Merge remote-tracking branch 'upstream/main' into vulkanV3

This commit is contained in:
Inforithmics 2025-09-16 22:15:31 +02:00
commit 0d4f3341c3
60 changed files with 3057 additions and 683 deletions

View File

@ -313,10 +313,11 @@ func (t *ToolFunction) String() string {
// ChatResponse is the response returned by [Client.Chat]. Its fields are
// similar to [GenerateResponse].
type ChatResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
DoneReason string `json:"done_reason,omitempty"`
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
DoneReason string `json:"done_reason,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
Done bool `json:"done"`
@ -329,13 +330,6 @@ type DebugInfo struct {
ImageCount int `json:"image_count,omitempty"`
}
// DebugTemplateResponse is returned when _debug_render_only is set to true
type DebugTemplateResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
DebugInfo DebugInfo `json:"_debug_info"`
}
type Metrics struct {
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
@ -443,6 +437,8 @@ type CreateRequest struct {
System string `json:"system,omitempty"`
Parameters map[string]any `json:"parameters,omitempty"`
Messages []Message `json:"messages,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
// Deprecated: set the model name with Model instead
Name string `json:"name"`
@ -480,6 +476,8 @@ type ShowResponse struct {
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
@ -592,6 +590,8 @@ type GenerateResponse struct {
Metrics
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
}
// ModelDetails provides details about a model.

View File

@ -28,6 +28,7 @@ type bertModel struct {
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
normalizeEmbeddings bool
PoolingType uint32
}
@ -54,9 +55,11 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
var pooling string
for _, m := range modules {
if m.Type == "sentence_transformers.models.Pooling" {
switch m.Type {
case "sentence_transformers.models.Pooling":
pooling = m.Path
break
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
}
}
@ -90,6 +93,7 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.normalize_embeddings"] = p.normalizeEmbeddings
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)

View File

@ -45,10 +45,18 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
}
}
// Check GPU compute capability FIRST
isOldGPU := gpuInfo.computeMajor < 7 || (gpuInfo.computeMajor == 7 && gpuInfo.computeMinor < 5)
if isOldGPU {
// GPU is Pascal or older (CC <= 7.4) - use CUDA v12 (supports CC 6.1)
return "v12"
}
// GPU is Turing or newer (CC >= 7.5) - can use newer CUDA
if gpuInfo.DriverMajor < 13 {
// The detected driver is older than 580 (Aug 2025)
// Warn if their CC is compatible with v13 and they should upgrade their driver to get better performance
if gpuInfo.computeMajor > 7 || (gpuInfo.computeMajor == 7 && gpuInfo.computeMinor >= 5) {
if !isOldGPU {
slog.Warn("old CUDA driver detected - please upgrade to a newer driver for best performance", "version", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor))
}
return "v12"

View File

@ -11,6 +11,10 @@ Then build and run Ollama from the root directory of the repository:
go run . serve
```
> [!NOTE]
> Ollama includes native code compiled with CGO. From time to time these data structures can change and CGO can get out of sync resulting in unexpected crashes. You can force a full build of the native code by running `go clean -cache` first.
## macOS (Apple Silicon)
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.

View File

@ -3,29 +3,15 @@ package harmony
import (
"fmt"
"log/slog"
"slices"
"strings"
"unicode"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/template"
)
type harmonyParserState int
func ShouldUseHarmony(modelFamily string, template *template.Template) bool {
if slices.Contains([]string{"gptoss", "gpt-oss"}, modelFamily) {
// heuristic to check whether the template expects to be parsed via harmony:
// search for harmony tags that are nearly always used
if template.Contains("<|start|>") && template.Contains("<|end|>") {
return true
}
}
return false
}
const (
harmonyParserState_LookingForMessageStart harmonyParserState = iota
harmonyParserState_ParsingHeader
@ -89,28 +75,18 @@ func (s *HarmonyParser) AddImplicitStart() {
s.acc.WriteString("<|start|>assistant")
}
func Prefill(lastMessage api.Message) string {
if lastMessage.Role != "assistant" {
return ""
}
switch {
case strings.TrimSpace(lastMessage.Content) != "":
return "<|start|>assistant<|channel|>final<|message|>"
case strings.TrimSpace(lastMessage.Thinking) != "":
return "<|start|>assistant<|channel|>analysis<|message|>"
default:
return ""
}
}
// AddImplicitStartOrPrefill adds an implicit start tag or prefill string if provided
func (s *HarmonyParser) AddImplicitStartOrPrefill(prefillString string) {
if strings.TrimSpace(prefillString) != "" {
s.acc.WriteString(prefillString)
} else {
s.AddImplicitStart()
func (s *HarmonyParser) AddImplicitStartOrPrefill(lastMessage *api.Message) {
if lastMessage != nil && lastMessage.Role == "assistant" {
// handle prefilling conditions
if lastMessage.Content != "" {
s.acc.WriteString("<|start|>assistant<|channel|>final<|message|>")
return
} else if lastMessage.Thinking != "" {
s.acc.WriteString("<|start|>assistant<|channel|>analysis<|message|>")
return
}
}
s.AddImplicitStart()
}
func (s *HarmonyParser) AddContent(content string) []HarmonyEvent {
@ -289,7 +265,6 @@ type HarmonyMessageHandler struct {
state harmonyMessageState
HarmonyParser *HarmonyParser
FunctionNameMap *FunctionNameMap
ToolParser *HarmonyToolCallAccumulator
}
// NewHarmonyMessageHandler creates a new message handler
@ -302,16 +277,12 @@ func NewHarmonyMessageHandler() *HarmonyMessageHandler {
HeaderEndTag: "<|message|>",
},
FunctionNameMap: NewFunctionNameMap(),
ToolParser: &HarmonyToolCallAccumulator{
state: harmonyToolCallState_Normal,
currentToolName: nil,
},
}
}
// AddContent processes the content and returns the content, thinking, and tool content.
// content and thinking are already fully parsed, but tool content still needs to be passed to the tool parser
func (h *HarmonyMessageHandler) AddContent(content string) (string, string, string) {
func (h *HarmonyMessageHandler) AddContent(content string, toolParser *HarmonyToolCallAccumulator) (string, string, string) {
contentSb := strings.Builder{}
thinkingSb := strings.Builder{}
toolContentSb := strings.Builder{}
@ -328,14 +299,14 @@ func (h *HarmonyMessageHandler) AddContent(content string) (string, string, stri
// event.Header.Recipient is the tool name, something like
// "browser.search" for a built-in, or "functions.calc" for a
// custom one
h.ToolParser.SetToolName(event.Header.Recipient)
toolParser.SetToolName(event.Header.Recipient)
} else {
h.state = harmonyMessageState_Thinking
}
case "commentary":
if event.Header.Recipient != "" {
h.state = harmonyMessageState_ToolCalling
h.ToolParser.SetToolName(event.Header.Recipient)
toolParser.SetToolName(event.Header.Recipient)
} else {
h.state = harmonyMessageState_Normal
}
@ -358,6 +329,13 @@ func (h *HarmonyMessageHandler) AddContent(content string) (string, string, stri
return contentSb.String(), thinkingSb.String(), toolContentSb.String()
}
func (h *HarmonyMessageHandler) CreateToolParser() *HarmonyToolCallAccumulator {
return &HarmonyToolCallAccumulator{
state: harmonyToolCallState_Normal,
currentToolName: nil,
}
}
type harmonyToolCallState int
const (

View File

@ -3,7 +3,6 @@ package harmony
import (
"fmt"
"reflect"
"strings"
"testing"
)
@ -536,202 +535,3 @@ func TestFunctionConvertAndAdd(t *testing.T) {
})
}
}
func TestHarmonyMessageHandlerStreamingScenarios(t *testing.T) {
t.Run("thinking_then_content_streams", func(t *testing.T) {
handler := NewHarmonyMessageHandler()
handler.HarmonyParser.AddImplicitStart()
tp := handler.ToolParser
type step struct {
in string
wantContent string
wantThinking string
}
steps := []step{
{in: "<|channel|>analysis<|message|>Thinking...", wantThinking: "Thinking..."},
{in: "<|end|>", wantThinking: ""},
{in: "<|start|>assistant<|message|>Answer", wantContent: "Answer"},
{in: "<|end|>", wantContent: ""},
}
for i, s := range steps {
content, thinking, tool := handler.AddContent(s.in)
if tool != "" {
tp.Add(tool)
}
if content != s.wantContent || thinking != s.wantThinking {
t.Fatalf("step %d: got (content=%q thinking=%q), want (content=%q thinking=%q)", i, content, thinking, s.wantContent, s.wantThinking)
}
}
})
t.Run("content_streams_as_it_arrives", func(t *testing.T) {
handler := NewHarmonyMessageHandler()
handler.HarmonyParser.AddImplicitStart()
tp := handler.ToolParser
inputs := []string{
"<|start|>assistant<|message|>Hello",
", world",
"!<|end|>",
}
var got []string
for _, in := range inputs {
content, thinking, tool := handler.AddContent(in)
if tool != "" {
tp.Add(tool)
}
if thinking != "" {
t.Fatalf("unexpected thinking %q", thinking)
}
if content != "" {
got = append(got, content)
}
}
want := []string{"Hello", ", world", "!"}
if !reflect.DeepEqual(got, want) {
t.Fatalf("content pieces mismatch: got %v want %v", got, want)
}
})
t.Run("thinking_streams_separately_from_content", func(t *testing.T) {
handler := NewHarmonyMessageHandler()
handler.HarmonyParser.AddImplicitStart()
tp := handler.ToolParser
inputs := []string{
"<|channel|>analysis<|message|>Thinking...",
"<|end|>",
"<|start|>assistant<|message|>Answer",
"<|end|>",
}
var got []string
for _, in := range inputs {
content, thinking, tool := handler.AddContent(in)
if tool != "" {
tp.Add(tool)
}
if thinking != "" {
got = append(got, thinking)
}
if content != "" {
got = append(got, content)
}
}
want := []string{"Thinking...", "Answer"}
if !reflect.DeepEqual(got, want) {
t.Fatalf("content pieces mismatch: got %v want %v", got, want)
}
})
t.Run("partial_tags_buffer_until_complete", func(t *testing.T) {
handler := NewHarmonyMessageHandler()
handler.HarmonyParser.AddImplicitStart()
tp := handler.ToolParser
inputs := []string{
"<|chan",
"nel|>analysis<|mess",
"age|>Deep ",
"thought",
"<|end|>",
"<|start|>assistant<|message|>Done",
"<|end|>",
}
var thinkingPieces []string
var contentPieces []string
for _, in := range inputs {
content, thinking, tool := handler.AddContent(in)
if tool != "" {
tp.Add(tool)
}
if thinking != "" {
thinkingPieces = append(thinkingPieces, thinking)
}
if content != "" {
contentPieces = append(contentPieces, content)
}
}
if want := []string{"Deep ", "thought"}; !reflect.DeepEqual(thinkingPieces, want) {
t.Fatalf("thinking pieces mismatch: got %v want %v", thinkingPieces, want)
}
if want := []string{"Done"}; !reflect.DeepEqual(contentPieces, want) {
t.Fatalf("content pieces mismatch: got %v want %v", contentPieces, want)
}
})
t.Run("simple_assistant_after_analysis", func(t *testing.T) {
handler := NewHarmonyMessageHandler()
handler.HarmonyParser.AddImplicitStart()
tp := handler.ToolParser
inputs := []string{
"<|channel|>analysis<|message|>Think",
"<|end|>",
"<|start|>assistant<|message|>Answer",
"<|end|>",
}
var contentSb, thinkingSb strings.Builder
for _, in := range inputs {
content, thinking, tool := handler.AddContent(in)
if tool != "" {
tp.Add(tool)
}
contentSb.WriteString(content)
thinkingSb.WriteString(thinking)
}
if contentSb.String() != "Answer" {
t.Fatalf("content mismatch: got %q want %q", contentSb.String(), "Answer")
}
if thinkingSb.String() != "Think" {
t.Fatalf("thinking mismatch: got %q want %q", thinkingSb.String(), "Think")
}
})
t.Run("tool_call_parsed_and_returned_correctly", func(t *testing.T) {
handler := NewHarmonyMessageHandler()
handler.HarmonyParser.AddImplicitStart()
tp := handler.ToolParser
inputs := []string{
"<|channel|>commentary to=functions.calculate<|message|>{\"expression\":\"2+2\"}<|end|>",
}
