Merged latest ollama 0.6.2 and nasrally's Flash Attention patches (#5)

* readme: add Ellama to list of community integrations (#9800)

* readme: add screenpipe to community integrations (#9786)

* Add support for ROCm gfx1151 (#9773)

* conditionally enable parallel pipelines

* sample: make mutations in transforms explicit (#9743)

* updated minP to use early exit making use of sorted tokens

* ml/backend/ggml: allocate memory with malloc when loading model (#9822)

* runner: remove cache prompt flag from ollama runner (#9826)

We do not need to bypass the prompt caching in the ollama runner yet, as
only embedding models needed to bypass the prompt caching. When embedding
models are implemented they can skip initializing this cache completely.

* ollamarunner: Check for minBatch of context space when shifting

Models can specify that a group of inputs need to be handled a single
batch. However, context shifting didn't respect this and could trigger
a break anyways. In this case, we should instead trigger a context
shift earlier so that it occurs before the grouped batch.

Note that there still some corner cases:
 - A long prompt that exceeds the context window can get truncated
   in the middle of an image. With the current models, this will
   result in the model not recognizing the image at all, which is
   pretty much the expected result with truncation.
 - The context window is set less than the minimum batch size. The
   only solution to this is to refuse to load the model with these
   settings. However, this can never occur with current models and
   default settings.

Since users are unlikely to run into these scenarios, fixing them is
left as a follow up.

* Applied latest patches from McBane87

See this for details: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2708820861

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Add ability to enable flash attention on vulkan (#4)

* discover: add flash attention handling for vulkan
* envconfig: fix typo in config.go

As part of the process some code was refactored and I added a new field
FlashAttention to GpuInfo since the previous solution didn't allow for a
granular check via vulkan extensions. As a side effect, this now allows
for granular per-device FA support checking in other places

---------

Signed-off-by: Vadim Grinco <vadim@grinco.eu>
Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com>
Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com>
This commit is contained in:
Vadim Grinco 2025-03-23 12:27:37 +01:00 committed by GitHub
parent 4aa7e5ed79
commit 45dbd14645
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 348 additions and 117 deletions

View File

@ -56,7 +56,7 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
"AMDGPU_TARGETS": "gfx900;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
},
{

View File

@ -392,6 +392,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
### Cloud

View File

@ -279,12 +279,13 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
TotalMemory: totalMemory,
FreeMemory: (totalMemory - usedMemory),
},
ID: ID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
ID: ID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
FlashAttention: true, // Supposedly ROCm supports it everywhere
DriverMajor: driverMajor,
DriverMinor: driverMinor,
},
usedFilepath: usedFile,
index: gpuID,

View File

@ -310,6 +310,7 @@ func GetGPUInfo() GpuInfoList {
C.free(unsafe.Pointer(memInfo.err))
continue
}
gpuInfo.FlashAttention = driverMajor >= 7
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
@ -394,6 +395,7 @@ func GetGPUInfo() GpuInfoList {
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
gpuInfo.FlashAttention = false
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
@ -423,6 +425,7 @@ func GetGPUInfo() GpuInfoList {
continue
}
gpuInfo.FlashAttention = (C.vk_check_flash_attention(*vHandles.vulkan, C.int(i)) == 0) // 0 means supported
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])

