As we automatically enable flash attention for more models, there
are likely some cases where we get it wrong. This allows setting
OLLAMA_FLASH_ATTENTION=0 to disable it, even for models that usually
have flash attention.
This revamps how we discover GPUs in the system by leveraging the Ollama
runner. This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs. Now the runner does that implicitly based on the actual
device list. In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.
Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.
Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
For each memory allocation we report the size of the (attempted)
allocation and whether it succeeded or failed. The latter status
reporting proved to be not that useful in practice as systems
such as Windows can automatically overflow from VRAM into RAM,
resultings in successful allocations even when there isn't
enough memory where we wanted.
As a result, this information is only used for debug logging,
which isn't worthwhile enough for the amount of code. It
also isn't fully accurate, as multiple allocations may result
in partial failures.
This revamps how we discover GPUs in the system by leveraging the Ollama
runner. This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs. Now the runner does that implicitly based on the actual
device list. In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.
Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.
Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
If a model with a split vision projector is loaded in the Ollama
engine, the projector will be ignored and the model will hallucinate
a response. Instead, fallback and try to load the model in the llama
engine.
New memory estimates (see #11090 for more information) are now
enabled automatically for all models running on the Ollama engine,
improving both stability and performance through more accurate sizing
and allocation. Models running on the llama engine will continue to
use the original style of memory estimation.
If flash attention is enabled without KV cache quanitization, we will
currently always get this warning:
level=WARN source=server.go:226 msg="kv cache type not supported by model" type=""
The context must always be able to store the current batch, so
if the user requests a small context then we should also shrink
the batch to match. This also fixes the TestLongInputContext
test on the new engine. (The old engine already has this behavior.)
If a GPU's free memory is less than the reserved amount, we might get
an underflow. Since it is an unsigned uint64, we print this as a large
number rather than the more correct 0. This only affects logging, the
actual layout code already handles this correctly.
Bug #12138
With old memory estimates, it's currently impossible to load more
than one model at a time when no GPUs are available. This is because
the check for whether we need to evict a model looks to see if all
layers of the new model can be loaded onto GPUs, which is never true
if there are no GPUs. Before the memory management changes, there
was a special code path for CPU-only systems.
This problem does not exist with new memory estimates.
Fixes#11974
We dump out our best memory estimate after we complete processing
for any reason, including errors. This is helpful for finding what
what stopped us in error conditions but in some cases we might not
have gotten even the first result yet.
Fixes#11957
This changes the memory allocation strategy from upfront estimation to
tracking actual allocations done by the engine and reacting to that. The
goal is avoid issues caused by both under-estimation (crashing) and
over-estimation (low performance due to under-utilized GPUs).
It is currently opt-in and can be enabled for models running on the
Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other
cases is unchanged and will continue to use the existing estimates.
* Re-remove cuda v11
Revert the revert - drop v11 support requiring drivers newer than Feb 23
This reverts commit c6bcdc4223.
* Simplify layout
With only one version of the GPU libraries, we can simplify things down somewhat. (Jetsons still require special handling)
* distinct sbsa variant for linux arm64
This avoids accidentally trying to load the sbsa cuda libraries on
a jetson system which results in crashes.
* temporary prevent rocm+cuda mixed loading
"POST predict" basically means that the runner has crashed, which
can have many reasons. However, many people think this is a specific
error and either report only this message or group together unrelated
bugs. This replaces it with a more friendly and helpful message.
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
- Create backend, including enumerating tensors and memory allocation
- Loading tensor data
This allows more flexibility in managing model loading.
If a model is loading, and the request context is canceled during the load
by a client closing the connection, and another request is inbound for the
same model with a different configuration (context size, etc.) thus requiring
a reload, two unload events can be in flight. The first shuts down the
original model load, but the second one caused the loss of the new
reloading runner reference, thus triggering the leak.
The primary fix is detecting the duplicate unload and ignoring the second
instance. The load routine is also hardened to ensure we detect
clobbering an already present runner and unload it with a warning.
This reduces the size of our Windows installer payloads by ~256M by dropping
support for nvidia drivers older than Feb 2023. Hardware support is unchanged.
Linux default bundle sizes are reduced by ~600M to 1G.
Some options listed in api/types.go are not supported in
newer models, or have been deprecated in the past. This is
the first of a series of PRs to clean up the API options
For all search path env vars make sure our dirs are first
to avoid potentially finding other incompatible libraries
on the users system.
Also fixes a minor build script glitch for windows rocm
This enhances our logging in the scheduler. The initial "waiting for server" log
no longer claims an initial error state (now "not responding" which better reflects
the actual state). Runners now have slog wiring to report more details about the
runner, including PID.
No functional change. Many different done reasons can be set at the runner
level, so rather than obsuring them we should return them to the server
process and let it choose what to do with the done reason. This separates
the API concerns from the runner.
Gemma3 uses sliding windows for its context on 5/6 layers, significantly
reducing memory usage but leading to uneven usage across layers,
which makes allocation to the correct GPU difficult. We currently
estimate very conservatively by assuming all layers are consistent
at the max size.
Llama3.2-vision is also inconsistent between self attention and cross
attention layers - at moment, we calculate the correct total size
and then average this across layers. In some cases, this may lead
to crashes if a large layer is placed on a GPU sized by the average.
This allows memory estimation to calculate per-layer KV cache size
and take this account when placing layers onto GPUs. We already do
this for weights that vary per-tensor, so this is a logical extension.
Fixes#9730Fixes#9890
This commit refactors the LLM subsystem by removing internal subprocess
request and response types. It consolidates duplicate type definitions
across the codebase, moving them to centralized locations. The change also
standardizes interfaces between components, simplifies the ServerStatusResp
struct, and moves the ParseDurationMs function to a common package. This
cleanup reduces code duplication between different runner implementations
(llamarunner and ollamarunner).
We sometimes tokenize partial strings. For example, with
multimodal inputs, we split the input string around the images
and then tokenize each piece. In these cases, we should only add
the special tokens on the first piece.
* Include unified vision layers in memory prediction
For newer vision models with a single gguf, include
the projection estimates.
* Adjust CLI to handle both styles of vision model metadata
* Wire up new tokenizers for new engine
If we're loading the new engine, utilize the new model
text processor instead of calling into cgo wrappers for
llama.cpp. This also cleans up some tech debt from the
older tokenization flow for the C++ server which was
no longer used.
This also adjusts the grammar handling logic to pass
through to the new engine instead of utilizing the cgo
schema to grammar call.
* Lay foundation for auto selection of new engine
provides a better approach to #9088 that will attempt to
evaluate symlinks (important for macOS where 'ollama' is
often a symlink), but use the result of os.Executable()
as a fallback in scenarios where filepath.EvalSymlinks
fails due to permission erorrs or other issues