for _, in := range inputs {
content, thinking, tool := handler.AddContent(in)
if content != "" || thinking != "" {
continue
}
if tool != "" {
tp.Add(tool)
}
}
name, args := tp.Drain()
if name == nil || *name != "functions.calculate" {
t.Fatalf("unexpected tool name: %v", name)
}
if got, want := args, "{\"expression\":\"2+2\"}"; got != want {
t.Fatalf("unexpected tool args: got %s want %s", got, want)
}
})
t.Run("tool_call_across_chunks", func(t *testing.T) {
handler := NewHarmonyMessageHandler()
handler.HarmonyParser.AddImplicitStart()
tp := handler.ToolParser
inputs := []string{
"<|channel|>commentary to=functions.calculate<|message|>{\"expression\":\"2+",
"2\"}",
"<|end|>",
}
for _, in := range inputs {
content, thinking, tool := handler.AddContent(in)
if content != "" || thinking != "" {
continue
}
if tool != "" {
tp.Add(tool)
}
}
name, args := tp.Drain()
if name == nil || *name != "functions.calculate" {
t.Fatalf("unexpected tool name: %v", name)
}
if got, want := args, "{\"expression\":\"2+2\"}"; got != want {
t.Fatalf("unexpected tool args: got %s want %s", got, want)
}
})
}

View File

@ -50,7 +50,7 @@ func TestContextExhaustion(t *testing.T) {
// Set up the test data
req := api.GenerateRequest{
Model: smol,
Prompt: "Write me a story with a ton of emojis?",
Prompt: "Write me a story in english with a lot of emojis",
Stream: &stream,
Options: map[string]any{
"temperature": 0,

View File

@ -561,7 +561,7 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}, {
Model: smol,
Prompt: "what is the origin of the US thanksgiving holiday? Be brief but factual in your reply",
Prompt: "how do rainbows form? Be brief but factual in your reply",
Stream: &stream,
KeepAlive: &api.Duration{Duration: 10 * time.Second},
}, {
@ -579,9 +579,9 @@ func GenerateRequests() ([]api.GenerateRequest, [][]string) {
[][]string{
{"sunlight", "scattering", "interact", "color", "surface", "depth", "red", "orange", "yellow", "absorbs", "wavelength"},
{"soil", "organic", "earth", "black", "tan", "chemical", "processes", "pigments", "particles", "iron oxide", "rust", "air", "water", "mixture", "mixing"},
{"england", "english", "massachusetts", "pilgrims", "colonists", "independence", "british", "feast", "family", "gatherings", "traditions", "turkey", "colonial", "period", "harvest", "agricultural", "european settlers", "american revolution", "civil war", "16th century", "17th century", "native american", "united states", "cultural", "hardship", "autumn", "festival"},
{"water", "droplet", "refracted", "reflect", "color", "spectrum"},
{"fourth", "july", "declaration", "independence"},
{"nitrogen", "oxygen", "carbon", "dioxide"},
{"nitrogen", "oxygen", "carbon", "dioxide", "water", "vapor"},
}
}

View File

@ -515,33 +515,34 @@ func (c *MtmdContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32,
}
nChunks := C.mtmd_input_chunks_size(ic)
numEmbed := llamaContext.Model().NEmbd()
lastChunkSize := 0
embed := make([][]float32, 0)
for i := range int(nChunks) {
chunk := C.mtmd_input_chunks_get(ic, C.size_t(i))
numTokens := int(C.mtmd_input_chunk_get_n_tokens(chunk))
lastChunkSize = numTokens
slog.Debug("chunk tokens", "index", i, "numTokens", numTokens)
// Encode the chunk
if C.int32_t(0) != C.mtmd_encode_chunk(c.c, chunk) {
return nil, errors.New("unable to encode mtmd image chunk")
}
}
// Get the embeddings
embed := make([][]float32, lastChunkSize)
embd := C.mtmd_get_output_embd(c.c)
if nil == embd {
return nil, errors.New("failed to get image embedding")
}
// Get the embeddings for this chunk
chunkEmbed := make([][]float32, numTokens)
chunkEmbd := C.mtmd_get_output_embd(c.c)
if nil == chunkEmbd {
continue
}
// Extend the embedding array for each token
s := unsafe.Slice((*float32)(embd), numEmbed*lastChunkSize)
rows := make([]float32, len(s))
copy(rows, s)
for i := range lastChunkSize {
embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
// Extend the embedding array for each token
s := unsafe.Slice((*float32)(chunkEmbd), numTokens*numEmbed)
rows := make([]float32, len(s))
copy(rows, s)
for i := range numTokens {
chunkEmbed[i] = rows[i*numEmbed : (i+1)*numEmbed]
}
embed = append(embed, chunkEmbed...)
}
slog.Debug("image embeddings", "totalEmbeddings", len(embed))
return embed, nil
}

View File

@ -35,7 +35,6 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/parser"
)
type filteredEnv []string
@ -1350,9 +1349,7 @@ type CompletionRequest struct {
Images []ImageData
Options *api.Options
Grammar string // set before sending the request to the subprocess
ParserType parser.TokenParserType
PrefillString string
Grammar string // set before sending the request to the subprocess
}
// DoneReason represents the reason why a completion response is done
@ -1379,15 +1376,13 @@ func (d DoneReason) String() string {
}
type CompletionResponse struct {
Content string `json:"content"`
Thinking string `json:"thinking"`
ToolCalls []api.ToolCall `json:"tool_calls"`
DoneReason DoneReason `json:"done_reason"`
Done bool `json:"done"`
PromptEvalCount int `json:"prompt_eval_count"`
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
EvalCount int `json:"eval_count"`
EvalDuration time.Duration `json:"eval_duration"`
Content string `json:"content"`
DoneReason DoneReason `json:"done_reason"`
Done bool `json:"done"`
PromptEvalCount int `json:"prompt_eval_count"`
PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
EvalCount int `json:"eval_count"`
EvalDuration time.Duration `json:"eval_duration"`
}
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
@ -1505,8 +1500,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
}
switch {
// TODO(parthsareen): token repeat limit is now handled in the runner, this currently support legacy model and can be removed in the future
case strings.TrimSpace(c.Content) == lastToken && c.Content != "":
case strings.TrimSpace(c.Content) == lastToken:
tokenRepeat++
default:
lastToken = strings.TrimSpace(c.Content)
@ -1519,14 +1513,16 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
return ctx.Err()
}
if c.Content != "" {
fn(CompletionResponse{
Content: c.Content,
})
}
if c.Done {
fn(c)
return nil
}
if c.Content != "" || c.Thinking != "" || len(c.ToolCalls) > 0 {
fn(c)
}
}
}

View File

@ -416,6 +416,7 @@ type Tensor interface {
AddID(ctx Context, t2, ids Tensor) Tensor
Softmax(ctx Context) Tensor
L2Norm(ctx Context, eps float32) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
@ -429,12 +430,13 @@ type Tensor interface {
Sin(ctx Context) Tensor
Cos(ctx Context) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor
QuickGELU(ctx Context) Tensor
SILU(ctx Context) Tensor
RELU(ctx Context) Tensor
GELU(ctx Context, up ...Tensor) Tensor
SILU(ctx Context, up ...Tensor) Tensor
RELU(ctx Context, up ...Tensor) Tensor
Sigmoid(ctx Context) Tensor
SwiGLU(ctx Context, up Tensor, alpha, limit float32) Tensor
// AlphaLimitSILU is a variant of SILU that clamps the input to the range [-limit, limit]
SILUAlphaLimit(ctx Context, up Tensor, alpha, limit float32) Tensor
Reshape(ctx Context, shape ...int) Tensor
View(ctx Context, offset int, shape ...int) Tensor

View File

@ -1205,6 +1205,13 @@ func (t *Tensor) AddID(ctx ml.Context, t2, ids ml.Tensor) ml.Tensor {
}
}
func (t *Tensor) L2Norm(ctx ml.Context, eps float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_l2_norm(ctx.(*Context).ctx, t.t, C.float(eps)),
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))
if w != nil {
@ -1424,35 +1431,46 @@ func (t *Tensor) IM2Col(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int
}
}
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
func (t *Tensor) GELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_geglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
return &Tensor{
b: t.b,
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) QuickGELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_gelu_quick_inplace(ctx.(*Context).ctx, t.t),
func (t *Tensor) SILU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_swiglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
}
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) RELU(ctx ml.Context) ml.Tensor {
func (t *Tensor) RELU(ctx ml.Context, t2 ...ml.Tensor) ml.Tensor {
if len(t2) > 0 {
return &Tensor{
b: t.b,
t: C.ggml_reglu_split(ctx.(*Context).ctx, t.t, t2[0].(*Tensor).t),
}
}
return &Tensor{
b: t.b,
t: C.ggml_relu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SwiGLU(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
func (t *Tensor) SILUAlphaLimit(ctx ml.Context, up ml.Tensor, alpha, limit float32) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_swiglu_oai(ctx.(*Context).ctx, t.t, up.(*Tensor).t, C.float(alpha), C.float(limit)),

View File

@ -26,6 +26,7 @@ func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache
}
func AttentionWithSinks(ctx ml.Context, query, key, value, sinks ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
ctx.Forward(query)
if key != nil && value != nil {
if query.Dim(0) != key.Dim(0) {
panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
@ -39,6 +40,7 @@ func AttentionWithSinks(ctx ml.Context, query, key, value, sinks ml.Tensor, scal
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
}
ctx.Forward(key, value)
if cache != nil {
cache.Put(ctx, key, value)
}

42
ml/nn/pooling/pooling.go Normal file
View File

@ -0,0 +1,42 @@
package pooling
import (
"github.com/ollama/ollama/ml"
)
type Type uint32
const (
TypeNone Type = iota
TypeMean
TypeCLS
TypeLast
)
func (t Type) String() string {
switch t {
case TypeMean:
return "Mean"
case TypeCLS:
return "CLS"
case TypeLast:
return "Last"
default:
return "Unknown"
}
}
func (t Type) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
switch t {
case TypeMean:
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mean(ctx)
return hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
case TypeCLS:
return hiddenStates.View(ctx, 0, hiddenStates.Dim(0))
case TypeLast:
hiddenStates = hiddenStates.View(ctx, (hiddenStates.Dim(1)-1)*hiddenStates.Stride(1), hiddenStates.Dim(0))
return hiddenStates
default:
panic("unknown pooling type")
}
}

View File

@ -0,0 +1,79 @@
package pooling_test
import (
"bytes"
"os"
"slices"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/discover"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn/pooling"
)
func setup(tb testing.TB, n int) ml.Backend {
tb.Helper()
f, err := os.CreateTemp(tb.TempDir(), "*.bin")
if err != nil {
tb.Fatal(err)
}
defer f.Close()
if err := fsggml.WriteGGUF(f, fsggml.KV{
"general.architecture": "test",
"test.block_count": uint32(1),
}, []*fsggml.Tensor{
{Name: "blk.0.weight", Shape: []uint64{1}, WriterTo: bytes.NewBuffer(make([]byte, 4))},
}); err != nil {
tb.Fatal(err)
}
var gpuLayers ml.GPULayersList
if gpus := discover.GetGPUInfo(); len(gpus) > 0 {
gpuLayers = append(gpuLayers, ml.GPULayers{
ID: gpus[0].ID,
Layers: slices.Collect(func(yield func(int) bool) {
for i := range n {
if !yield(i) {
return
}
}
}),
})
}
b, err := ggml.New(f.Name(), ml.BackendParams{AllocMemory: true, GPULayers: gpuLayers})
if err != nil {
tb.Fatal(err)
}
return b
}
func TestForward(t *testing.T) {
cases := map[pooling.Type][]float32{
pooling.TypeMean: {4, 5, 6, 7, 8, 9, 10, 11},
pooling.TypeCLS: {0, 1, 2, 3, 4, 5, 6, 7},
pooling.TypeLast: {8, 9, 10, 11, 12, 13, 14, 15},
}
for typ, want := range cases {
t.Run(typ.String(), func(t *testing.T) {
b := setup(t, 99)
defer b.Close()
ctx := b.NewContext()
defer ctx.Close()
tt := ctx.Input().Arange(0, 16, 1, ml.DTypeF32).Reshape(ctx, 8, 2)
tt = typ.Forward(ctx, tt)
ctx.Forward(tt).Compute(tt)
if diff := cmp.Diff(want, tt.Floats()); diff != "" {
t.Error(diff)
}
})
}
}

View File

@ -54,10 +54,9 @@ type Batch struct {
// Inputs is the input tokens, including placeholders for multimodal inputs.
