONTROL, TOKEN_TYPE_CONTROL, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_USER_DEFINED, TOKEN_TYPE_NORMAL},
}
specialVocab := vocab.SpecialVocabulary()
if len(specialVocab) != 4 {
t.Errorf("expected 4 special tokens, got %d", len(specialVocab))
}
}

View File

@@ -27,7 +27,6 @@ function checkEnv() {
$env:VCToolsRedistDir=(get-item "${MSVC_INSTALL}\VC\Redist\MSVC\*")[0]
}
# Locate CUDA versions
# Note: this assumes every version found will be built
$cudaList=(get-item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v*\bin\" -ea 'silentlycontinue')
if ($cudaList.length -eq 0) {
$d=(get-command -ea 'silentlycontinue' nvcc).path
@@ -94,19 +93,6 @@ function buildOllama() {
$hashEnv = @{}
Get-ChildItem env: | foreach { $hashEnv[$_.Name] = $_.Value }
if ("$script:CUDA_DIRS".Contains("v11")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V11")) { $v11="$_" }}
$env:CUDAToolkit_ROOT=$hashEnv[$v11]
write-host "Building CUDA v11 backend libraries"
# Note: cuda v11 requires msvc 2019 so force the older generator
# to avoid 2022 (or newer) from being used as the default
& cmake --fresh --preset "CUDA 11" -G "Visual Studio 16 2019" --install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --build --preset "CUDA 11" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "CUDA" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
if ("$script:CUDA_DIRS".Contains("v12")) {
$hashEnv.Keys | foreach { if ($_.Contains("CUDA_PATH_V12")) { $v12="$_" }}
$env:CUDAToolkit_ROOT=$hashEnv[$v12]
@@ -127,12 +113,17 @@ function buildOllama() {
$env:HIPCXX="${env:HIP_PATH}\bin\clang++.exe"
$env:HIP_PLATFORM="amd"
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
& cmake --fresh --preset "ROCm 6" -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ --install-prefix $script:DIST_DIR
& cmake --fresh --preset "ROCm 6" -G Ninja `
-DCMAKE_C_COMPILER=clang `
-DCMAKE_CXX_COMPILER=clang++ `
-DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" `
-DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" `
--install-prefix $script:DIST_DIR
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
$env:HIPCXX=""
$env:HIP_PLATFORM=""
$env:CMAKE_PREFIX_PATH=""
& cmake --build --preset "ROCm" --config Release --parallel $script:JOBS
& cmake --build --preset "ROCm 6" --config Release --parallel $script:JOBS
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
& cmake --install build --component "HIP" --strip
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}

View File

@@ -10,9 +10,7 @@ OLLAMA_COMMON_BUILD_ARGS="--build-arg=VERSION \
--build-arg=GOFLAGS \
--build-arg=OLLAMA_CUSTOM_CPU_DEFS \
--build-arg=OLLAMA_SKIP_CUDA_GENERATE \
--build-arg=OLLAMA_SKIP_CUDA_11_GENERATE \
--build-arg=OLLAMA_SKIP_CUDA_12_GENERATE \
--build-arg=CUDA_V11_ARCHITECTURES \
--build-arg=CUDA_V12_ARCHITECTURES \
--build-arg=OLLAMA_SKIP_ROCM_GENERATE \
--build-arg=OLLAMA_FAST_BUILD \

