Commit Graph

178 Commits

Author SHA1 Message Date
Jesse Gross acef9b4c1b ggml: Use assigned layers when reporting loading stats
Reporting params.NumGPULayers can be misleading because it is the
requested number of layers, not the actual number that is loaded.
While they are often the same, there are cases where they might mismatch,
such as if the GPU backend is missing.
2025-07-11 14:21:50 -07:00
Jesse Gross 9a43994c45 ggml: Disable unused pipeline parallelism
We're not currently using it, even in cases where we could. Disabling
it improves generation performance by 10-30% with multiple GPUs.
2025-07-11 13:30:05 -07:00
Jesse Gross 35fda7b4af ggml: Report ordinal IDs for AMD GPUs on Windows
We don't get valid UUIDs for AMD GPUs on Windows, so the best option
is to use the ordinal IDs. This brings us in line with what we currently
do on the Ollama server - the only exception is AMD GPUs on Linux, which
falls back to using ordinal IDs. The GGML implementation has no fallback
but it doesn't appear to occur for any of the GPUs that we support.

It's also possible that there are collisions between ordinal IDs for
different libraries - however the only places where we use them are
AMD on Windows and Metal on Mac, which can never occur on the same
system.
2025-07-09 10:35:31 -07:00
Jesse Gross 592d21e7db Revert "ggml: Temporarily disable reporting UUIDs"
The root cause was an unclean upgrade - this code is fine.

This reverts commit 45f216a9c7.
2025-07-07 11:31:02 -07:00
Daniel Hiltgen 2c4ce40334
mimic logs for layers on new engine (#11278)
This adds some extra logs to make the new engine a bit more consistent
with the llama engine.
2025-07-02 16:38:36 -07:00
Jesse Gross 45f216a9c7 ggml: Temporarily disable reporting UUIDs
This is causing segfaults, so disable it. Currently UUIDs are only
used for debugging purposes, although they planned to be used in
additional ways in the future.

Bug #11211
2025-06-27 11:27:22 -07:00
Michael Yang 73b642e6f3
add new gemma model (#11204)
* update patches

* cherry pick metal mean kernel

* cherry pick cuda mean kernel

* gemma3n
2025-06-25 21:47:09 -07:00
Daniel Hiltgen 1c6669e64c
Re-remove cuda v11 (#10694)
* Re-remove cuda v11

Revert the revert - drop v11 support requiring drivers newer than Feb 23

This reverts commit c6bcdc4223.

* Simplify layout

With only one version of the GPU libraries, we can simplify things down somewhat.  (Jetsons still require special handling)

* distinct sbsa variant for linux arm64

This avoids accidentally trying to load the sbsa cuda libraries on
a jetson system which results in crashes.

* temporary prevent rocm+cuda mixed loading
2025-06-23 14:07:00 -07:00
Jesse Gross 87b7af6cee ggml: Check return status for computation.
We don't check the return status after computing the graph, which
can silently lead to bad outputs if we try to keep going and future
computation succeeds. This appears to happens in certain cases on
Apple M2 devices.

Fixes #11070
2025-06-19 17:12:49 -07:00
Jeffrey Morgan 6baf1e31e2
Revert "Revert "ggml: Export GPU UUIDs" (#11115)" (#11117)
Reverts PR #11115. The original change was mistakingly reverted instead of #10822
2025-06-18 07:30:49 -07:00
Jeffrey Morgan ed567ef43b
Revert "ggml: Export GPU UUIDs" (#11115)
This reverts commit aaa7818000.
2025-06-18 05:45:00 -07:00
Jesse Gross aaa7818000 ggml: Export GPU UUIDs
This enables matching up devices and information reported by the backend
with system management libraries such as nvml to get accurate free
memory reporting.
2025-05-29 14:01:26 -07:00
Jesse Gross f18e0cb550 ml: Improve slog formatting for BackendMemory 2025-05-23 20:08:23 -07:00
Jesse Gross 1f371ea92f ml: Panic rather than return error on tensor allocation failure
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.

In many cases, the caller can't really handle the error and panics.

Empty and Zeros directly panic if they can't allocate memory.