Inputs ml.Tensor
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
Multimodal []MultimodalIndex
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs ml.Tensor
// Positions is the position for each Input, relative to its sequence. Equal
// in length to Inputs.
@ -66,7 +65,8 @@ type Batch struct {
// Sequences is the sequence for each Input. Equal in length to Inputs.
Sequences []int
// Outputs are the set of indicies into Inputs for which output data should
// be returned.
Outputs []int32
// Multimodal is a set of multimodal embeddings previously created by
// EncodeMultimodal, along with an index into Inputs. Unused for text-only
// models or for batches without multimodal elements.
Multimodal []MultimodalIndex
}

View File

@ -5,7 +5,6 @@ import (
"fmt"
_ "image/jpeg"
_ "image/png"
"math"
"os"
"reflect"
"strconv"
@ -21,10 +20,15 @@ import (
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model/input"
)
var ErrNoVisionModel = errors.New("this model is missing data required for image input")
var (
ErrNoVisionModel = errors.New("this model is missing data required for image input")
ErrUnsupportedModel = errors.New("model not supported")
ErrUnsupportedTokenizer = errors.New("tokenizer not supported")
)
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
@ -104,7 +108,7 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
}
arch := b.Config().Architecture()
if b.Config().Uint("pooling_type", math.MaxUint32) != math.MaxUint32 {
if pooling.Type(b.Config().Uint("pooling_type")) != pooling.TypeNone {
arch = arch + "_embed"
}
@ -242,7 +246,7 @@ func setPointer(base Base, v reflect.Value, tags []Tag) {
vv = vv.Elem()
}
vv = vv.Elem()
vv = reflect.Indirect(vv)
if v.IsNil() {
vv = reflect.New(v.Type().Elem()).Elem()
}

181
model/models/bert/embed.go Normal file
View File

@ -0,0 +1,181 @@
package bert
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
PositionEmbedding *nn.Embedding `gguf:"position_embd"`
TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
Layers []EncoderLayer `gguf:"blk"`
Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenStates = hiddenStates.Add(ctx, m.TypeEmbedding.Weight.View(ctx, 0, m.hiddenSize))
hiddenStates = hiddenStates.Add(ctx, m.PositionEmbedding.Forward(ctx, ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))))
hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps)
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, &m.Options)
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
if m.normalize {
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
}
return hiddenStates, nil
}
type EncoderLayer struct {
*Attention
AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`
*MLP
MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
}
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
// Attention
residual := hiddenStates
hiddenStates = e.Attention.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
// MLP
residual = hiddenStates
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
return hiddenStates
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.LayerNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.LayerNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
query := a.Query.Forward(ctx, hiddenStates)
if a.QueryNorm != nil {
query = a.QueryNorm.Forward(ctx, query, opts.eps)
}
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
key := a.Key.Forward(ctx, hiddenStates)
if a.KeyNorm != nil {
key = a.KeyNorm.Forward(ctx, key, opts.eps)
}
key = key.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
value := a.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
attention := nn.Attention(ctx, query, key, value, 1/math.Sqrt(float64(opts.headDim())), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return a.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
return m.Down.Forward(ctx, m.Up.Forward(ctx, hiddenStates).GELU(ctx))
}
type Options struct {
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength int
poolingType pooling.Type
eps float32
normalize bool
}
func (o Options) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
func New(c fs.Config) (model.Model, error) {
var processor model.TextProcessor
switch c.String("tokenizer.ggml.model", "bert") {
case "bert":
processor = model.NewWordPiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
//nolint:misspell
// NOTE: "seperator_token_id" is a typo in model metadata but we need to
// support it for compatibility.
c.Uint("tokenizer.ggml.seperator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
)
default:
return nil, model.ErrUnsupportedTokenizer
}
return &Model{
TextProcessor: processor,
Layers: make([]EncoderLayer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_epsilon"),
poolingType: pooling.Type(c.Uint("pooling_type")),
normalize: c.Bool("normalize_embeddings", true),
},
}, nil
}
func init() {
model.Register("bert", New)
model.Register("bert_embed", New)
}

View File

@ -24,7 +24,7 @@ type Options struct {
type Model struct {
model.Base
model.SentencePieceModel
model.SentencePiece
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@ -40,7 +40,7 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@ -138,7 +138,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@ -176,7 +176,6 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
@ -193,7 +192,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
lastLayerOutputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)

View File

@ -1,49 +1,38 @@
package gemma3
import (
"errors"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.SentencePieceModel
model.SentencePiece
*TextModel
PoolingType uint32
poolingType pooling.Type
Dense [2]*nn.Linear `gguf:"dense"`
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
batch.Outputs = batch.Positions // return all positions
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
switch m.PoolingType {
case 0: // None
case 1: // Mean
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mean(ctx)
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
default:
return nil, errors.New("unsupported pooling type")
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
for _, dense := range m.Dense {
hiddenStates = dense.Forward(ctx, hiddenStates)
}
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbedModel(c fs.Config) (model.Model, error) {
m := &embedModel{
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@ -61,7 +50,7 @@ func newEmbedModel(c fs.Config) (model.Model, error) {
},
),
TextModel: newTextModel(c),
PoolingType: c.Uint("pooling_type", 0),
poolingType: pooling.Type(c.Uint("pooling_type", 0)),
}
m.Cache = kvcache.NewWrapperCache(

View File

@ -16,7 +16,7 @@ import (
type Model struct {
model.Base
model.SentencePieceModel
model.SentencePiece
*VisionModel `gguf:"v"`
*TextModel
@ -55,7 +55,7 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),

View File

@ -123,7 +123,7 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextConfig) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@ -161,7 +161,6 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) ml.Tensor {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
@ -194,7 +193,7 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
lastLayerOutputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)

View File

@ -10,7 +10,7 @@ import (
type Model struct {
model.Base
model.SentencePieceModel
model.SentencePiece
*TextModel
}
@ -23,7 +23,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func New(c fs.Config) (model.Model, error) {
m := Model{
TextModel: newTextModel(c),
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),

View File

@ -83,7 +83,7 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx).Mean(ctx)
hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
hiddenStates = hiddenStates.Rows(ctx, ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs)))
hiddenStates = hiddenStates.Rows(ctx, batch.Outputs)
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
@ -170,8 +170,7 @@ func (d TextLayer) Forward(ctx ml.Context, hiddenStates, perLayerInput, position
}
active = d.PerLayerInputGate.Forward(ctx, active)
active = active.GELU(ctx)
active = active.Mul(ctx, perLayerInput)
active = active.GELU(ctx, perLayerInput)
active = d.PerLayerProjection.Forward(ctx, active)
active = d.PostPerLayerNorm.Forward(ctx, active, opts.eps)
@ -292,7 +291,7 @@ func (mlp TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, activationSpa
hiddenStates = hiddenStates.Sub(ctx, cutoff).RELU(ctx)
}
hiddenStates = hiddenStates.GELU(ctx).Mul(ctx, upStates)
hiddenStates = hiddenStates.GELU(ctx, upStates)
hiddenStates = mlp.Down.Forward(ctx, hiddenStates)
return hiddenStates
}

View File

@ -41,8 +41,8 @@ func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, err
}
var outputs ml.Tensor
if len(batch.Outputs) > 0 && i == len(m.TransformerBlocks)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if i == len(m.TransformerBlocks)-1 {
outputs = batch.Outputs
}
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)
@ -210,7 +210,7 @@ func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates, one ml.Tensor, opts *
up = mlp.Up.Forward(ctx, hiddenStates, selectedExperts)
}
hiddenStates = gate.SwiGLU(ctx, up, 1.702, 7)
hiddenStates = gate.SILUAlphaLimit(ctx, up, 1.702, 7)
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)

View File

@ -118,7 +118,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@ -160,7 +160,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
outputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m.Options)

View File

@ -176,9 +176,7 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
}
func init() {

View File

@ -58,14 +58,14 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type TextExperts struct {
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
}
func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor {
@ -76,9 +76,9 @@ func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tens
hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed)
hiddenStates = hiddenStates.Mul(ctx, scores)
upStates := e.Up.Weight.MulmatID(ctx, hiddenStates, experts)
gateStates := e.Gate.Weight.MulmatID(ctx, hiddenStates, experts)
downStates := e.Down.Weight.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
upStates := e.Up.Forward(ctx, hiddenStates, experts)
gateStates := e.Gate.Forward(ctx, hiddenStates, experts)
downStates := e.Down.Forward(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
@ -96,7 +96,7 @@ type TextSharedExpert struct {
}
func (mlp *TextSharedExpert) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}

View File

@ -159,9 +159,8 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
}
func init() {

View File

@ -65,7 +65,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}

View File

@ -51,7 +51,7 @@ type VisionMLP struct {
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}

View File

@ -107,10 +107,9 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
}
func init() {

View File

@ -58,7 +58,7 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextModelOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}

View File

@ -1,6 +1,7 @@
package models
import (
_ "github.com/ollama/ollama/model/models/bert"
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"

View File

@ -59,7 +59,7 @@ type MLP struct {
}
func (mlp MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@ -111,7 +111,7 @@ func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)

View File

@ -140,9 +140,8 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache)
}
func init() {

View File

@ -90,7 +90,7 @@ type MLP struct {
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
// Apply SwiGLU activation gating
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
// Project back to hidden dimension
return mlp.Down.Forward(ctx, hiddenState)
}

View File

@ -100,8 +100,7 @@ type VisionMLP struct {
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
// Using activation as specified in config (likely GELU or SiLU/Swish)
gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
upOutput := mlp.Up.Forward(ctx, hiddenStates)
hiddenStates = gateOutput.SILU(ctx).Mul(ctx, upOutput)
hiddenStates = gateOutput.SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}

View File

@ -30,10 +30,10 @@ func (o Options) headDim() int {
}
type Attention struct {
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Query *nn.Linear `gguf:"attn_q"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
@ -65,10 +65,10 @@ type MLP interface {
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
}
func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
@ -87,13 +87,9 @@ func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
upStates := mlp.Up.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates, selectedExperts))
hiddenStates = mlp.Gate.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
hiddenStates = hiddenStates.SILU(ctx)
hiddenStates = hiddenStates.Mul(ctx, upStates)
experts := mlp.Down.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
@ -111,7 +107,8 @@ type dense struct {
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).
SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@ -165,7 +162,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)

37
model/parsers/parsers.go Normal file
View File

@ -0,0 +1,37 @@
package parsers
import (
"github.com/ollama/ollama/api"
)
type Parser interface {
Add(s string, tools []api.Tool) (content string, thinking string, calls []api.ToolCall, err error)
HasToolSupport() bool
HasThinkingSupport() bool
}
func ParserForName(name string) Parser {
switch name {
case "qwen3-coder":
parser := &Qwen3CoderParser{}
return parser
case "passthrough":
return &PassthroughParser{}
default:
return nil
}
}
type PassthroughParser struct{}
func (p *PassthroughParser) Add(s string, tools []api.Tool) (content string, thinking string, calls []api.ToolCall, err error) {
return s, "", nil, nil
}
func (p *PassthroughParser) HasToolSupport() bool {
return false
}
func (p *PassthroughParser) HasThinkingSupport() bool {
return false
}

410
model/parsers/qwen3coder.go Normal file
View File

@ -0,0 +1,410 @@
package parsers
import (
"context"
"encoding/json"
"encoding/xml"
"fmt"
"log/slog"
"math"
"regexp"
"strconv"
"strings"
"unicode"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/logutil"
)
type qwenParserState int
const (
toolOpenTag = "<tool_call>"
toolCloseTag = "</tool_call>"
)
const (
qwenParserState_LookingForToolStart qwenParserState = iota
qwenParserState_CollectingToolContent
)
type Qwen3CoderParser struct {
state qwenParserState
acc strings.Builder
}
func (p *Qwen3CoderParser) HasToolSupport() bool {
return true
}
func (p *Qwen3CoderParser) HasThinkingSupport() bool {
return false
}
func (p *Qwen3CoderParser) Add(s string, tools []api.Tool) (content string, thinking string, calls []api.ToolCall, err error) {
p.acc.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var sb strings.Builder
for _, event := range events {
switch event := event.(type) {
case qwenEventRawToolCall:
toolCall, err := parseToolCall(event, tools)
if err != nil {
slog.Warn("qwen tool call parsing failed", "error", err)
return "", "", nil, err
}
toolCalls = append(toolCalls, toolCall)
case qwenEventContent:
// TODO(drifkin): if the same turn contains multiple interleaved content
// events, we naively append them together here. See the note below about
// `qwenEvent`s for more details
sb.WriteString(event.content)
}
}
return sb.String(), "", toolCalls, nil
}
func (p *Qwen3CoderParser) parseEvents() []qwenEvent {
var all []qwenEvent
keepLooping := true
for keepLooping {
var events []qwenEvent
events, keepLooping = eat(p)
if len(events) > 0 {
all = append(all, events...)
}
}
if len(all) > 0 {
slog.Log(context.TODO(), logutil.LevelTrace, "qwen events parsed", "events", all, "state", p.state, "acc", p.acc.String())
}
return all
}
// we use some internal event types in order to communicate between `Add` and
// `eat`. We do this to support interleaving content and parallel tool calls in
// the parser, even though qwen3-coder isn't supposed to do this. Our API
// doesn't currently support models outputting multiple messages in a turn, so
// we wouldn't be able to represent it yet, but there's no reason to prevent the
// parser from supporting it, especially for future models if they end up using
// a similar format.
type qwenEvent interface {
isQwenEvent()
}
type qwenEventRawToolCall struct {
raw string
}
type qwenEventContent struct {
content string
}
func (qwenEventContent) isQwenEvent() {}
func (qwenEventRawToolCall) isQwenEvent() {}
// eat consumes the parser's buffer, and returns a list of any unambiguous
// events from the current parser state. If the parser transitions to another
// state, it may have additional events to emit on the next call, which is what
// the second return value indicates
func eat(p *Qwen3CoderParser) ([]qwenEvent, bool) {
var events []qwenEvent
switch p.state {
case qwenParserState_LookingForToolStart:
if strings.Contains(p.acc.String(), toolOpenTag) {
// we found a full tool open tag, so we can emit the content before the
// tag, being sure to trim any trailing whitespace
split := strings.SplitN(p.acc.String(), toolOpenTag, 2)
before := split[0]
before = strings.TrimRightFunc(before, unicode.IsSpace)
if len(before) > 0 {
events = append(events, qwenEventContent{content: before})
}
after := split[1]
p.acc.Reset()
p.acc.WriteString(after)
p.state = qwenParserState_CollectingToolContent
return events, true
} else if overlap := overlap(p.acc.String(), toolOpenTag); overlap > 0 {
// we found a partial tool open tag, so we can emit the unambiguous part,
// which is the (trailing-whitespace trimmed) content before the partial
// tool open tag
beforePartialTag := p.acc.String()[:len(p.acc.String())-overlap]
trailingWhitespaceLen := trailingWhitespaceLen(beforePartialTag)
ambiguousStart := len(beforePartialTag) - trailingWhitespaceLen
unambiguous := p.acc.String()[:ambiguousStart]
ambiguous := p.acc.String()[ambiguousStart:]
p.acc.Reset()
p.acc.WriteString(ambiguous)
events = append(events, qwenEventContent{content: unambiguous})
return events, false
} else {
// we found content that is entirely not a tool call. We should withhold
// any trailing whitespace in case this is the end of the content
whitespaceLen := trailingWhitespaceLen(p.acc.String())
ambiguousStart := len(p.acc.String()) - whitespaceLen
unambiguous := p.acc.String()[:ambiguousStart]
ambiguous := p.acc.String()[ambiguousStart:]
p.acc.Reset()
p.acc.WriteString(ambiguous)
if len(unambiguous) > 0 {
events = append(events, qwenEventContent{content: unambiguous})
}
return events, false
}
case qwenParserState_CollectingToolContent:
if strings.Contains(p.acc.String(), toolCloseTag) {
split := strings.SplitN(p.acc.String(), toolCloseTag, 2)
before := split[0]
if len(before) == 0 {
slog.Warn("qwen tool call closing tag found but no content before it")
}
// remove any whitespace between the tool call and any content after it
after := strings.TrimLeftFunc(split[1], unicode.IsSpace)
p.acc.Reset()
p.acc.WriteString(after)
events = append(events, qwenEventRawToolCall{raw: before})
p.state = qwenParserState_LookingForToolStart
return events, true
} else {
// note that we don't need to check the overlap here because we only plan
// on parsing the tool call once we see the full closing tag. We don't
// stream back the unparsed tool content, so there's no need to be eager
// here
return events, false
}
default:
panic("unreachable")
}
}
// TODO(drifkin): move this to a shared location
// longest overlap between suffix of s and prefix of delim
func overlap(s, delim string) int {
max := min(len(delim), len(s))
for i := max; i > 0; i-- {
if strings.HasSuffix(s, delim[:i]) {
return i
}
}
return 0
}
func trailingWhitespaceLen(s string) int {
for i := len(s) - 1; i >= 0; i-- {
if !unicode.IsSpace(rune(s[i])) {
return len(s) - i - 1
}
}
return len(s)
}
type XMLFunctionCall struct {
XMLName xml.Name `xml:"function"`
Name string `xml:"name,attr"`
Parameters []XMLParameter `xml:"parameter"`
}
type XMLParameter struct {
Name string `xml:"name,attr"`
Value string `xml:",chardata"`
}
// parseToolCall parses a raw tool call string into an api.ToolCall.
// The raw string follows an xml-like format, here's an example:
//
// <function=get_current_temperature>
// <parameter=location>
// San Francisco
// </parameter>
// <parameter=unit>
// celsius
// </parameter>
// </function>
func parseToolCall(raw qwenEventRawToolCall, tools []api.Tool) (api.ToolCall, error) {
toolCall := api.ToolCall{}
xmlString := transformToXML(raw.raw)
var functionCall XMLFunctionCall
err := xml.Unmarshal([]byte(xmlString), &functionCall)
if err != nil {
return api.ToolCall{}, err
}
toolCall.Function = api.ToolCallFunction{
Name: functionCall.Name,
}
// Find the matching tool to get parameter types
var matchedTool *api.Tool
for i := range tools {
if tools[i].Function.Name == functionCall.Name {
matchedTool = &tools[i]
break
}
}
toolCall.Function.Arguments = make(api.ToolCallFunctionArguments)
for _, parameter := range functionCall.Parameters {
// Look up the parameter type if we found the tool
var paramType api.PropertyType
if matchedTool != nil && matchedTool.Function.Parameters.Properties != nil {
if prop, ok := matchedTool.Function.Parameters.Properties[parameter.Name]; ok {
paramType = prop.Type
}
}
toolCall.Function.Arguments[parameter.Name] = parseValue(parameter.Value, paramType)
}
return toolCall, nil
}
// parseValue converts a raw string value to the appropriate type based on the parameter type specification.
//
// For union types (multiple types in PropertyType, which we support but doesn't
// seem as though the reference parser does type coercion with those types in
// mind) we use a type precedence approach:
// 1. null - checked first regardless of declared types (matches reference implementation)
// 2. boolean - only "true"/"false" are valid booleans
// 3. integer - must parse as a whole number
// 4. number - must parse as numeric (returns int if no decimal part)
// 5. array - must parse as valid JSON array
// 6. object - must parse as valid JSON object
// 7. string - always succeeds (least specific type)
//
// This precedence ensures we return the most specific type that successfully parses,
// following the principle of least surprise. For example, with PropertyType{"string", "number"},
// "123" becomes 123 (number), while "hello" becomes "hello" (string).