View File

@@ -1,115 +0,0 @@
package cache
import (
"fmt"
"log/slog"
"os"
"slices"
"sync"
"time"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/thinking"
"github.com/ollama/ollama/types/model"
)
// cacheEntry stores capabilities and the modification time of the model file
type cacheEntry struct {
capabilities []model.Capability
modTime time.Time
}
// ggufCapabilities is a cache for gguf model capabilities
var ggufCapabilities = &sync.Map{}
// ModelInfo contains the minimal information needed to determine capabilities
type ModelInfo struct {
ModelPath string
ProjectorPaths []string
Template *template.Template
}
// Capabilities returns the capabilities that the model supports
func Capabilities(info ModelInfo) []model.Capability {
capabilities, err := ggufCapabilties(info.ModelPath)
if err != nil {
slog.Error("could not determine gguf capabilities", "error", err)
}
if info.Template == nil {
return capabilities
}
// Check for tools capability
if slices.Contains(info.Template.Vars(), "tools") {
capabilities = append(capabilities, model.CapabilityTools)
}
// Check for insert capability
if slices.Contains(info.Template.Vars(), "suffix") {
capabilities = append(capabilities, model.CapabilityInsert)
}
// Check for vision capability in projector-based models
if len(info.ProjectorPaths) > 0 {
capabilities = append(capabilities, model.CapabilityVision)
}
// Check for thinking capability
openingTag, closingTag := thinking.InferTags(info.Template.Template)
if openingTag != "" && closingTag != "" {
capabilities = append(capabilities, model.CapabilityThinking)
}
return capabilities
}
func ggufCapabilties(modelPath string) ([]model.Capability, error) {
// Get file info to check modification time
fileInfo, err := os.Stat(modelPath)
if err != nil {
return nil, err
}
currentModTime := fileInfo.ModTime()
// Check if we have a cached entry
if cached, ok := ggufCapabilities.Load(modelPath); ok {
entry := cached.(cacheEntry)
// If the file hasn't been modified since we cached it, return the cached capabilities
if entry.modTime.Equal(currentModTime) {
return entry.capabilities, nil
}
}
// If not cached or file was modified, read the model file to determine capabilities
capabilities := []model.Capability{}
r, err := os.Open(modelPath)
if err != nil {
return nil, err
}
defer r.Close()
f, err := ggml.Decode(r, 1024)
if err != nil {
return nil, err
}
if _, ok := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]; ok {
capabilities = append(capabilities, model.CapabilityEmbedding)
} else {
capabilities = append(capabilities, model.CapabilityCompletion)
}
if _, ok := f.KV()[fmt.Sprintf("%s.vision.block_count", f.KV().Architecture())]; ok {
capabilities = append(capabilities, model.CapabilityVision)
}
// Cache the capabilities with the modification time
ggufCapabilities.Store(modelPath, cacheEntry{
capabilities: capabilities,
modTime: currentModTime,
})
return capabilities, nil
}

View File

@@ -1,211 +0,0 @@
package cache
import (
"bytes"
"maps"
"os"
"slices"
"testing"
"time"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/model"
)
// testGGUF creates a temporary GGUF model file for testing with custom key-value pairs
func testGGUF(tb testing.TB, customKV ggml.KV) string {
tb.Helper()
f, err := os.CreateTemp(tb.TempDir(), "test*.gguf")
if err != nil {
tb.Fatal(err)
}
defer f.Close()
kv := ggml.KV{}
maps.Copy(kv, customKV)
tensors := []*ggml.Tensor{
{
Name: "token_embd.weight",
Kind: 0,
Shape: []uint64{1, 1},
WriterTo: bytes.NewBuffer(make([]byte, 4)),
},
}
if err := ggml.WriteGGUF(f, kv, tensors); err != nil {
tb.Fatal(err)
}
return f.Name()
}
func TestCapabilities(t *testing.T) {
ggufCapabilities.Range(func(key, value any) bool {
ggufCapabilities.Delete(key)
return true
})
// Create test model paths
completionModelPath := testGGUF(t, ggml.KV{
"general.architecture": "llama",
})
visionModelPath := testGGUF(t, ggml.KV{
"general.architecture": "llama",
"llama.vision.block_count": uint32(1),
})
embeddingModelPath := testGGUF(t, ggml.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(1),
})
// Create templates
toolsInsertTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}{{ if .suffix }}{{ .suffix }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
chatTemplate, err := template.Parse("{{ .prompt }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
toolsTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
testCases := []struct {
name string
model ModelInfo
expectedCaps []model.Capability
}{
{
name: "model with completion capability",
model: ModelInfo{
ModelPath: completionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion},
},
{
name: "model with completion, tools, and insert capability",
model: ModelInfo{
ModelPath: completionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with tools capability",
model: ModelInfo{
ModelPath: completionModelPath,
Template: toolsTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityTools},
},
{
name: "model with vision capability from gguf",
model: ModelInfo{
ModelPath: visionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision},
},
{
name: "model with vision capability from projector",
model: ModelInfo{
ModelPath: completionModelPath,
ProjectorPaths: []string{"/path/to/projector"},
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision},
},
{
name: "model with vision, tools, and insert capability",
model: ModelInfo{
ModelPath: visionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with embedding capability",
model: ModelInfo{
ModelPath: embeddingModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityEmbedding},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
// First call - should read from file
caps := Capabilities(tc.model)
slices.Sort(caps)
slices.Sort(tc.expectedCaps)
if !slices.Equal(caps, tc.expectedCaps) {
t.Errorf("Expected capabilities %v, got %v", tc.expectedCaps, caps)
}
// Verify caching for models that read from GGUF
if tc.model.ModelPath != "" {
// Check that entry is cached
_, ok := ggufCapabilities.Load(tc.model.ModelPath)
if !ok {
t.Error("Expected capabilities to be cached")
}
// Second call - should use cache
caps2 := Capabilities(tc.model)
slices.Sort(caps2)
if !slices.Equal(caps, caps2) {
t.Errorf("Cached capabilities don't match original: expected %v, got %v", caps, caps2)
}
}
})
}
// Test cache invalidation on file modification
t.Run("cache invalidation", func(t *testing.T) {
// Use completion model for this test
info := ModelInfo{
ModelPath: completionModelPath,
Template: chatTemplate,
}
// Get initial cached entry
cached, ok := ggufCapabilities.Load(completionModelPath)
if !ok {
t.Fatal("Expected model to be cached from previous tests")
}
entry := cached.(cacheEntry)
// Modify the file's timestamp to the future
future := time.Now().Add(time.Hour)
err := os.Chtimes(completionModelPath, future, future)
if err != nil {
t.Fatalf("Failed to update file timestamp: %v", err)
}
// Call should re-read from file due to changed modtime
caps := Capabilities(info)
if len(caps) != 1 || caps[0] != model.CapabilityCompletion {
t.Errorf("Expected [CapabilityCompletion], got %v", caps)
}
// Check that cache was updated with new modtime
cached2, ok := ggufCapabilities.Load(completionModelPath)
if !ok {
t.Error("Expected capabilities to be cached after re-read")
}
entry2 := cached2.(cacheEntry)
if entry2.modTime.Equal(entry.modTime) {
t.Error("Expected cache entry to have updated modTime")
}
})
}