This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
2025-05-22 14:38:09 -07:00
Jesse Gross 73d6a82cce ollamarunner: Memory usage reporting
This provides granular information about the backend memory allocations
required by the runner:
 - Per backend
 - Per layer
 - Weights, cache and graph
 - Allocation status

This can be used for debugging and validating memory estimates.
2025-05-22 14:38:09 -07:00
Jesse Gross 6db8a3771c ggml: Report graph memory for failed allocations
GGML has a function to report the allocated size of a backend buffer.
However, this returns 0 if we tried to allocate a buffer and it failed.
For memory management purposes, it's important to know how much we were
trying to allocate. This extends the API to report attempted sizes for
all buffers and whether it succeeeded.
2025-05-22 14:38:09 -07:00
Michael Yang e0ed984cde
feat: qwen3 dense and sparse models (#10708)
* feat: qwen3 dense
* feat: qwen3moe
* fix llama4 moe
2025-05-21 10:21:07 -07:00
Michael Yang 375839ea2d
chore: disable debug in binary libraries (#10788) 2025-05-21 09:39:38 -07:00
Michael Yang 9ed8bf14cb
ml: add more rope options (#10775) 2025-05-20 15:51:08 -07:00
Jesse Gross 94ab428e3f ggml: Seperate tensor load from backend creation
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
 - Create backend, including enumerating tensors and memory allocation
 - Loading tensor data

This allows more flexibility in managing model loading.
2025-05-19 09:54:22 -07:00
Michael Yang ef202789fa
fix pixel values padding (#10718)
* panic if trying to pad 4d

* fix pixel values padding
2025-05-15 13:44:44 -07:00
Bruce MacDonald 0aa8b371dd
model: add Qwen2.5-VL support (#10385) 2025-05-13 20:58:02 -07:00
Michael Yang 23125648b8
chore: update mllama to use ollama engine (#10637) 2025-05-13 17:36:02 -07:00
Jeffrey Morgan 0cefd46f23
llama: update to commit de4c07f93 (#10655) 2025-05-12 12:17:26 -07:00
Michael Yang f95a1f2bef
feat: add trace log level (#10650)
reduce prompt log to trace level
2025-05-12 11:43:00 -07:00
Michael Yang 5969674cf1
feat: add threshold to dump options (#10639)
ml.Dump will preserve default values if not specified
2025-05-10 11:27:15 -07:00
Daniel Hiltgen 424810450f
Move quantization to new backend (#10363)
* Move quantization logic to GGML via new backend

This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.

* Remove "add model quantizations"

This is no longer needed now that quantization is implemented in Go+GGML code directly.
2025-05-06 11:20:48 -07:00
Jeffrey Morgan 913905028b
all: fix cgo compiler warnings on windows (#10563) 2025-05-05 08:02:39 -07:00
Jesse Gross a6ef73f4f2 ggml: Fix race that resulted in "context canceled" when loading
Successfully completing processing with an errgroup cancels the
associated context. However, we also have a goroutine that is checking
for cancelation of the context. As a result, there is a race where
the goroutine can pick up the cancelation and report an error,
replacing the sucessful error message.

To avoid that, this replaces the goroutine with a cancelation check
when we are reading files. This also has the advantage of stopping
all reads relatively quickly on error and also ensuring that there are
no outstanding I/O operations when we return in this case.

The downside is that if a file read blocks forever (for example, over
the network) then cancelation of the context effectively won't be
honored. However, this is also true for other smaller files we read
and the tensors are read in small chunks (128K), so it's consistent
and better on balance overall.
2025-05-02 13:43:25 -07:00
Jesse Gross c2f5d6662b ollamarunner: Re-enable worst case graph preallocation.
Worst case graph preallocation was disabled by a27462b
"ollamarunner: Temporarily disable worst case graph preallocation"
since it caused crashes with large batches when not using the GPU.

This backports upstream llama.cpp commit f057808
"ggml: Don't assert fail when tensor data changes (#13222)", which
fixes the underlying bug and allows reverting the previous workaround.
2025-05-02 12:22:47 -07:00
Jeffrey Morgan 8dd12c873d
llama: update to commit e1e8e099 (#10513) 2025-05-01 18:24:09 -07:00
Daniel Hiltgen 718eda1b3e
Narrow set of paths we load GGML from (#10485)
Users may have other incompatible GGML installs on their systems.
This will prevent us from trying to load them from the path.
2025-04-30 11:25:22 -07:00
Michael Yang f0c66e6dea llama4 2025-04-25 16:59:20 -07:00
Jeffrey Morgan e9e5f61c45
llama: update to commit 2016f07b (#10352) 2025-04-24 17:26:02 -07:00
Michael Yang 40b8fdbdca arange 2025-04-18 11:45:44 -07:00
Jeffrey Morgan dc264be6ff
ml: add missing cmake property and remove additional CMakeLists.txt (#10310) 2025-04-16 18:56:29 -07:00
Jeffrey Morgan 943464ccb8
llama: update to commit 71e90e88 (#10192) 2025-04-16 15:14:01 -07:00
Jesse Gross ccb7eb8135 ggml: Free ggml_backend_buffer_t when releasing buffer
When ggml_backend_buffer_free() is called, the device memory
is released but not all backends consistently release the actual
ggml_backend_buffer_t in system RAM, causing a memory leak.