View File

@ -24,18 +24,32 @@ int check_perfmon(vk_handle_t* rh) {
return 0;
}
int support_memory_budget(vk_handle_t* rh, VkPhysicalDevice device) {
int is_extension_supported(vk_handle_t* rh, VkPhysicalDevice device, char* extension) {
VkPhysicalDeviceProperties properties;
(*rh->vkGetPhysicalDeviceProperties)(device, &properties);
uint32_t extensionCount;
(*rh->vkEnumerateDeviceExtensionProperties)(device, NULL, &extensionCount, NULL);
if (extensionCount == 0) {
return 0;
}
VkExtensionProperties* extensions = malloc(extensionCount * sizeof(VkExtensionProperties));
if (extensions == NULL) {
return 0;
}
(*rh->vkEnumerateDeviceExtensionProperties)(device, NULL, &extensionCount, extensions);
for (int j = 0; j < extensionCount; j++) {
if (strcmp(extensions[j].extensionName, VK_EXT_MEMORY_BUDGET_EXTENSION_NAME) == 0) {
if (strcmp(extensions[j].extensionName, extension) == 0) {
free(extensions);
return 1;
}
}
free(extensions);
return 0;
}
@ -125,6 +139,7 @@ void vk_init(char* vk_lib_path, char* cap_lib_path, vk_init_resp_t *resp) {
}
VkInstance instance;
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pNext = NULL;
@ -133,6 +148,7 @@ void vk_init(char* vk_lib_path, char* cap_lib_path, vk_init_resp_t *resp) {
appInfo.pEngineName = "No Engine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_2;
VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pNext = NULL;
@ -141,6 +157,7 @@ void vk_init(char* vk_lib_path, char* cap_lib_path, vk_init_resp_t *resp) {
const char* extensions[] = { VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME };
createInfo.ppEnabledExtensionNames = extensions;
createInfo.pApplicationInfo = &appInfo;
VkResult result = (*resp->ch.vkCreateInstance)(&createInfo, NULL, &instance);
if (result != VK_SUCCESS) {
resp->err = strdup("failed to create instance");
@ -160,25 +177,63 @@ void vk_init(char* vk_lib_path, char* cap_lib_path, vk_init_resp_t *resp) {
resp->num_devices = deviceCount;
}
int vk_check_flash_attention(vk_handle_t rh, int i) {
VkInstance instance = rh.vk;
uint32_t deviceCount = rh.num_devices;
VkPhysicalDevice* devices = malloc(deviceCount * sizeof(VkPhysicalDevice));
if (devices == NULL) {
return 0;
}
VkResult result = (*rh.vkEnumeratePhysicalDevices)(instance, &deviceCount, devices);
if (result != VK_SUCCESS) {
free(devices);
return 0;
}
VkPhysicalDeviceProperties properties;
(*rh.vkGetPhysicalDeviceProperties)(devices[i], &properties);
int supports_nv_coopmat2 = is_extension_supported(&rh, devices[i], VK_NV_COOPERATIVE_MATRIX_2_EXTENSION_NAME);
if (!supports_nv_coopmat2) {
free(devices);
return 1;
}
free(devices);
return 0;
}
void vk_check_vram(vk_handle_t rh, int i, mem_info_t *resp) {
VkInstance instance = rh.vk;
uint32_t deviceCount = rh.num_devices;
VkPhysicalDevice* devices = malloc(deviceCount * sizeof(VkPhysicalDevice));
if (devices == NULL) {
resp->err = strdup("memory allocation failed for devices array");
return;
}
VkResult result = (*rh.vkEnumeratePhysicalDevices)(instance, &deviceCount, devices);
if (result != VK_SUCCESS) {
free(devices);
resp->err = strdup("failed to enumerate physical devices");
return;
}
VkPhysicalDeviceProperties properties;
(*rh.vkGetPhysicalDeviceProperties)(devices[i], &properties);
int supports_budget = support_memory_budget(&rh, devices[i]);
int supports_budget = is_extension_supported(&rh, devices[i], VK_EXT_MEMORY_BUDGET_EXTENSION_NAME);
if (!supports_budget) {
free(devices);
resp->err = strdup("device does not support memory budget");
return;
}
if (properties.deviceType == VK_PHYSICAL_DEVICE_TYPE_CPU) {
free(devices);
resp->err = strdup("device is a CPU");
return;
}
@ -204,6 +259,8 @@ void vk_check_vram(vk_handle_t rh, int i, mem_info_t *resp) {
}
}
free(devices);
resp->err = NULL;
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
resp->gpu_name[GPU_NAME_LEN - 1] = '\0';
@ -220,6 +277,7 @@ void vk_release(vk_handle_t rh) {
(*rh.vkDestroyInstance)(rh.vk, NULL);
UNLOAD_LIBRARY(rh.vk_handle);
rh.vk_handle = NULL;
#ifdef __linux__
LOG(rh.verbose, "releasing libcap library\n");
UNLOAD_LIBRARY(rh.cap_handle);

View File

@ -60,6 +60,7 @@ typedef struct vk_init_resp
void vk_init(char* vk_lib_path, char* cap_lib_path, vk_init_resp_t *resp);
void vk_check_vram(vk_handle_t rh, int i, mem_info_t *resp);
int vk_check_flash_attention(vk_handle_t rh, int i);
void vk_release(vk_handle_t rh);
#endif

View File

@ -36,9 +36,10 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
UnreliableFreeMemory bool
// GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
FlashAttention bool `json:"flash_attention"` // is flash attention supported
// Driver Information - TODO no need to put this on each GPU
DriverMajor int `json:"driver_major,omitempty"`
@ -178,11 +179,7 @@ func (si SystemInfo) GetOptimalThreadCount() int {
// For each GPU, check if it does NOT support flash attention
func (l GpuInfoList) FlashAttentionSupported() bool {
for _, gpu := range l {
supportsFA := gpu.Library == "metal" ||
(gpu.Library == "cuda" && gpu.DriverMajor >= 7) ||
gpu.Library == "rocm"
if !supportsFA {
if !gpu.FlashAttention {
return false
}
}