View File

@@ -23,9 +23,10 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fs/gguf"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/server/cache"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/thinking"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
)
@@ -67,14 +68,60 @@ type Model struct {
Template *template.Template
}
// Capabilities returns the capabilities that the model supports
func (m *Model) Capabilities() []model.Capability {
capabilities := []model.Capability{}
// Check for completion capability
f, err := gguf.Open(m.ModelPath)
if err == nil {
defer f.Close()
if f.KeyValue("pooling_type").Valid() {
capabilities = append(capabilities, model.CapabilityEmbedding)
} else {
// If no embedding is specified, we assume the model supports completion
capabilities = append(capabilities, model.CapabilityCompletion)
}
if f.KeyValue("vision.block_count").Valid() {
capabilities = append(capabilities, model.CapabilityVision)
}
} else {
slog.Error("couldn't open model file", "error", err)
}
if m.Template == nil {
return capabilities
}
// Check for tools capability
if slices.Contains(m.Template.Vars(), "tools") {
capabilities = append(capabilities, model.CapabilityTools)
}
// Check for insert capability
if slices.Contains(m.Template.Vars(), "suffix") {
capabilities = append(capabilities, model.CapabilityInsert)
}
// Check for vision capability in projector-based models
if len(m.ProjectorPaths) > 0 {
capabilities = append(capabilities, model.CapabilityVision)
}
// Check for thinking capability
openingTag, closingTag := thinking.InferTags(m.Template.Template)
if openingTag != "" && closingTag != "" {
capabilities = append(capabilities, model.CapabilityThinking)
}
return capabilities
}
// CheckCapabilities checks if the model has the specified capabilities returning an error describing
// any missing or unknown capabilities
func (m *Model) CheckCapabilities(want ...model.Capability) error {
available := cache.Capabilities(cache.ModelInfo{
ModelPath: m.ModelPath,
ProjectorPaths: m.ProjectorPaths,
Template: m.Template,
})
available := m.Capabilities()
var errs []error
// Map capabilities to their corresponding error