Bug #10040
2025-04-15 15:29:58 -07:00
Jesse Gross f50d691254 ggml: Fix memory leak on input tensors
For every forward pass through the model, we need to allocate input
tensors: tokens, images, positions, outputs and masks. These get
allocated in system memory.

However, when we close the context that the tensors were allocated
through, the metadata gets freed but the actual backend memory does
not. This results in a significant memory leak.

This makes it so that all the memory allocated through a context
gets freed when it is closed.

Fixes #10040
2025-04-11 11:13:22 -07:00
Jesse Gross 34c3b68fc8 ggml: Don't allocate CPU buffers as CUDA Host buffers
Allocating (and in particular, freeing) memory from CUDA host buffers
is expensive and can cause a significant performance hit if we do
it for every token. Using normal system memory avoids this issue
and also gives the OS more flexibility to manage it.

There is no performance impact from this patch directly (either
positive or negative) but it makes a difference once we start
freeing memory correctly.
2025-04-11 11:13:22 -07:00
Jesse Gross f33ccd5d27 ggml: Use pointer receivers for Context
Context is currently mixed between pointer and value receivers. Change
this to be all pointer receivers so don't have to reason about whether
the things we are updating in the struct will be retained.
2025-04-11 11:13:22 -07:00
Jesse Gross bc108b9ad6 ggml: Log filesystem errors
Sometimes loading the GGUF file fails with:
panic: context canceled

This is probably a filesystem error but it doesn't provide any
information about what happened.
2025-04-11 11:13:06 -07:00
Jesse Gross dbb149e6f7 ollamarunner: Preallocate worst case graph at startup
Currently, the KV cache and graph are lazily allocated as needed.
The cache is fully allocated on first use of the corresponding
layer whereas the graph grows with the size of the context.

This can be an issue if another application allocates more VRAM
after we do our calculations - Ollama will crash in the middle of
inference. If we instead allocate the maximum needed memory at
startup of the runner, we will either succeed or fail at that point
rather than at some surprising time in the future.

Currently, this only generates a worst case batch for text, which
means that vision models may get a partial allocation and continue
to lazily allocate the rest.
2025-04-08 10:01:28 -07:00
Jesse Gross a807985e59 ggml: Check for OOM and return as Go errors
If there is a CUDA OOM, we currently don't check the return value
and will evetually segfault. This checks for the problem and generates
a Go error. At the moment, this will still result in a panic but having
the error is the first step to being able to handle it more gracefully.
2025-04-08 10:01:28 -07:00
Daniel Hipke 0f3f9e353d
ml/backend/ggml: create a new file descriptor for tensor (#10133)
improves model loading times on network-based filesystems
such as GCS fuse by creating a dedicated file descriptor for each
section of the file being read, reducing seeking
2025-04-04 17:04:24 -07:00
Bruce MacDonald 6bd0a983cd model: support for mistral-small in the ollama runner
Mistral is a popular research lab making open source models. This updates
the forward pass of llama architecture models to support both llama models
and mistral models by accounting for additional metadata present in mistral
models, and finding the correct dimensions for the output projection.
2025-04-03 16:57:36 -07:00
Michael Yang 3b96a93672 fs: move ml.Config to fs package 2025-04-03 13:12:24 -07:00
Jesse Gross 01aa788722 ml: Remove Output from Context interface
Model implementations should use Input for all of their tensors
supplied to the model. This includes tensors that relate to the
outputs, which is confusing since there is also an Output funciton.