func parseValue(raw string, paramType api.PropertyType) any {
// first remove a single leading newlines, and a single trailing newline (if
// they exist). This follows the reference implementation
raw = strings.TrimPrefix(raw, "\n")
raw = strings.TrimSuffix(raw, "\n")
// Check for null first (case-insensitive) - this takes precedence over any type
if strings.ToLower(raw) == "null" {
return nil
}
// If no type is specified, default to string
if len(paramType) == 0 {
return raw
}
// Check if any of the specified types match, using type precedence
// Order: boolean -> integer -> number -> array -> object -> string
typeSet := make(map[string]bool)
for _, t := range paramType {
typeSet[t] = true
}
// Try boolean first (most restrictive)
if typeSet["boolean"] {
lower := strings.ToLower(raw)
switch lower {
case "true":
return true
case "false":
return false
}
// If not a valid boolean but boolean is the only type, return false (matching reference)
if len(paramType) == 1 {
return false
}
// Otherwise try other types
}
// Try integer
if typeSet["integer"] {
if i, err := strconv.ParseInt(raw, 10, 64); err == nil {
// Return as int if it fits in int32, otherwise int64
if i >= math.MinInt32 && i <= math.MaxInt32 {
return int(i)
}
return i
}
// If integer is the only type and parsing failed, fall back to string
if len(paramType) == 1 {
return raw
}
}
// Try number (float)
if typeSet["number"] {
if f, err := strconv.ParseFloat(raw, 64); err == nil {
// If the number has no decimal part, return as int (matching reference)
if f == math.Trunc(f) {
i := int64(f)
if i >= math.MinInt32 && i <= math.MaxInt32 {
return int(i)
}
return i
}
return f
}
// If number is the only type and parsing failed, fall back to string
if len(paramType) == 1 {
return raw
}
}
// Try array
if typeSet["array"] {
var arr []interface{}
if err := json.Unmarshal([]byte(raw), &arr); err == nil {
return arr
}
// If array is the only type and parsing failed, fall back to string
if len(paramType) == 1 {
return raw
}
}
// Try object
if typeSet["object"] {
var obj map[string]interface{}
if err := json.Unmarshal([]byte(raw), &obj); err == nil {
return obj
}
// If object is the only type and parsing failed, fall back to string
if len(paramType) == 1 {
return raw
}
}
// String always succeeds (or if "string" is in the type set)
if typeSet["string"] {
return raw
}
// If we get here, none of the types matched and string wasn't an option
// We return string as a fallback. The reference implementation will attempt
// to parse the value as a python literal, but we purposefully don't support
// that
return raw
}
var qwenTagRegex = regexp.MustCompile(`<(\w+)=([^>]+)>`)
// transformToXML transforms a raw qwen tool call with xml-like tags into valid
// xml so that it can be parsed by any xml parser
func transformToXML(raw string) string {
// take the form `<tag=abc>` and transform it to `<tag name="abc">`, taking
// care to properly escape the string that becomes the attribute value
return qwenTagRegex.ReplaceAllStringFunc(raw, func(match string) string {
groups := qwenTagRegex.FindStringSubmatch(match)
tag := groups[1]
var escapedValue strings.Builder
xml.EscapeText(&escapedValue, []byte(groups[2]))
return fmt.Sprintf(`<%s name="%s">`, tag, escapedValue.String())
})
}

View File

@ -0,0 +1,830 @@
package parsers
import (
"reflect"
"testing"
"github.com/ollama/ollama/api"
)
// tool creates a test tool with the given name and properties
func tool(name string, props map[string]api.ToolProperty) api.Tool {
t := api.Tool{Type: "function", Function: api.ToolFunction{Name: name}}
t.Function.Parameters.Type = "object"
t.Function.Parameters.Properties = props
return t
}
func TestQwenParserStreaming(t *testing.T) {
type step struct {
input string
wantEvents []qwenEvent
}
cases := []struct {
desc string
steps []step
only bool
}{
{
desc: "simple message streamed word by word",
steps: []step{
{
input: "hi",
wantEvents: []qwenEvent{qwenEventContent{content: "hi"}},
},
{
input: " there",
wantEvents: []qwenEvent{qwenEventContent{content: " there"}},
},
},
},
{
desc: "content before tool call",
steps: []step{
{
input: "hi there<tool_call>",
wantEvents: []qwenEvent{qwenEventContent{content: "hi there"}},
},
},
},
{
desc: "multiple tool calls in one message",
steps: []step{
{
input: "before1<tool_call>in tool call</tool_call>after1<tool_call>in tool call 2</tool_call>after2",
wantEvents: []qwenEvent{
qwenEventContent{content: "before1"},
qwenEventRawToolCall{raw: "in tool call"},
qwenEventContent{content: "after1"},
qwenEventRawToolCall{raw: "in tool call 2"},
qwenEventContent{content: "after2"},
},
},
},
},
{
desc: "tool calls with split tags",
steps: []step{
{
input: "before<tool",
wantEvents: []qwenEvent{
qwenEventContent{content: "before"},
},
},
{
input: "_call>in tool call</tool",
wantEvents: []qwenEvent{},
},
{
input: "_call>af",
wantEvents: []qwenEvent{
qwenEventRawToolCall{raw: "in tool call"},
qwenEventContent{content: "af"},
},
},
{
input: "ter",
wantEvents: []qwenEvent{
qwenEventContent{content: "ter"},
},
},
},
},
{
desc: "trailing whitespace between content and tool call",
steps: []step{
{
input: "abc\n<tool_call>def</tool_call>",
wantEvents: []qwenEvent{
qwenEventContent{content: "abc"},
qwenEventRawToolCall{raw: "def"},
},
},
},
},
{
desc: "trailing whitespace between tool call and content",
steps: []step{
{
input: "<tool_call>abc</tool_call>\ndef",
wantEvents: []qwenEvent{
qwenEventRawToolCall{raw: "abc"},
qwenEventContent{content: "def"},
},
},
},
},
{
desc: "empty content before tool call",
steps: []step{
{
input: "\n<tool_call>abc</tool_call>",
wantEvents: []qwenEvent{
qwenEventRawToolCall{raw: "abc"},
},
},
},
},
{
desc: "partial tool open tag fakeout",
steps: []step{
{
input: "abc\n<tool_call",
wantEvents: []qwenEvent{
// \n should not be emitted yet because `<tool_call` might be a tool
// open tag, in which case the whitespace should be trimmed
qwenEventContent{content: "abc"},
},
},
{
input: " fakeout",
wantEvents: []qwenEvent{
qwenEventContent{content: "\n<tool_call fakeout"},
},
},
},
},
{
desc: "token-by-token whitespace handling",
steps: []step{
{
input: "a",
wantEvents: []qwenEvent{
qwenEventContent{content: "a"},
},
},
{
input: "\n",
wantEvents: []qwenEvent{},
},
{
input: "b",
wantEvents: []qwenEvent{
qwenEventContent{content: "\nb"},
},
},
},
},
}
anyOnlies := false
for _, tc := range cases {
if tc.only {
anyOnlies = true
}
}
for _, tc := range cases {
if anyOnlies && !tc.only {
continue
}
t.Run(tc.desc, func(t *testing.T) {
parser := Qwen3CoderParser{}
for i, step := range tc.steps {
parser.acc.WriteString(step.input)
gotEvents := parser.parseEvents()
if len(gotEvents) == 0 && len(step.wantEvents) == 0 {
// avoid deep equal on empty vs. nil slices
continue
}
if !reflect.DeepEqual(gotEvents, step.wantEvents) {
t.Errorf("step %d: input %q: got events %#v, want %#v", i, step.input, gotEvents, step.wantEvents)
}
}
})
}
}
func TestQwenToolParser(t *testing.T) {
type step struct {
name string
rawToolCall string
tools []api.Tool
wantToolCall api.ToolCall
}
steps := []step{
{
name: "simple tool call",
tools: []api.Tool{},
rawToolCall: `<function=get_current_temperature>
<parameter=location>
San Francisco
</parameter>
<parameter=unit>
celsius
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get_current_temperature",
Arguments: map[string]any{
"location": "San Francisco",
"unit": "celsius",
},
},
},
},
{
name: "names with spaces",
tools: []api.Tool{},
rawToolCall: `<function=get current temperature>
<parameter=location with spaces>
San Francisco
</parameter>
<parameter=unit with spaces>
celsius
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "get current temperature",
Arguments: map[string]any{
"location with spaces": "San Francisco",
"unit with spaces": "celsius",
},
},
},
},
// this mirrors the reference implementation's behavior, but unclear if it
// ever happens. If so, then we should probably remove them instead, this
// test is to just document the current behavior and test that we don't get
// xml errors
{
name: "names with quotes",
tools: []api.Tool{},
rawToolCall: `<function="get current temperature">
<parameter="location with spaces">
San Francisco
</parameter>
<parameter="unit with spaces">
"celsius"
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "\"get current temperature\"",
Arguments: map[string]any{
"\"location with spaces\"": "San Francisco",
"\"unit with spaces\"": "\"celsius\"",
},
},
},
},
{
name: "tool call with typed parameters",
tools: []api.Tool{
tool("calculate", map[string]api.ToolProperty{
"x": {Type: api.PropertyType{"number"}},
"y": {Type: api.PropertyType{"integer"}},
"enabled": {Type: api.PropertyType{"boolean"}},
"items": {Type: api.PropertyType{"array"}},
}),
},
rawToolCall: `<function=calculate>
<parameter=x>
3.14
</parameter>
<parameter=y>
42
</parameter>
<parameter=enabled>
true
</parameter>
<parameter=items>
["a", "b", "c"]
</parameter>
</function>`,
wantToolCall: api.ToolCall{
Function: api.ToolCallFunction{
Name: "calculate",
Arguments: map[string]any{
"x": 3.14,
"y": 42,
"enabled": true,
"items": []any{"a", "b", "c"},
},
},
},
},
}
for i, step := range steps {
gotToolCall, err := parseToolCall(qwenEventRawToolCall{raw: step.rawToolCall}, step.tools)
if err != nil {
t.Errorf("step %d (%s): %v", i, step.name, err)
}
if !reflect.DeepEqual(gotToolCall, step.wantToolCall) {
t.Errorf("step %d (%s): got tool call %#v, want %#v", i, step.name, gotToolCall, step.wantToolCall)
}
}
}
func TestQwenToolCallValueParsing(t *testing.T) {
cases := []struct {
desc string
raw string
paramType api.PropertyType
want any
}{
{
desc: "default string value (no type specified)",
paramType: api.PropertyType{},
raw: "some-string",
want: "some-string",
},
{
desc: "trim a single leading and trailing newline",
paramType: api.PropertyType{},
raw: "\nsome-string\n",
want: "some-string",
},
{
desc: "trim at most one leading and trailing newline",
paramType: api.PropertyType{},
raw: "\n\nsome-string\n\n",
want: "\nsome-string\n",
},
{
desc: "newline really has to be the first character to be trimmed",
paramType: api.PropertyType{},
raw: " \nsome-string\n ",
want: " \nsome-string\n ",
},
{
desc: "numeric type",
paramType: api.PropertyType{"number"},
raw: "123",
want: 123,
},
// Integer parsing tests
{
desc: "integer type",
paramType: api.PropertyType{"integer"},
raw: "42",
want: 42,
},
{
desc: "negative integer",
paramType: api.PropertyType{"integer"},
raw: "-100",
want: -100,
},
{
desc: "zero integer",
paramType: api.PropertyType{"integer"},
raw: "0",
want: 0,
},
{
desc: "integer with leading zeros",
paramType: api.PropertyType{"integer"},
raw: "007",
want: 7,
},
{
desc: "large integer",
paramType: api.PropertyType{"integer"},
raw: "2147483648", // Just beyond int32 max
want: int64(2147483648),
},
// Float/number parsing tests
{
desc: "float type",
paramType: api.PropertyType{"number"},
raw: "3.14",
want: 3.14,
},
{
desc: "negative float",
paramType: api.PropertyType{"number"},
raw: "-273.15",
want: -273.15,
},
{
desc: "float without decimal part",
paramType: api.PropertyType{"number"},
raw: "100.0",
want: 100,
},
{
desc: "scientific notation positive",
paramType: api.PropertyType{"number"},
raw: "1.23e5",
want: 123000, // Will be int since it has no decimal part
},
{