View File

@ -276,7 +276,7 @@ func AsMap() map[string]EnvVar {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible by numeric ID"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible by UUID or numeric ID"}
ret["GGML_VK_VISIBLE_DEVICES"] = EnvVar{"GGML_VK_VISIBLE_DEVICES", VkVisibleDevices(), "Set which VK AMD devices are visible by numeric ID"}
ret["GGML_VK_VISIBLE_DEVICES"] = EnvVar{"GGML_VK_VISIBLE_DEVICES", VkVisibleDevices(), "Set which Vulkan devices are visible by numeric ID"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible by numeric ID"}
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}

View File

@ -314,18 +314,20 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
if err != nil {
return err
bts := C.malloc(C.size_t(t.Size()))
if bts == nil {
return errors.New("failed to allocate tensor buffer")
}
defer C.free(bts)
if n != len(bts) {
return errors.New("short read")
buf := unsafe.Slice((*byte)(bts), t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), buf)
if err != nil || n != len(buf) {
return errors.New("read failed")
}
tensorSetMutex.Lock()
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
C.ggml_backend_tensor_set(tt, bts, 0, C.size_t(t.Size()))
tensorSetMutex.Unlock()
return nil
})
@ -375,7 +377,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(maxGraphNodes),
true,
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
),
input: deviceBufferTypes[input.d],
output: deviceBufferTypes[output.d],

View File

@ -89,7 +89,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*InputCacheSlot, []input.Input, error) {
func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []input.Input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@ -107,11 +107,6 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*Inp
return nil, nil, err
}
// TODO (brucemacd): cachePrompt is always true for completion, but false for embedding, can this be improved?
if !cachePrompt {
numPast = 0
}
slot.InUse = true
slot.lastUsed = time.Now()

View File

@ -297,3 +297,131 @@ func TestShiftDiscard(t *testing.T) {
})
}
}
func TestLoadCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []input.Input
wantErr bool
expectedSlotId int
expectedPrompt int // expected length of remaining prompt
}{
{
name: "Basic cache hit - single user",
cache: InputCache{
multiUserCache: false,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Only token 3 remains
},
{
name: "Basic cache hit - multi user",
cache: InputCache{
multiUserCache: true,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Only token 3 remains
},
{
name: "Exact match - leave one input",
cache: InputCache{
multiUserCache: false,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Should leave 1 token for sampling
},
{
name: "No available slots",
cache: InputCache{
multiUserCache: false,
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: true,
expectedSlotId: -1,
expectedPrompt: -1,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt)
// Check error state
if (err != nil) != tt.wantErr {
t.Errorf("LoadCacheSlot() error = %v, wantErr %v", err, tt.wantErr)
return
}
if tt.wantErr {
return // Skip further checks if we expected an error
}
// Verify slot ID
if slot.Id != tt.expectedSlotId {
t.Errorf("LoadCacheSlot() slot ID = %v, expected %v", slot.Id, tt.expectedSlotId)
}
// Verify slot is now marked in use
if !slot.InUse {
t.Errorf("LoadCacheSlot() slot not marked InUse")
}
// Verify remaining prompt length
if len(remainingPrompt) != tt.expectedPrompt {
t.Errorf("LoadCacheSlot() remaining prompt length = %v, expected %v",
len(remainingPrompt), tt.expectedPrompt)
}
})
}
}

View File

@ -115,6 +115,9 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
params.numKeep = int32(len(inputs))
}
// TODO(jessegross): We should ensure that we always leave minBatch of context space to shift,
// otherwise we might truncate or split the batch against the model's wishes
// Ensure that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
@ -366,17 +369,6 @@ func (s *Server) processBatch() error {
batchSize := s.batchSize
for j, inp := range seq.inputs {
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
return err
}
} else {
break
}
}
// If we are required to put following inputs into a single batch then extend the
// batch size. Since we are only extending the size the minimum amount possible, this
// will cause a break if we have pending inputs.
@ -389,6 +381,20 @@ func (s *Server) processBatch() error {
break
}
// If the sum of our working set (already processed tokens, tokens we added to this
// batch, required following tokens) exceeds the context size, then trigger a shift
// now so we don't have to do one later when we can't break the batch.
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
if len(seq.pendingInputs) != 0 {
break
}
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
if err != nil {
return err
}
}
options.Inputs = append(options.Inputs, inp.Token)
if inp.Multimodal != nil {
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
@ -590,7 +596,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)