Since Output is only used internally in GGML and not used by any
model implementations, we can remove it from the interface to
reduce confusion.
2025-03-27 12:19:43 -07:00
saman-amd ead27aa9fe
Add gfx1200 & gfx1201 support on linux (#9878) 2025-03-27 07:35:19 -07:00
Vadim Grinco 45dbd14645
Merged latest ollama 0.6.2 and nasrally's Flash Attention patches (#5)
* readme: add Ellama to list of community integrations (#9800)

* readme: add screenpipe to community integrations (#9786)

* Add support for ROCm gfx1151 (#9773)

* conditionally enable parallel pipelines

* sample: make mutations in transforms explicit (#9743)

* updated minP to use early exit making use of sorted tokens

* ml/backend/ggml: allocate memory with malloc when loading model (#9822)

* runner: remove cache prompt flag from ollama runner (#9826)

We do not need to bypass the prompt caching in the ollama runner yet, as
only embedding models needed to bypass the prompt caching. When embedding
models are implemented they can skip initializing this cache completely.

* ollamarunner: Check for minBatch of context space when shifting

Models can specify that a group of inputs need to be handled a single
batch. However, context shifting didn't respect this and could trigger
a break anyways. In this case, we should instead trigger a context
shift earlier so that it occurs before the grouped batch.

Note that there still some corner cases:
 - A long prompt that exceeds the context window can get truncated
   in the middle of an image. With the current models, this will
   result in the model not recognizing the image at all, which is
   pretty much the expected result with truncation.
 - The context window is set less than the minimum batch size. The
   only solution to this is to refuse to load the model with these
   settings. However, this can never occur with current models and
   default settings.

Since users are unlikely to run into these scenarios, fixing them is
left as a follow up.

* Applied latest patches from McBane87

See this for details: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2708820861

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Add ability to enable flash attention on vulkan (#4)

* discover: add flash attention handling for vulkan
* envconfig: fix typo in config.go

As part of the process some code was refactored and I added a new field
FlashAttention to GpuInfo since the previous solution didn't allow for a
granular check via vulkan extensions. As a side effect, this now allows
for granular per-device FA support checking in other places

---------

Signed-off-by: Vadim Grinco <vadim@grinco.eu>
Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com>
Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com>
2025-03-23 12:27:37 +01:00
Michael Yang 74bd09652d ml/backend/ggml: load tensors in 32KiB chunks 2025-03-21 14:43:52 -07:00
Jesse Gross 0ff28758b3 ollamarunner: Provide mechanism for backends to report loading progress
This enables the runner to report progress back to the Ollama server,
both for showing status to the user and also to prevent the server
from killing the runner if it thinks things have stalled.

Most of the infrastructure was already there, this extends it to
be available to the backends.
2025-03-21 10:44:26 -07:00
Bruce MacDonald df94175a0f
ggml: return error on failure to read tensor data (#9872)
When converting a ggml model if there is a failure to read tensor data a nil error value was being returned. It should be assigned to the actual error from reading.
2025-03-18 16:51:33 -07:00
Michael Yang 021dcf089d
Merge pull request #9824 from ollama/mxyng/sched
conditionally enable parallel pipelines
2025-03-17 15:41:37 -07:00
Jeffrey Morgan 364629b8d6
ml/backend/ggml: allocate memory with malloc when loading model (#9822) 2025-03-17 13:32:40 -07:00
Michael Yang 4561fff36e conditionally enable parallel pipelines 2025-03-17 09:46:07 -07:00
Vadim Grinco 640f0bb250 Pulled new upstream code for ggml-bulkan backend
Signed-off-by: Vadim Grinco <vadim@grinco.eu>
2025-03-16 12:22:22 +01:00
Vadim Grinco f77b9b99cd Merge branch 'ollama_vanilla_stable' into vulkan 2025-03-15 21:27:18 +01:00
Vadim Grinco d1939aa1c6 Fixes SIGSEGV: segmentation violation running gemma3 models on ollama 0.6.0 #21
Patch provided by McBane87 on https://github.com/whyvl/ollama-vulkan/issues/21