View File

@@ -9,6 +9,131 @@ import (
"github.com/ollama/ollama/types/model"
)
func TestModelCapabilities(t *testing.T) {
// Create completion model (llama architecture without vision)
completionModelPath, _ := createBinFile(t, ggml.KV{
"general.architecture": "llama",
}, []*ggml.Tensor{})
// Create vision model (llama architecture with vision block count)
visionModelPath, _ := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.vision.block_count": uint32(1),
}, []*ggml.Tensor{})
// Create embedding model (bert architecture with pooling type)
embeddingModelPath, _ := createBinFile(t, ggml.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(1),
}, []*ggml.Tensor{})
toolsInsertTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}{{ if .suffix }}{{ .suffix }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
chatTemplate, err := template.Parse("{{ .prompt }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
toolsTemplate, err := template.Parse("{{ .prompt }}{{ if .tools }}{{ .tools }}{{ end }}")
if err != nil {
t.Fatalf("Failed to parse template: %v", err)
}
testModels := []struct {
name string
model Model
expectedCaps []model.Capability
}{
{
name: "model with completion capability",
model: Model{
ModelPath: completionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion},
},
{
name: "model with completion, tools, and insert capability",
model: Model{
ModelPath: completionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with tools capability",
model: Model{
ModelPath: completionModelPath,
Template: toolsTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityTools},
},
{
name: "model with vision capability",
model: Model{
ModelPath: visionModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision},
},
{
name: "model with vision, tools, and insert capability",
model: Model{
ModelPath: visionModelPath,
Template: toolsInsertTemplate,
},
expectedCaps: []model.Capability{model.CapabilityCompletion, model.CapabilityVision, model.CapabilityTools, model.CapabilityInsert},
},
{
name: "model with embedding capability",
model: Model{
ModelPath: embeddingModelPath,
Template: chatTemplate,
},
expectedCaps: []model.Capability{model.CapabilityEmbedding},
},
}
// compare two slices of model.Capability regardless of order
compareCapabilities := func(a, b []model.Capability) bool {
if len(a) != len(b) {
return false
}
aCount := make(map[model.Capability]int)
for _, cap := range a {
aCount[cap]++
}
bCount := make(map[model.Capability]int)
for _, cap := range b {
bCount[cap]++
}
for cap, count := range aCount {
if bCount[cap] != count {
return false
}
}
return true
}
for _, tt := range testModels {
t.Run(tt.name, func(t *testing.T) {
// Test Capabilities method
caps := tt.model.Capabilities()
if !compareCapabilities(caps, tt.expectedCaps) {
t.Errorf("Expected capabilities %v, got %v", tt.expectedCaps, caps)
}
})
}
}
func TestModelCheckCapabilities(t *testing.T) {
// Create simple model file for tests that don't depend on GGUF content
completionModelPath, _ := createBinFile(t, ggml.KV{

View File

@@ -59,7 +59,7 @@ type DiskCache struct {
testHookBeforeFinalWrite func(f *os.File)
}
// PutString is a convenience function for c.Put(d, strings.NewReader(s), int64(len(s))).
// PutBytes is a convenience function for c.Put(d, strings.NewReader(s), int64(len(s))).
func PutBytes[S string | []byte](c *DiskCache, d Digest, data S) error {
return c.Put(d, bytes.NewReader([]byte(data)), int64(len(data)))
}

View File

@@ -34,7 +34,6 @@ import (
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/openai"
"github.com/ollama/ollama/server/cache"
"github.com/ollama/ollama/server/internal/client/ollama"
"github.com/ollama/ollama/server/internal/registry"
"github.com/ollama/ollama/template"
@@ -820,17 +819,13 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
}
resp := &api.ShowResponse{
License: strings.Join(m.License, "\n"),
System: m.System,
Template: m.Template.String(),
Details: modelDetails,
Messages: msgs,
Capabilities: cache.Capabilities(cache.ModelInfo{
ModelPath: m.ModelPath,
Template: m.Template,
ProjectorPaths: m.ProjectorPaths,
}),
ModifiedAt: manifest.fi.ModTime(),
License: strings.Join(m.License, "\n"),
System: m.System,
Template: m.Template.String(),
Details: modelDetails,
Messages: msgs,
Capabilities: m.Capabilities(),
ModifiedAt: manifest.fi.ModTime(),
}
var params []string

View File

@@ -191,7 +191,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
}
// Load model for fitting
ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
ggml, err := llm.LoadModel(pending.model.ModelPath, 1024)
if err != nil {
pending.errCh <- err
break