View File

@ -87,8 +87,9 @@ func (s *Sampler) sample(tokens []token) (token, error) {
// topK also sorts the tokens in descending order of logits
tokens = topK(tokens, s.topK)
tokens = temperature(tokens, s.temperature)
tokens = softmax(tokens)
// scale and normalize the tokens in place
temperature(tokens, s.temperature)
softmax(tokens)
tokens = topP(tokens, s.topP)
tokens = minP(tokens, s.minP)

View File

@ -26,17 +26,16 @@ func (h *tokenHeap) Pop() any {
}
// temperature applies scaling to the logits
func temperature(ts []token, temp float32) []token {
func temperature(ts []token, temp float32) {
// Ensure temperature clipping near 0 to avoid numerical instability
temp = max(temp, 1e-7)
for i := range ts {
ts[i].value = ts[i].value / temp
}
return ts
}
// softmax applies normalization to the logits
func softmax(ts []token) []token {
func softmax(ts []token) {
// Find max logit for numerical stability
maxLogit := float32(math.Inf(-1))
for _, t := range ts {
@ -56,8 +55,6 @@ func softmax(ts []token) []token {
for i := range ts {
ts[i].value /= sum
}
return ts
}
// topK limits the number of tokens considered to the k highest logits
@ -99,6 +96,7 @@ func topK(ts []token, k int) []token {
}
// topP limits tokens to those with cumulative probability p
// requires ts to be sorted in descending order of probabilities
func topP(ts []token, p float32) []token {
if p == 1.0 {
return ts
@ -109,37 +107,24 @@ func topP(ts []token, p float32) []token {
for i, t := range ts {
sum += t.value
if sum > float32(p) {
ts = ts[:i+1]
return ts
return ts[:i+1]
}
}
return ts
}
// minP limits tokens to those with cumulative probability p
// minP filters tokens with probabilities >= p * max_prob
// requires ts to be sorted in descending order of probabilities
func minP(ts []token, p float32) []token {
if p == 1.0 {
return ts
}
maxProb := ts[0].value
maxProb := float32(math.Inf(-1))
for _, token := range ts {
if token.value > maxProb {
maxProb = token.value
threshold := maxProb * p
for i, t := range ts {
if t.value < threshold {
return ts[:i]
}
}
threshold := maxProb * float32(p)
// Filter tokens in-place
validTokens := ts[:0]
for i, token := range ts {
if token.value >= threshold {
validTokens = append(validTokens, ts[i])
}
}
ts = validTokens
return ts
}