Signed-off-by: Vadim Grinco <vadim@grinco.eu>
2025-03-15 20:28:57 +01:00
shane.xb.qian 30d7a59ba8 ollama-debug.c: change 'ld' to 'PRIi64'
* macOS has different definition per info from @mxyng
2025-03-13 17:10:37 +08:00
shane.xb.qian 85ab552028 ollama-debug.c: correct mistype
Signed-off-by: shane.xb.qian <shane.qian@foxmail.com>
2025-03-12 22:32:30 +08:00
Vadim Grinco d0afc677db Merge branch 'vulkan' into ollama_vanilla_stable 2025-03-12 13:33:05 +01:00
Michael Yang 63a394068c use 2d pooling 2025-03-11 14:49:20 -07:00
Michael Yang c5cbe4fc2a fallback to cpu 2025-03-11 14:49:19 -07:00
Michael Yang 9e4642e9b3 ollama debug tensor 2025-03-11 14:49:19 -07:00
Michael Yang 6b0486c216 duplicate token_embd to output 2025-03-11 14:49:19 -07:00
Michael Yang 8934324b72 use fast attention 2025-03-11 14:49:18 -07:00
Michael Yang 0df1800436 set non-causal attention 2025-03-11 14:49:18 -07:00
Michael Yang 4b037a97dc add gemma vision encoder 2025-03-11 14:49:17 -07:00
Patrick Devine 5f74d1fd47 gemma2 impl 2025-03-11 14:35:08 -07:00
Michael Yang 9926eae015 fix: pad tensor item if ge zero
this produces a nicer output since both positive and negative values
produces the same width
2025-03-10 16:18:12 -07:00
Vadim Grinco 747898df04
Merge pull request #1 from ollama/main
Merged from ollama/main
2025-03-08 08:56:12 +01:00
Jesse Gross 4100ed7bdd ml: Add support for quantized KV cache
Similar to the llama engine, quantizing the KV cache requires
flash attention to be enabled through the Ollama server.
2025-03-07 18:43:39 -08:00
Jesse Gross 25f9b152f9 ggml-backend: Ensure allocation meet backend requirements
Backends can impose additional alignment requirements on buffer sizes.
We should ensure that we meet these or allocations can fail.
2025-03-07 18:43:39 -08:00
Jesse Gross 98272fbd58 additional review comments 2025-03-07 14:08:21 -08:00
Michael Yang b27e8f3f10 ml/backend/ggml: use backend buffer type
this ensures the tensor is created on the right buffer type for backends
such as cpu
2025-03-07 14:08:21 -08:00
Michael Yang 45df786f09 comments 2025-03-07 14:08:21 -08:00
Michael Yang daaf42e4a4 ml/backend/ggml: clean up 2025-03-07 14:08:21 -08:00
Michael Yang 2dc60d4620 ml/backend/ggml: offload vision to cpu
temporary until tensor loading can accurately account for vision models
2025-03-07 14:08:21 -08:00
Michael Yang b5312f30e8 ml/backend/ggml: handle tensor split 2025-03-07 14:08:21 -08:00
Michael Yang 26c2e0bd35 ml/backend/ggml: handle user specified cpu offloading 2025-03-07 14:08:21 -08:00
Michael Yang bf920883d5 ml/backend/ggml: set cpu n_threads 2025-03-07 14:08:21 -08:00
Michael Yang 7bae7fa5ce ml/backend/ggml: create tensor on specific backend
some tensors should be created on specific backends to reduce number of
copies and improve performance
2025-03-07 14:08:21 -08:00
Michael Yang 764e199d67 kvcache: create cache ctx per layer
each cache layer creates and maintains its own context instead of using
a large context for all layers
2025-03-07 14:08:21 -08:00
Michael Yang bfce55db3d model: load non-repeated tensors into multiple backends
some tensors are expected to be used in repeating layers but are not
themselves repeated. this change copies these tensors into the same
backends as their repeating counterparts to minimize copying tensors
between backends
2025-03-07 14:08:21 -08:00
Michael Yang bab6f34dc0 ml/backend/ggml: update model loading for hybrid/multi backends
use a similar strategy as llama.cpp for deciding where tensors should be
allocated. this will be improved later to be aware of usable memory
before assigning the tensor
2025-03-07 14:08:21 -08:00
Jeffrey Morgan 4289c74359
llama: fix kv loading on snowflake-arctic-embed models (#9536) 2025-03-07 09:25:34 -08:00
Michael Yang 05a01fdecb ml/backend/ggml: consolidate system info logging
- output backend system info when initializing the backend. this ensures
  this information is always present without needing to be called
  explicitly
- convert to structured logging
- enumerate devices rather than backends since devices are ordered
- track device indices grouped by device name
2025-03-04 15:14:31 -08:00
Michael Yang ba7d31240e fix: own lib/ollama directory
expand backend loading error handling to catch more problems and log
them instead of panicing
2025-03-03 13:01:18 -08:00
Jesse Gross 21aa666a1e ml: Enable support for flash attention
The GGML flash attention kernel has specific requirements for
padding and permutation. This adds support to the KV cache
for conforming to these requirements so that flash attention
can be enabled.