desc: "scientific notation negative",
paramType: api.PropertyType{"number"},
raw: "1.5e-3",
want: 0.0015,
},
{
desc: "very small float",
paramType: api.PropertyType{"number"},
raw: "0.00000001",
want: 0.00000001,
},
// String parsing tests
{
desc: "explicit string type",
paramType: api.PropertyType{"string"},
raw: "hello world",
want: "hello world",
},
{
desc: "string with special characters",
paramType: api.PropertyType{"string"},
raw: "/usr/local/bin/test-file_v2.0.sh",
want: "/usr/local/bin/test-file_v2.0.sh",
},
{
desc: "string with quotes",
paramType: api.PropertyType{"string"},
raw: `He said "hello" to me`,
want: `He said "hello" to me`,
},
{
desc: "multiline string",
paramType: api.PropertyType{"string"},
raw: "line one\nline two\nline three",
want: "line one\nline two\nline three",
},
{
desc: "empty string",
paramType: api.PropertyType{"string"},
raw: "",
want: "",
},
{
desc: "string that looks like a number",
paramType: api.PropertyType{"string"},
raw: "12345",
want: "12345",
},
// Boolean parsing tests
{
desc: "boolean true",
paramType: api.PropertyType{"boolean"},
raw: "true",
want: true,
},
{
desc: "boolean false",
paramType: api.PropertyType{"boolean"},
raw: "false",
want: false,
},
{
desc: "boolean case insensitive true",
paramType: api.PropertyType{"boolean"},
raw: "True",
want: true,
},
{
desc: "boolean case insensitive false",
paramType: api.PropertyType{"boolean"},
raw: "FALSE",
want: false,
},
// Null parsing tests
{
desc: "null value lowercase",
paramType: api.PropertyType{"string"},
raw: "null",
want: nil,
},
{
desc: "null value case insensitive",
paramType: api.PropertyType{"integer"},
raw: "NULL",
want: nil,
},
// Array parsing tests
{
desc: "array of strings",
paramType: api.PropertyType{"array"},
raw: `["foo", "bar", "baz"]`,
want: []any{"foo", "bar", "baz"},
},
{
desc: "array of numbers",
paramType: api.PropertyType{"array"},
raw: `[1, 2.5, 3]`,
want: []any{float64(1), 2.5, float64(3)},
},
{
desc: "array of mixed types",
paramType: api.PropertyType{"array"},
raw: `["string", 123, true, null]`,
want: []any{"string", float64(123), true, nil},
},
{
desc: "empty array",
paramType: api.PropertyType{"array"},
raw: `[]`,
want: []any{},
},
// Object parsing tests
{
desc: "simple object",
paramType: api.PropertyType{"object"},
raw: `{"key": "value", "number": 42}`,
want: map[string]any{"key": "value", "number": float64(42)},
},
{
desc: "nested object",
paramType: api.PropertyType{"object"},
raw: `{"outer": {"inner": "value"}}`,
want: map[string]any{"outer": map[string]any{"inner": "value"}},
},
{
desc: "empty object",
paramType: api.PropertyType{"object"},
raw: `{}`,
want: map[string]any{},
},
// Error cases and fallback behavior
{
desc: "invalid integer falls back to string",
paramType: api.PropertyType{"integer"},
raw: "not-a-number",
want: "not-a-number",
},
{
desc: "invalid float falls back to string",
paramType: api.PropertyType{"number"},
raw: "3.14.159",
want: "3.14.159",
},
{
desc: "invalid boolean falls back to false",
paramType: api.PropertyType{"boolean"},
raw: "yes",
want: false,
},
{
desc: "invalid JSON array falls back to string",
paramType: api.PropertyType{"array"},
raw: "[1, 2, unclosed",
want: "[1, 2, unclosed",
},
{
desc: "invalid JSON object falls back to string",
paramType: api.PropertyType{"object"},
raw: `{"key": unclosed`,
want: `{"key": unclosed`,
},
// Edge cases
{
desc: "integer overflow should use int64",
paramType: api.PropertyType{"integer"},
raw: "2147483648", // Beyond int32 max
want: int64(2147483648),
},
{
desc: "float with many decimal places",
paramType: api.PropertyType{"number"},
raw: "3.141592653589793",
want: 3.141592653589793,
},
{
desc: "string with JSON-like content",
paramType: api.PropertyType{"string"},
raw: `{"this": "is", "just": "a string"}`,
want: `{"this": "is", "just": "a string"}`,
},
{
desc: "whitespace-only string",
paramType: api.PropertyType{"string"},
raw: " ",
want: " ",
},
// Unknown parameter (no type specified in tools)
{
desc: "parameter not in tool definition defaults to string",
paramType: api.PropertyType{},
raw: "some value",
want: "some value",
},
// Union type tests
{
desc: "string or number union - valid number",
paramType: api.PropertyType{"string", "number"},
raw: "42.5",
want: 42.5,
},
{
desc: "string or number union - non-numeric string",
paramType: api.PropertyType{"string", "number"},
raw: "hello",
want: "hello",
},
{
desc: "number or string union - valid number (order shouldn't matter)",
paramType: api.PropertyType{"number", "string"},
raw: "42.5",
want: 42.5,
},
{
desc: "integer or null union - valid integer",
paramType: api.PropertyType{"integer", "null"},
raw: "123",
want: 123,
},
{
desc: "integer or null union - null value",
paramType: api.PropertyType{"integer", "null"},
raw: "null",
want: nil,
},
{
desc: "null or integer union - null value (order shouldn't matter)",
paramType: api.PropertyType{"null", "integer"},
raw: "null",
want: nil,
},
{
desc: "boolean or string union - valid boolean",
paramType: api.PropertyType{"boolean", "string"},
raw: "true",
want: true,
},
{
desc: "boolean or string union - non-boolean becomes string",
paramType: api.PropertyType{"boolean", "string"},
raw: "yes",
want: "yes",
},
{
desc: "string or boolean union - valid boolean (precedence test)",
paramType: api.PropertyType{"string", "boolean"},
raw: "false",
want: false, // Should be boolean, not string "false"
},
{
desc: "integer or number union - integer value",
paramType: api.PropertyType{"integer", "number"},
raw: "42",
want: 42,
},
{
desc: "integer or number union - float value",
paramType: api.PropertyType{"integer", "number"},
raw: "42.5",
want: 42.5,
},
{
desc: "number or integer union - integer value (precedence test)",
paramType: api.PropertyType{"number", "integer"},
raw: "42",
want: 42, // Should try integer first due to precedence
},
{
desc: "array or object union - valid array",
paramType: api.PropertyType{"array", "object"},
raw: `[1, 2, 3]`,
want: []any{float64(1), float64(2), float64(3)},
},
{
desc: "array or object union - valid object",
paramType: api.PropertyType{"array", "object"},
raw: `{"key": "value"}`,
want: map[string]any{"key": "value"},
},
{
desc: "object or array union - valid array (precedence test)",
paramType: api.PropertyType{"object", "array"},
raw: `[1, 2, 3]`,
want: []any{float64(1), float64(2), float64(3)},
},
{
desc: "complex multi-type union - null",
paramType: api.PropertyType{"string", "number", "boolean", "null"},
raw: "null",
want: nil,
},
{
desc: "complex multi-type union - boolean",
paramType: api.PropertyType{"string", "number", "boolean", "null"},
raw: "true",
want: true,
},
{
desc: "complex multi-type union - number",
paramType: api.PropertyType{"string", "number", "boolean", "null"},
raw: "3.14",
want: 3.14,
},
{
desc: "complex multi-type union - string",
paramType: api.PropertyType{"string", "number", "boolean", "null"},
raw: "hello",
want: "hello",
},
{
desc: "integer string union - integer string becomes integer",
paramType: api.PropertyType{"integer", "string"},
raw: "123",
want: 123,
},
{
desc: "string integer union - integer string becomes integer (precedence)",
paramType: api.PropertyType{"string", "integer"},
raw: "123",
want: 123, // Integer has higher precedence than string
},
}
for _, tc := range cases {
t.Run(tc.desc, func(t *testing.T) {
got := parseValue(tc.raw, tc.paramType)
if !reflect.DeepEqual(got, tc.want) {
t.Errorf("got %v (type %T), want %v (type %T)", got, got, tc.want, tc.want)
}
})
}
}
func TestQwenXMLTransform(t *testing.T) {
cases := []struct {
desc string
raw string
want string
}{
{
desc: "simple example",
raw: `<function=get_current_temperature>
<parameter=location>
San Francisco
</parameter>
<parameter=unit>
celsius
</parameter>
</function>`,
want: `<function name="get_current_temperature">
<parameter name="location">
San Francisco
</parameter>
<parameter name="unit">
celsius
</parameter>
</function>`,
},
// even though quotes aren't expected in these tags, we have these tests to
// make sure they're escaped so they don't blow up the xml parser in case
// they happen
{
desc: "names with quotes",
raw: `<function="get current temperature">
<parameter="location with spaces">
San Francisco
</parameter>
<parameter="unit with spaces">
celsius
</parameter>
</function>`,
want: `<function name="&#34;get current temperature&#34;">
<parameter name="&#34;location with spaces&#34;">
San Francisco
</parameter>
<parameter name="&#34;unit with spaces&#34;">
celsius
</parameter>
</function>`,
},
}
for _, tc := range cases {
got := transformToXML(tc.raw)
if got != tc.want {
t.Errorf("got %q, want %q", got, tc.want)
}
}
}
func TestTrailingWhitespaceLen(t *testing.T) {
cases := []struct {
desc string
s string
want int
}{
{desc: "no whitespace", s: "abc", want: 0},
{desc: "trailing whitespace", s: "abc ", want: 1},
{desc: "trailing whitespace with newlines", s: "abc \n", want: 2},
{desc: "only whitespace", s: " \n ", want: 4},
{desc: "leading whitespace doesn't count", s: " \n abc", want: 0},
}
for _, tc := range cases {
got := trailingWhitespaceLen(tc.s)
if got != tc.want {
t.Errorf("got %d, want %d", got, tc.want)
}
}
}

View File

@ -0,0 +1,217 @@
package renderers
import (
"encoding/json"
"fmt"
"reflect"
"strings"
"github.com/ollama/ollama/api"
)
var (
imStartTag = "<|im_start|>"
imEndTag = "<|im_end|>"
)
// renderAdditionalKeys renders all JSON fields except the ones in handledKeys
// This follows the same approach from the reference implementation, which gives
// a particular key ordering
func renderAdditionalKeys(obj any, handledKeys map[string]bool) string {
data, err := json.Marshal(obj)
if err != nil {
return ""
}
var m map[string]any
if err := json.Unmarshal(data, &m); err != nil {
return ""
}
var sb strings.Builder
for key, value := range m {
if handledKeys[key] {
continue
}
// Check if value is a map or array (needs JSON serialization)
switch v := value.(type) {
case map[string]any, []any:
jsonBytes, _ := json.Marshal(v)
// TODO(drifkin): it would be nice to format the JSON here similarly to
// python's default json.dumps behavior (spaces after commas and colons).
// This would let us be byte-for-byte compatible with the reference
// implementation for most common inputs
jsonStr := string(jsonBytes)
sb.WriteString("\n<" + key + ">" + jsonStr + "</" + key + ">")
case nil:
continue
default:
// Simple types, convert to string
sb.WriteString("\n<" + key + ">" + fmt.Sprintf("%v", value) + "</" + key + ">")
}
}
return sb.String()
}
func Qwen3CoderRenderer(messages []api.Message, tools []api.Tool, _ *api.ThinkValue) (string, error) {
var sb strings.Builder
// filter out system messages and choose the first (if any) to win
var systemMessage string
var filteredMessages []api.Message
for _, message := range messages {
if message.Role != "system" {
filteredMessages = append(filteredMessages, message)
continue
}
if systemMessage == "" {
systemMessage = message.Content
}
}
if systemMessage != "" || len(tools) > 0 {
sb.WriteString(imStartTag + "system\n")
// if we have tools but no system message, match the reference implementation by providing a default system message
if systemMessage == "" {
systemMessage = "You are Qwen, a helpful AI assistant that can interact with a computer to solve tasks."