View File

@@ -18,9 +18,8 @@ const (
)
type Parser struct {
tag string
names []string
properties []string
tag string
tools []api.Tool
state toolsState
buffer []byte
@@ -34,15 +33,10 @@ func NewParser(tmpl *template.Template, tools []api.Tool) *Parser {
}
func NewParserWithTag(tools []api.Tool, tag string) *Parser {
var p Parser
for _, t := range tools {
p.names = append(p.names, t.Function.Name)
for r := range t.Function.Parameters.Properties {
p.properties = append(p.properties, r)
}
return &Parser{
tag: tag,
tools: tools,
}
p.tag = tag
return &p
}
// Add processes a string input to parse tool calls and content that
@@ -121,36 +115,40 @@ func (p *Parser) findTag() (int, bool) {
// parseToolCall finds the next complete tool call in the buffer
// incrementing n and advancing the buffer.
func (p *Parser) parseToolCall() *api.ToolCall {
var name string
var args map[string]any
var tool *api.Tool
var end int = len(p.buffer)
var i int
// find tool name
var i int
for _, n := range p.names {
for _, t := range p.tools {
n := t.Function.Name
if i = bytes.Index(p.buffer, []byte(n)); i != -1 {
if i+len(n) < end {
name = n
tool = &t
end = i + len(n)
}
}
}
if name == "" {
if tool == nil {
return nil
}
if args, i = p.findArguments(); args == nil {
return nil
}
// only look for arguments if the tool has parameters
args := map[string]any{}
if len(tool.Function.Parameters.Properties) > 0 {
if args, i = p.findArguments(*tool); args == nil {
return nil
}
if i > end {
end = i
if i > end {
end = i
}
}
tc := &api.ToolCall{
Function: api.ToolCallFunction{
Name: name,
Name: tool.Function.Name,
Arguments: args,
Index: p.n,
},
@@ -162,13 +160,17 @@ func (p *Parser) parseToolCall() *api.ToolCall {
}
// findArguments returns the first object that appears to be
// arguments and the position where the arguments end, returning nil and 0 if
// an invalid JSON object or non-arguments object is found first
func (p *Parser) findArguments() (map[string]any, int) {
// arguments for the provided tool, returning nil
func (p *Parser) findArguments(tool api.Tool) (map[string]any, int) {
if len(p.buffer) == 0 {
return nil, 0
}
// no arguments to parse
if len(tool.Function.Parameters.Properties) == 0 {
return nil, 0
}
var braces int
var start int = -1
var end int
@@ -184,11 +186,13 @@ func (p *Parser) findArguments() (map[string]any, int) {
}
if c == '}' {
braces--
if braces == 0 && start != -1 {
end = i + 1
object = p.buffer[start:end]
break
if start != -1 {
braces--
if braces == 0 {
end = i + 1
object = p.buffer[start:end]
break
}
}
}
}
@@ -206,24 +210,27 @@ func (p *Parser) findArguments() (map[string]any, int) {
var find func(obj any) map[string]any
find = func(obj any) map[string]any {
switch v := obj.(type) {
switch obj := obj.(type) {
case map[string]any:
// check if the object keys are valid tool properties
// TODO (jmorganca): check only sets of properties that
// go together instead of the entire set
for _, prop := range p.properties {
if _, exists := v[prop]; exists {
return v
found := true
for key := range obj {
if _, exists := tool.Function.Parameters.Properties[key]; !exists {
found = false
break
}
}
for _, value := range v {
if found {
return obj
}
for _, value := range obj {
if result := find(value); result != nil {
return result
}
}
case []any:
for _, item := range v {
for _, item := range obj {
if result := find(item); result != nil {
return result
}