Flash attention can be used in the same situations as the llama
engine and is enabled by the user in the same way.
2025-03-01 20:53:23 -08:00
Jesse Gross ee141cc821 ml: Empty tensor constructor for tensors
In cases where we allocate a tensor and then fully overwrite it with
copied data, it is wasteful to first zero out the memory.
2025-03-01 20:53:23 -08:00
Jesse Gross 55e5776c44 ggml-backend: Store parent backend as part of tensor
It can be important for a tensor to know what backend it came from -
for example, to know if flash attention is enabled.
2025-03-01 20:53:23 -08:00
Jesse Gross 854a9195f3 attention: Remove unnecessary contiguous operations
Prior to performing attention, we need to permute query, key
and value. Currently we call Contiguous after each of these
permutations, which is correct but expensive. Avoiding the
3 calls to Contiguous increases performance by over 20%.

The permutations of query and key do not violate the continuity
rules for mulmat and the Contiguous call can be simply removed.

Value requires a different permutation and does require Contiguous.
However, we can use the copy into the cache as a way to perform this
without further overhead.

To support this and avoid unexpected tensor shapes that are seen by
models, we need tighter integration between attention, cache
and backend. Future optimization will also likely need this structure
 - for example, flash attention has special padding requirements in
the cache and other backends may have their own needs.

This further contains the operations that go into attention so that
these and other optimizations can be handled transparently. Models
that have special requirements for attention can still implement
their own version of it.
2025-03-01 20:53:23 -08:00
Michael Yang 3e8b8a1933 ml: update Context.Forward interface
update Context.Forward to accept multiple tensors to match
Context.Compute signature

update Context.Forward to return Context such that it can be chained
with Context.Compute
2025-02-27 22:27:16 +00:00
Michael Yang 53d2990d9b model: add bos token if configured 2025-02-27 21:04:59 +00:00
Michael Yang a59f665235 ml/backend/ggml: fix debug logging 2025-02-27 18:30:57 +00:00
Jeffrey Morgan a5272130c4
ml/backend/ggml: follow on fixes after updating vendored code (#9388)
Fixes sync filters and lowers CUDA version to 11.3 in test.yaml
2025-02-26 22:33:53 -08:00
Jeffrey Morgan d7d7e99662
llama: update llama.cpp vendor code to commit d7cfe1ff (#9356) 2025-02-26 20:34:44 -08:00
Blake Mizerany 0d694793f2
.github: always run tests, and other helpful fixes (#9348)
During work on our new registry client, I ran into frustrations with CI
where a misspelling in a comment caused the linter to fail, which caused
the tests to not run, which caused the build to not be cached, which
caused the next run to be slow, which caused me to be sad.

This commit address these issues, and pulls in some helpful changes
we've had in CI on ollama.com for some time now.

They are:

* Always run tests, even if the other checks fail.

Tests are the most important part of CI, and should always run. Failures
in tests can be correlated with failures in other checks, and can help
surface the root cause of the failure sooner. This is especially
important when the failure is platform specific, and the tests are not
platform independent.

* Check that `go generate` is clean.

This prevents 'go generate' abuse regressions. This codebase used to use
it to generate platform specific binary build artifacts. Let's make sure
that does not happen again and this powerful tool is used correctly, and
the generated code is checked in.

Also, while adding `go generate` the check, it was revealed that the
generated metal code was putting dates in the comments, resulting in
non-deterministic builds. This is a bad practice, and this commit fixes
that. Git tells us the most important date: the commit date along with
other associated changes.

* Check that `go mod tidy` is clean.

A new job to check that `go mod tidy` is clean was added, to prevent
easily preventable merge conflicts or go.mod changes being deferred to a
future PR that is unrelated to the change that caused the go.mod to
change.

* More robust caching.

We now cache the go build cache, and the go mod download cache
independently. This is because the download cache contains zips that can
be unpacked in parallel faster than they can be fetched and extracted by
tar. This speeds up the build significantly.

The linter is hostile enough. It does not need to also punish us with
longer build times due to small failures like misspellings.
2025-02-25 14:28:07 -08:00
Jeffrey Morgan 8c13cfa4dd
ml/backend/ggml: fix crash on windows paths with wide characters (#9305) 2025-02-23 19:13:53 -08:00