}
sb.WriteString(systemMessage)
if len(tools) > 0 {
sb.WriteString("\n\n# Tools\n\nYou have access to the following functions:\n\n")
sb.WriteString("<tools>")
for _, tool := range tools {
sb.WriteString("\n")
sb.WriteString("<function>\n")
sb.WriteString("<name>" + tool.Function.Name + "</name>")
if tool.Function.Description != "" {
sb.WriteString("\n<description>" + tool.Function.Description + "</description>")
}
sb.WriteString("\n<parameters>")
for name, prop := range tool.Function.Parameters.Properties {
sb.WriteString("\n<parameter>")
sb.WriteString("\n<name>" + name + "</name>")
if len(prop.Type) > 0 {
// TODO(!!!)(drifkin): we should match the reference implementation for
// more complex types here instead of using this format
sb.WriteString("\n<type>" + prop.ToTypeScriptType() + "</type>")
}
if prop.Description != "" {
sb.WriteString("\n<description>" + prop.Description + "</description>")
}
// Render any additional keys not already handled
handledKeys := map[string]bool{
"type": true,
"description": true,
}
sb.WriteString(renderAdditionalKeys(prop, handledKeys))
sb.WriteString("\n</parameter>")
}
// Render extra keys for parameters (everything except 'type' and 'properties')
paramHandledKeys := map[string]bool{
"type": true,
"properties": true,
}
sb.WriteString(renderAdditionalKeys(tool.Function.Parameters, paramHandledKeys))
sb.WriteString("\n</parameters>")
sb.WriteString("\n</function>")
}
sb.WriteString("\n</tools>")
sb.WriteString("\n\nIf you choose to call a function ONLY reply in the following format with NO suffix:\n\n<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n- Required parameters MUST be specified\n- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n</IMPORTANT>")
}
sb.WriteString(imEndTag + "\n")
}
for i, message := range filteredMessages {
lastMessage := i == len(filteredMessages)-1
prefill := lastMessage && message.Role == "assistant"
switch message.Role {
case "assistant":
if len(message.ToolCalls) > 0 {
sb.WriteString(imStartTag + "assistant\n")
if message.Content != "" {
sb.WriteString(message.Content + "\n")
}
for _, toolCall := range message.ToolCalls {
sb.WriteString("\n<tool_call>\n<function=" + toolCall.Function.Name + ">")
for name, value := range toolCall.Function.Arguments {
valueStr := formatToolCallArgument(value)
sb.WriteString("\n<parameter=" + name + ">\n" + valueStr + "\n</parameter>")
}
sb.WriteString("\n</function>\n</tool_call>")
}
sb.WriteString("<|im_end|>\n")
} else {
sb.WriteString(imStartTag + "assistant\n")
sb.WriteString(message.Content)
if !prefill {
sb.WriteString(imEndTag + "\n")
}
}
case "tool":
// consecutive tool responses should share a single `<im_start>user`, but
// have their own <tool_response> tags
// only start a new user block if this is the first tool response
if i == 0 || filteredMessages[i-1].Role != "tool" {
sb.WriteString(imStartTag + "user\n")
}
sb.WriteString("<tool_response>\n")
sb.WriteString(message.Content)
sb.WriteString("\n</tool_response>\n")
// close the user block only if this is the last tool response
if i == len(filteredMessages)-1 || filteredMessages[i+1].Role != "tool" {
sb.WriteString(imEndTag + "\n")
}
default:
sb.WriteString(imStartTag + message.Role + "\n")
sb.WriteString(message.Content)
sb.WriteString(imEndTag + "\n")
}
if lastMessage && !prefill {
sb.WriteString(imStartTag + "assistant\n")
}
}
return sb.String(), nil
}
func formatToolCallArgument(value any) string {
if value == nil {
return "null"
}
switch v := value.(type) {
case string:
return v
case []byte:
return string(v)
}
if reflect.TypeOf(value) != nil {
kind := reflect.TypeOf(value).Kind()
if kind == reflect.Map || kind == reflect.Slice || kind == reflect.Array {
if marshalled, err := json.Marshal(value); err == nil {
return string(marshalled)
}
}
}
return fmt.Sprintf("%v", value)
}

View File

@ -0,0 +1,338 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestQwen3CoderRenderer(t *testing.T) {
tests := []struct {
name string
msgs []api.Message
tools []api.Tool
expected string
}{
{
name: "basic",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello, how are you?"},
},
expected: `<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Hello, how are you?<|im_end|>
<|im_start|>assistant
`,
},
{
name: "with tools and response",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant with access to tools."},
{Role: "user", Content: "What is the weather like in San Francisco?"},
{
Role: "assistant",
Content: "I'll check the weather in San Francisco for you.",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{
"unit": "fahrenheit",
},
},
},
},
},
{Role: "tool", Content: "{\"location\": \"San Francisco, CA\", \"temperature\": 68, \"condition\": \"partly cloudy\", \"humidity\": 65, \"wind_speed\": 12}", ToolName: "get_weather"},
{Role: "user", Content: "That sounds nice! What about New York?"},
},
tools: []api.Tool{
{Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Required: []string{"unit"},
Properties: map[string]api.ToolProperty{
"unit": {Type: api.PropertyType{"string"}, Enum: []any{"celsius", "fahrenheit"}, Description: "The unit of temperature"},
// TODO(drifkin): add multiple params back once we have predictable
// order via some sort of ordered map type (see
// <https://github.com/ollama/ollama/issues/12244>)
/*
"location": {Type: api.PropertyType{"string"}, Description: "The city and state, e.g. San Francisco, CA"},
*/
},
},
}},
},
expected: `<|im_start|>system
You are a helpful assistant with access to tools.
# Tools
You have access to the following functions:
<tools>
<function>
<name>get_weather</name>
<description>Get the current weather in a given location</description>
<parameters>
<parameter>
<name>unit</name>
<type>string</type>
<description>The unit of temperature</description>
<enum>["celsius","fahrenheit"]</enum>
</parameter>
<required>["unit"]</required>
</parameters>
</function>
</tools>
If you choose to call a function ONLY reply in the following format with NO suffix:
<tool_call>
<function=example_function_name>
<parameter=example_parameter_1>
value_1
</parameter>
<parameter=example_parameter_2>
This is the value for the second parameter
that can span
multiple lines
</parameter>
</function>
</tool_call>
<IMPORTANT>
Reminder:
- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags
- Required parameters MUST be specified
- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after
- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls
</IMPORTANT><|im_end|>
<|im_start|>user
What is the weather like in San Francisco?<|im_end|>
<|im_start|>assistant
I'll check the weather in San Francisco for you.
<tool_call>
<function=get_weather>
<parameter=unit>
fahrenheit
</parameter>
</function>
</tool_call><|im_end|>
<|im_start|>user
<tool_response>
{"location": "San Francisco, CA", "temperature": 68, "condition": "partly cloudy", "humidity": 65, "wind_speed": 12}
</tool_response>
<|im_end|>
<|im_start|>user
That sounds nice! What about New York?<|im_end|>
<|im_start|>assistant
`,
},
{
name: "parallel tool calls",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant with access to tools."},
{Role: "user", Content: "call double(1) and triple(2)"},
{Role: "assistant", Content: "I'll call double(1) and triple(2) for you.", ToolCalls: []api.ToolCall{
{Function: api.ToolCallFunction{Name: "double", Arguments: map[string]any{"number": "1"}}},
{Function: api.ToolCallFunction{Name: "triple", Arguments: map[string]any{"number": "2"}}},
}},
{Role: "tool", Content: "{\"number\": 2}", ToolName: "double"},
{Role: "tool", Content: "{\"number\": 6}", ToolName: "triple"},
},
tools: []api.Tool{
{Function: api.ToolFunction{Name: "double", Description: "Double a number", Parameters: api.ToolFunctionParameters{Properties: map[string]api.ToolProperty{
"number": {Type: api.PropertyType{"string"}, Description: "The number to double"},
}}}},
{Function: api.ToolFunction{Name: "triple", Description: "Triple a number", Parameters: api.ToolFunctionParameters{Properties: map[string]api.ToolProperty{
"number": {Type: api.PropertyType{"string"}, Description: "The number to triple"},
}}}},
},
expected: `<|im_start|>system
You are a helpful assistant with access to tools.
# Tools
You have access to the following functions:
<tools>
<function>
<name>double</name>
<description>Double a number</description>
<parameters>
<parameter>
<name>number</name>
<type>string</type>
<description>The number to double</description>
</parameter>
</parameters>
</function>
<function>
<name>triple</name>
<description>Triple a number</description>
<parameters>
<parameter>
<name>number</name>
<type>string</type>
<description>The number to triple</description>
</parameter>
</parameters>
</function>
</tools>
If you choose to call a function ONLY reply in the following format with NO suffix:
<tool_call>
<function=example_function_name>
<parameter=example_parameter_1>
value_1
</parameter>
<parameter=example_parameter_2>
This is the value for the second parameter
that can span
multiple lines
</parameter>
</function>
</tool_call>
<IMPORTANT>
Reminder:
- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags
- Required parameters MUST be specified
- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after
- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls
</IMPORTANT><|im_end|>
<|im_start|>user
call double(1) and triple(2)<|im_end|>
<|im_start|>assistant
I'll call double(1) and triple(2) for you.
<tool_call>
<function=double>
<parameter=number>
1
</parameter>
</function>
</tool_call>
<tool_call>
<function=triple>
<parameter=number>
2
</parameter>
</function>
</tool_call><|im_end|>
<|im_start|>user
<tool_response>
{"number": 2}
</tool_response>
<tool_response>
{"number": 6}
</tool_response>
<|im_end|>
<|im_start|>assistant
`,
},
{
name: "prefill",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Tell me something interesting."},
{Role: "assistant", Content: "I'll tell you something interesting about cats"},
},
expected: `<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Tell me something interesting.<|im_end|>
<|im_start|>assistant
I'll tell you something interesting about cats`,
},
{
name: "complex tool call arguments should remain json encoded",
msgs: []api.Message{
{Role: "user", Content: "call tool"},
{Role: "assistant", ToolCalls: []api.ToolCall{
{Function: api.ToolCallFunction{
Name: "echo",
Arguments: map[string]any{
"payload": map[string]any{"foo": "bar"},
},
}},
}},
{Role: "tool", Content: "{\"payload\": {\"foo\": \"bar\"}}", ToolName: "echo"},
},
expected: `<|im_start|>user
call tool<|im_end|>
<|im_start|>assistant
<tool_call>
<function=echo>
<parameter=payload>
{"foo":"bar"}
</parameter>
</function>
</tool_call><|im_end|>
<|im_start|>user
<tool_response>
{"payload": {"foo": "bar"}}
</tool_response>
<|im_end|>
<|im_start|>assistant
`,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rendered, err := Qwen3CoderRenderer(tt.msgs, tt.tools, nil)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(rendered, tt.expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}
}
func TestFormatToolCallArgument(t *testing.T) {
tests := []struct {
name string
arg any
expected string
}{
{
name: "string",
arg: "foo",
// notice no quotes around the string
expected: "foo",
},
{
name: "map",
arg: map[string]any{"foo": "bar"},
expected: "{\"foo\":\"bar\"}",
},
{
name: "number",
arg: 1,
expected: "1",
},
{
name: "boolean",
arg: true,
expected: "true",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
got := formatToolCallArgument(tt.arg)
if got != tt.expected {
t.Errorf("formatToolCallArgument(%v) = %v, want %v", tt.arg, got, tt.expected)
}
})
}
}

View File

@ -0,0 +1,26 @@
package renderers
import (
"fmt"
"github.com/ollama/ollama/api"
)
type rendererFunc func([]api.Message, []api.Tool, *api.ThinkValue) (string, error)
func RenderWithRenderer(name string, msgs []api.Message, tools []api.Tool, think *api.ThinkValue) (string, error) {
renderer := rendererForName(name)
if renderer == nil {
return "", fmt.Errorf("unknown renderer %q", name)
}
return renderer(msgs, tools, think)
}
func rendererForName(name string) rendererFunc {
switch name {
case "qwen3-coder":
return Qwen3CoderRenderer
default:
return nil
}
}

View File

@ -12,18 +12,18 @@ import (
const spmWhitespaceSep = "▁"
type SentencePieceModel struct {
type SentencePiece struct {
maxTokenLen int
vocab *Vocabulary
}
var _ TextProcessor = (*SentencePieceModel)(nil)
var _ TextProcessor = (*SentencePiece)(nil)
func (spm SentencePieceModel) Vocabulary() *Vocabulary {
func (spm SentencePiece) Vocabulary() *Vocabulary {
return spm.vocab
}
func NewSentencePieceModel(vocab *Vocabulary) SentencePieceModel {
func NewSentencePiece(vocab *Vocabulary) SentencePiece {
logutil.Trace("Tokens", "num tokens", len(vocab.Values), "vals", vocab.Values[:5], "scores", vocab.Scores[:5], "types", vocab.Types[:5])
counter := map[int]int{}
@ -42,17 +42,17 @@ func NewSentencePieceModel(vocab *Vocabulary) SentencePieceModel {
"user defined", counter[TOKEN_TYPE_USER_DEFINED], "unused", counter[TOKEN_TYPE_UNUSED], "byte", counter[TOKEN_TYPE_BYTE],
"max token len", maxTokenLen)
return SentencePieceModel{
return SentencePiece{
maxTokenLen: maxTokenLen,
vocab: vocab,
}
}
func (spm SentencePieceModel) Is(id int32, special Special) bool {
func (spm SentencePiece) Is(id int32, special Special) bool {
return spm.vocab.Is(id, special)
}
func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error) {
func (spm SentencePiece) Encode(s string, addSpecial bool) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range spm.vocab.SpecialVocabulary() {
id := spm.vocab.Encode(special)
@ -218,7 +218,7 @@ func (q *queue) Pop() interface{} {
return item
}
func (spm SentencePieceModel) Decode(ids []int32) (string, error) {
func (spm SentencePiece) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
data := spm.vocab.Decode(id)

View File

@ -12,7 +12,7 @@ import (
"github.com/ollama/ollama/convert/sentencepiece"
)
func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
func loadSentencePieceVocab(t *testing.T) SentencePiece {
t.Helper()
bts, err := os.ReadFile(filepath.Join("testdata", "gemma2", "tokenizer.model"))
@ -45,7 +45,7 @@ func loadSentencePieceVocab(t *testing.T) SentencePieceModel {
}
}
return NewSentencePieceModel(&v)
return NewSentencePiece(&v)
}
func TestSentencePieceEncode(t *testing.T) {
@ -115,7 +115,7 @@ func TestSentencePieceEncode(t *testing.T) {
})
}
func TestSentencePieceModelDecodeByteTokens(t *testing.T) {
func TestSentencePieceDecodeByteTokens(t *testing.T) {
vocab := &Vocabulary{
Values: []string{
"normal",
@ -134,7 +134,7 @@ func TestSentencePieceModelDecodeByteTokens(t *testing.T) {
Scores: []float32{0, 0, 0, 0, 0},
}
spm := NewSentencePieceModel(vocab)
spm := NewSentencePiece(vocab)
tests := []struct {
name string

167
model/wordpiece.go Normal file
View File

@ -0,0 +1,167 @@
package model
import (
"fmt"
"iter"
"strings"
"unicode"
"github.com/ollama/ollama/logutil"
)
type WordPiece struct {
vocab *Vocabulary
}
// ggmlPrefix is the prefix used by GGML vocabularies to indicate word boundaries.