View File

@ -34,17 +34,22 @@ func compareLogits(t *testing.T, name string, want []float32, got []token) {
func TestTemperature(t *testing.T) {
input := []float32{1.0, 4.0, -2.0, 0.0}
got := temperature(toTokens(input), 0.5)
tokens := toTokens(input)
temperature(tokens, 0.5)
want := []float32{2.0, 8.0, -4.0, 0.0}
compareLogits(t, "temperature(0.5)", want, got)
compareLogits(t, "temperature(0.5)", want, tokens)
got = temperature(toTokens(input), 1.0)
input = []float32{1.0, 4.0, -2.0, 0.0}
tokens = toTokens(input)
temperature(tokens, 1.0)
want = []float32{1.0, 4.0, -2.0, 0.0}
compareLogits(t, "temperature(1)", want, got)
compareLogits(t, "temperature(1)", want, tokens)
got = temperature(toTokens(input), 0.0)
input = []float32{1.0, 4.0, -2.0, 0.0}
tokens = toTokens(input)
temperature(tokens, 0.0)
want = []float32{1e7, 4e7, -2e7, 0.0}
compareLogits(t, "temperature(0)", want, got)
compareLogits(t, "temperature(0)", want, tokens)
}
func TestSoftmax(t *testing.T) {
@ -90,16 +95,17 @@ func TestSoftmax(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := softmax(toTokens(tt.input))
tokens := toTokens(tt.input)
softmax(tokens)
if tt.expected != nil {
compareLogits(t, tt.name, tt.expected, got)
compareLogits(t, tt.name, tt.expected, tokens)
return
}
// Check probabilities sum to 1
var sum float32
for _, token := range got {
for _, token := range tokens {
sum += token.value
if token.value < 0 || token.value > 1 {
t.Errorf("probability out of range [0,1]: got %f", token.value)
@ -114,38 +120,44 @@ func TestSoftmax(t *testing.T) {
func TestTopK(t *testing.T) {
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
// Test k=5
got := topK(toTokens(input), 5)
if len(got) != 5 {
t.Errorf("topK(5): wrong length: want 5, got %d", len(got))
tokens := toTokens(input)
tokens = topK(tokens, 5)
if len(tokens) != 5 {
t.Errorf("topK(5): wrong length: want 5, got %d", len(tokens))
}
// Should keep highest 3 values in descending order
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
compareLogits(t, "topK(3)", want, got)
compareLogits(t, "topK(3)", want, tokens)
got = topK(toTokens(input), 20)
if len(got) != len(input) {
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(got))
tokens = toTokens(input)
tokens = topK(tokens, 20)
if len(tokens) != len(input) {
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(tokens))
}
// Test k=-1
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
got = topK(toTokens(input), -1)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
tokens = toTokens(input)
tokens = topK(tokens, -1)
if len(tokens) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
}
compareLogits(t, "topK(-1)", want, got)
compareLogits(t, "topK(-1)", want, tokens)
// Test k=0
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
got = topK(toTokens(input), 0)
if len(got) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
tokens = toTokens(input)
tokens = topK(tokens, 0)
if len(tokens) != len(input) {
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
}
compareLogits(t, "topK(-1)", want, tokens)
input = []float32{-1e7, -2e7, -3e7, -4e7}
tokens = toTokens(input)
tokens = topK(tokens, 1)
if len(tokens) < 1 {
t.Error("topK should keep at least one token")
}
compareLogits(t, "topK(-1)", want, got)
}
func TestTopP(t *testing.T) {
@ -153,16 +165,25 @@ func TestTopP(t *testing.T) {
tokens := toTokens(input)
// First apply temperature and softmax to get probabilities
tokens = softmax(tokens)
softmax(tokens)
tokens = topK(tokens, 20)
// Then apply topP
got := topP(tokens, 0.95)
tokens = topP(tokens, 0.95)
// Should keep tokens until cumsum > 0.95
if len(got) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(got))
t.Logf("got: %v", got)
if len(tokens) > 3 {
t.Errorf("topP(0.95): kept too many tokens: got %d", len(tokens))
t.Logf("got: %v", tokens)
}
// Test edge case - ensure at least one token remains
input = []float32{-1e6, -1e6, -1e6} // One dominant token
tokens = toTokens(input)
softmax(tokens)
tokens = topP(tokens, 0.0) // Very small p
if len(tokens) < 1 {
t.Error("topP should keep at least one token")
}
}
@ -171,14 +192,45 @@ func TestMinP(t *testing.T) {
tokens := toTokens(input)
// First apply temperature and softmax
tokens = softmax(tokens)
tokens = topK(tokens, 20)
softmax(tokens)
// Then apply minP
got := minP(tokens, 0.2)
tokens = minP(tokens, 1.0)
if len(tokens) != 1 {
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(tokens), len(tokens))
}
// Test with normal p value
tokens = toTokens(input) // Reset tokens
tokens = topK(tokens, 20)
softmax(tokens)
tokens = minP(tokens, 0.2)
// Should keep tokens with prob >= 0.2 * max_prob
if len(got) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
if len(tokens) > 3 {
t.Errorf("minP(0.2): kept too many tokens: got %d", len(tokens))
t.Logf("got: %v", tokens)
}
// Test with zero p value
tokens = toTokens(input) // Reset tokens
tokens = topK(tokens, 20)
softmax(tokens)
tokens = minP(tokens, 0.0)
// Should keep only the highest probability token
if len(tokens) != len(input) {
t.Errorf("minP(0.0): should keep only one token, got %d", len(tokens))
t.Logf("got: %v", tokens)
}
input = []float32{1e-10, 1e-10, 1e-10}
tokens = toTokens(input)
softmax(tokens)
tokens = minP(tokens, 1.0)
if len(tokens) < 1 {
t.Error("minP should keep at least one token even with extreme probabilities")
}
}
@ -231,7 +283,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topK(tokensCopy, 10)
tokens = topK(tokensCopy, 10)
}
})
@ -239,7 +291,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topP(tokensCopy, 0.9)
tokens = topP(tokensCopy, 0.9)
}
})
@ -247,7 +299,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
minP(tokensCopy, 0.2)
tokens = minP(tokensCopy, 0.2)
}
})
@ -255,7 +307,7 @@ func BenchmarkTransforms(b *testing.B) {
b.ResetTimer()
for b.Loop() {
copy(tokensCopy, tokens)
topK(tokensCopy, 200000)
tokens = topK(tokensCopy, 200000)
}
})
}