View File

@@ -104,6 +104,13 @@ func TestParser(t *testing.T) {
},
},
},
{
Type: "function",
Function: api.ToolFunction{
Name: "say_hello",
Description: "Say hello",
},
},
}
tests := []struct {
@@ -144,6 +151,20 @@ func TestParser(t *testing.T) {
},
},
},
{
name: "invalid arguments",
inputs: []string{`<tool_call>{"name": "get_conditions", "arguments": {"city": "San Francisco"}}</tool_call>`},
content: "",
tmpl: qwen,
calls: nil,
},
{
name: "missing args",
inputs: []string{`<tool_call>{"name": "get_conditions"}</tool_call>`},
content: "",
tmpl: qwen,
calls: nil,
},
{
name: "text before tool call",
inputs: []string{`Let me check the weather. <tool_call>{"name": "get_temperature", "arguments": {"city": "New York"}}</tool_call>`},
@@ -161,6 +182,28 @@ func TestParser(t *testing.T) {
},
},
},
{
name: "qwen no args tool call",
inputs: []string{`Let me say hello to the user. I'll use the say_hello tool <tool_call>{"name": "say_hello"}</tool_call>`},
content: "Let me say hello to the user. I'll use the say_hello tool ",
tmpl: qwen,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "say_hello",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
},
{
name: "qwen no args with text",
inputs: []string{"Let me say hello to the user. I'll use the say_hello tool. "},
content: "Let me say hello to the user. I'll use the say_hello tool. ",
tmpl: qwen,
calls: nil,
},
{
name: "two tool calls in a list",
inputs: []string{`[TOOL_CALLS] [{"name": "get_temperature", "arguments": {"city": "London", "format": "fahrenheit"}}, {"name": "get_conditions", "arguments": {"location": "Tokyo"}}][/TOOL_CALLS]`},
@@ -189,7 +232,7 @@ func TestParser(t *testing.T) {
},
},
{
name: "two tool calls",
name: "qwen two tool calls",
inputs: []string{`Okay, let's call both tools! <tool_call>{"name": "get_temperature", "arguments": {"city": "London", "format": "fahrenheit"}}</tool_call><tool_call>{"name": "get_conditions", "arguments": {"location": "Tokyo"}}</tool_call>`},
content: "Okay, let's call both tools! ",
tmpl: qwen,
@@ -215,6 +258,30 @@ func TestParser(t *testing.T) {
},
},
},
{
name: "qwen two tool calls one with no args",
inputs: []string{`Let me check the weather. <tool_call>{"name": "say_hello"}</tool_call><tool_call>{"name": "get_conditions", "arguments": {"location": "Tokyo"}}`},
content: "Let me check the weather. ",
tmpl: qwen,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "say_hello",
Arguments: api.ToolCallFunctionArguments{},
},
},
{
Function: api.ToolCallFunction{
Index: 1,
Name: "get_conditions",
Arguments: api.ToolCallFunctionArguments{
"location": "Tokyo",
},
},
},
},
},
{
name: "deepseek",
inputs: []string{"<think>Wait, I need to call a tool</think><|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_temperature\n```json\n{\"city\": \"Tokyo\"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>"},
@@ -338,6 +405,52 @@ func TestParser(t *testing.T) {
content: "for { fmt.Println(\"hello\") }",
tmpl: json,
},
{
name: "json no args tool call",
inputs: []string{
"{\"name\": \"say_hello\"}",
},
content: "",
tmpl: json,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "say_hello",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
},
{
name: "json no args no tool call",
inputs: []string{
"I'll use the say_hello tool to say hello to the user.",
},
content: "I'll use the say_hello tool to say hello to the user.",
tmpl: json,
calls: nil,
},
// TODO (jmorganca): this is a false positive, we should
// not be parsing this as a tool call
{
name: "json no args false positive",
inputs: []string{
`{say_hello!!!}`,
},
content: "",
tmpl: json,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "say_hello",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
},
{
name: "list multiple",
inputs: []string{
@@ -380,6 +493,30 @@ func TestParser(t *testing.T) {
},
{
name: "list partial",
inputs: []string{
"[{",
"\"name\": \"get_conditions\", ",
"\"arguments\": {",
"\"location\": \"Tokyo\"",
"}",
"}",
},
content: "",
tmpl: list,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "get_conditions",
Arguments: api.ToolCallFunctionArguments{
"location": "Tokyo",
},
},
},
},
},
{
name: "list invalid",
inputs: []string{
"[",
"{",
@@ -393,6 +530,33 @@ func TestParser(t *testing.T) {
tmpl: list,
calls: nil,
},
{
name: "list trailing ]",
inputs: []string{
"[",
"{",
"\"name\": \"get_conditions\", ",
"\"arguments\": {",
"\"location\": \"Tokyo\"",
"}",
"}",
"]",
"]",
},
content: "",
tmpl: list,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "get_conditions",
Arguments: api.ToolCallFunctionArguments{
"location": "Tokyo",
},
},
},
},
},
{
name: "list not a tool call",
inputs: []string{
@@ -404,6 +568,26 @@ func TestParser(t *testing.T) {
tmpl: list,
calls: nil,
},
{
name: "list with no arguments",
inputs: []string{
"[",
"{",
"\"name\": \"say_hello\"",
"}",
},
content: "",
tmpl: list,
calls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Index: 0,
Name: "say_hello",
Arguments: api.ToolCallFunctionArguments{},
},
},
},
},
}
for _, tt := range tests {
@@ -700,25 +884,75 @@ func TestFindTag(t *testing.T) {
}
func TestFindArguments(t *testing.T) {
tool := api.Tool{
Type: "function",
Function: api.ToolFunction{
Name: "get_temperature",
Description: "Retrieve the temperature for a given location",
Parameters: struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
} `json:"properties"`
}{
Type: "object",
Properties: map[string]struct {
Type api.PropertyType `json:"type"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Enum []any `json:"enum,omitempty"`
}{
"format": {
Type: api.PropertyType{"string"},
Description: "The format to return the temperature in",
Enum: []any{"fahrenheit", "celsius"},
},
"location": {
Type: api.PropertyType{"string"},
Description: "The location to get the temperature for",
},
},
},
},
}
tool2 := api.Tool{
Type: "function",
Function: api.ToolFunction{
Name: "say_hello",
Description: "Say hello to the user",
},
}
tests := []struct {
name string
buffer []byte
want map[string]any
tool api.Tool
}{
{
name: "empty string",
buffer: []byte{},
want: nil,
tool: tool,
},
{
name: "whitespace only",
buffer: []byte(" \n\t "),
want: nil,
tool: tool,
},
{
name: "unbalanced braces - missing closing",
buffer: []byte(`{"format": "fahrenheit", "location": "San Francisco"`),
want: nil,
tool: tool,
},
{
name: "unbalanced braces - extra closing",
@@ -726,11 +960,13 @@ func TestFindArguments(t *testing.T) {
want: map[string]any{
"format": "fahrenheit",
},
tool: tool,
},
{
name: "invalid JSON",
buffer: []byte(`{format: fahrenheit, location: "San Francisco"}`),
want: nil,
tool: tool,
},
{
name: "valid json",
@@ -739,6 +975,7 @@ func TestFindArguments(t *testing.T) {
"format": "fahrenheit",
"location": "San Francisco, CA",
},
tool: tool,
},
{
name: "valid arguments with special tokens",
@@ -747,6 +984,7 @@ func TestFindArguments(t *testing.T) {
"format": "fahrenheit",
"location": "San Francisco, CA",
},
tool: tool,
},
{
name: "valid arguments in array",
@@ -755,6 +993,7 @@ func TestFindArguments(t *testing.T) {
"format": "fahrenheit",
"location": "San Francisco, CA",
},
tool: tool,
},
{
name: "nested deep",
@@ -763,39 +1002,49 @@ func TestFindArguments(t *testing.T) {
"format": "fahrenheit",
"location": "San Francisco, CA",
},
tool: tool,
},
{
name: "one arg",
buffer: []byte(`get_weather({"location": "San Francisco, CA"})`),
buffer: []byte(`get_temperature({"location": "San Francisco, CA"})`),
want: map[string]any{
"location": "San Francisco, CA",
},
tool: tool,
},
{
name: "two args",
buffer: []byte(`[{"name": "get_weather", "arguments": {"location": "San Francisco, CA", "format": "fahrenheit"}}, {"name": "get_weather", "arguments": {"location": "San Francisco, CA", "format": "fahrenheit"}}]`),
buffer: []byte(`[{"name": "get_temperature", "arguments": {"location": "San Francisco, CA", "format": "fahrenheit"}}, {"name": "get_weather", "arguments": {"location": "San Francisco, CA", "format": "fahrenheit"}}]`),
want: map[string]any{
"location": "San Francisco, CA",
"format": "fahrenheit",
},
tool: tool,
},
{
name: "no args",
buffer: []byte(`{"name": "say_hello"}`),
want: nil,
tool: tool2,
},
{
name: "deepseek",
buffer: []byte("<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{\"location\": \"Tokyo\"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>"),
buffer: []byte("<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_temperature\n```json\n{\"location\": \"Tokyo\"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>"),
want: map[string]any{
"location": "Tokyo",
},
tool: tool,
},
}
for _, tt := range tests {
parser := &Parser{
buffer: tt.buffer,
properties: []string{"format", "location"},
buffer: tt.buffer,
tools: []api.Tool{tool, tool2},
}
t.Run(tt.name, func(t *testing.T) {
got, _ := parser.findArguments()
got, _ := parser.findArguments(tool)
if diff := cmp.Diff(got, tt.want); diff != "" {
t.Errorf("scanArguments() args mismatch (-got +want):\n%s", diff)