// this differs from original word piece which uses "##" to indicate subwords.
const ggmlPrefix = "▁"
var wordPieceReplacer = strings.NewReplacer(
" .", ".",
" ?", "?",
" !", "!",
" ,", ",",
" ' ", "'",
" n't", "n't",
" 'm", "'m",
" do not", " don't",
" 's", "'s",
" 've", "'ve",
" 're", "'re",
)
// Decode implements TextProcessor.
func (wpm WordPiece) Decode(ids []int32) (string, error) {
var sb strings.Builder
for i, id := range ids {
if id < 0 || int(id) >= len(wpm.vocab.Values) {
return "", fmt.Errorf("invalid token id: %d", id)
}
var separator string
piece := wpm.vocab.Values[id]
if i > 0 &&
(strings.HasPrefix(piece, ggmlPrefix) ||
(strings.HasPrefix(piece, "[") && strings.HasSuffix(piece, "]"))) {
separator = " "
}
sb.WriteString(wordPieceReplacer.Replace(separator + strings.TrimPrefix(piece, ggmlPrefix)))
}
return sb.String(), nil
}
// words splits a string into words, treating CJK characters as separate words.
// TODO: this is specifically for BERT and may need to be adjusted or refactored for other models.
func (wpm WordPiece) words(s string) iter.Seq[string] {
return func(yield func(string) bool) {
runes := make([]rune, 0, len(s)*3)
for _, r := range s {
switch {
case r >= 0x4E00 && r <= 0x9FFF,
r >= 0x3400 && r <= 0x4DBF,
r >= 0x20000 && r <= 0x2A6DF,
r >= 0x2A700 && r <= 0x2B73F,
r >= 0x2B740 && r <= 0x2B81F,
r >= 0x2B820 && r <= 0x2CEAF,
r >= 0xF900 && r <= 0xFAFF,
r >= 0x2F800 && r <= 0x2FA1F:
runes = append(runes, ' ', r, ' ')
default:
runes = append(runes, r)
}
}
for w := range strings.FieldsFuncSeq(string(runes), unicode.IsSpace) {
// split on but keep punctuation
var start int
for start < len(w) {
end := strings.IndexFunc(w[start:], unicode.IsPunct)
if end < 0 {
end = len(w) - start
} else if end == 0 {
end = 1
}
if !yield(w[start : start+end]) {
return
}
start += end
}
}
}
}
// Encode implements TextProcessor.
func (wpm WordPiece) Encode(s string, addSpecial bool) ([]int32, error) {
var ids []int32
// TODO: use [UNK] from config
unk := wpm.vocab.Encode("[UNK]")
for word := range wpm.words(s) {
var start int
var pieces []int32
for start < len(word) {
end := len(word)
var piece int32
for start < end {
subword := word[start:end]
if start == 0 {
subword = ggmlPrefix + subword
}
// TODO: some models might not want [ToLower]
piece = wpm.vocab.Encode(strings.ToLower(subword))
if piece >= 0 {
break
}
end--
}
if piece < 0 {
// Unknown token
pieces = pieces[:0]
break
}
pieces = append(pieces, piece)
start = end
}
if len(pieces) > 0 {
ids = append(ids, pieces...)
} else {
ids = append(ids, unk)
}
}
if addSpecial && len(ids) > 0 {
ids = wpm.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}
// Is implements TextProcessor.
func (wpm WordPiece) Is(id int32, special Special) bool {
return wpm.vocab.Is(id, special)
}
// Vocabulary implements TextProcessor.
func (wpm WordPiece) Vocabulary() *Vocabulary {
return wpm.vocab
}
var _ TextProcessor = (*WordPiece)(nil)
func NewWordPiece(vocab *Vocabulary) WordPiece {
return WordPiece{
vocab: vocab,
}
}

51
model/wordpiece_test.go Normal file
View File

@ -0,0 +1,51 @@
package model
import (
"slices"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestWordPiece(t *testing.T) {
wpm := NewWordPiece(
&Vocabulary{
Values: []string{"[UNK]", "[CLS]", "[SEP]", "▁hello", "▁world", "s", "▁!", "▁@", "▁#"},
AddBOS: true,
AddEOS: true,
BOS: []int32{1},
EOS: []int32{2},
})
ids, err := wpm.Encode("Hello world!", true)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff([]int32{1, 3, 4, 6, 2}, ids); diff != "" {
t.Errorf("unexpected ids (-want +got):\n%s", diff)
}
words, err := wpm.Decode(ids)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff("[CLS] hello world! [SEP]", words); diff != "" {
t.Errorf("unexpected words (-want +got):\n%s", diff)
}
}
func TestWordPieceWords(t *testing.T) {
var wpm WordPiece
basic := slices.Collect(wpm.words("Hey friend! How are you?!?"))
if diff := cmp.Diff([]string{"Hey", "friend", "!", "How", "are", "you", "?", "!", "?"}, basic); diff != "" {
t.Errorf("unexpected words (-want +got):\n%s", diff)
}
chinese := slices.Collect(wpm.words("野口里佳 Noguchi Rika"))
if diff := cmp.Diff([]string{"野", "口", "里", "佳", "Noguchi", "Rika"}, chinese); diff != "" {
t.Errorf("unexpected words (-want +got):\n%s", diff)
}
}

View File

@ -105,16 +105,18 @@ type ChatCompletionRequest struct {
Tools []api.Tool `json:"tools"`
Reasoning *Reasoning `json:"reasoning,omitempty"`
ReasoningEffort *string `json:"reasoning_effort,omitempty"`
DebugRenderOnly bool `json:"_debug_render_only"`
}
type ChatCompletion struct {
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
Model string `json:"model"`
SystemFingerprint string `json:"system_fingerprint"`
Choices []Choice `json:"choices"`
Usage Usage `json:"usage,omitempty"`
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
Model string `json:"model"`
SystemFingerprint string `json:"system_fingerprint"`
Choices []Choice `json:"choices"`
Usage Usage `json:"usage,omitempty"`
DebugInfo *api.DebugInfo `json:"_debug_info,omitempty"`
}
type ChatCompletionChunk struct {
@ -141,6 +143,7 @@ type CompletionRequest struct {
Temperature *float32 `json:"temperature"`
TopP float32 `json:"top_p"`
Suffix string `json:"suffix"`
DebugRenderOnly bool `json:"_debug_render_only"`
}
type Completion struct {
@ -273,8 +276,8 @@ func toChatCompletion(id string, r api.ChatResponse) ChatCompletion {
}
return nil
}(r.DoneReason),
}},
Usage: toUsage(r),
}}, Usage: toUsage(r),
DebugInfo: r.DebugInfo,
}
}
@ -568,13 +571,14 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
}
return &api.ChatRequest{
Model: r.Model,
Messages: messages,
Format: format,
Options: options,
Stream: &r.Stream,
Tools: r.Tools,
Think: think,
Model: r.Model,
Messages: messages,
Format: format,
Options: options,
Stream: &r.Stream,
Tools: r.Tools,
Think: think,
DebugRenderOnly: r.DebugRenderOnly,
}, nil
}
@ -648,11 +652,12 @@ func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
}
return api.GenerateRequest{
Model: r.Model,
Prompt: r.Prompt,
Options: options,
Stream: &r.Stream,
Suffix: r.Suffix,
Model: r.Model,
Prompt: r.Prompt,
Options: options,
Stream: &r.Stream,
Suffix: r.Suffix,
DebugRenderOnly: r.DebugRenderOnly,
}, nil
}

View File

@ -100,6 +100,10 @@ func (f Modelfile) CreateRequest(relativeDir string) (*api.CreateRequest, error)
req.System = c.Args
case "license":
licenses = append(licenses, c.Args)
case "renderer":
req.Renderer = c.Args
case "parser":
req.Parser = c.Args
case "message":
role, msg, _ := strings.Cut(c.Args, ": ")
messages = append(messages, api.Message{Role: role, Content: msg})
@ -320,7 +324,7 @@ func (c Command) String() string {
switch c.Name {
case "model":
fmt.Fprintf(&sb, "FROM %s", c.Args)
case "license", "template", "system", "adapter":
case "license", "template", "system", "adapter", "renderer", "parser":
fmt.Fprintf(&sb, "%s %s", strings.ToUpper(c.Name), quote(c.Args))
case "message":
role, message, _ := strings.Cut(c.Args, ": ")
@ -346,7 +350,7 @@ const (
var (
errMissingFrom = errors.New("no FROM line")
errInvalidMessageRole = errors.New("message role must be one of \"system\", \"user\", or \"assistant\"")
errInvalidCommand = errors.New("command must be one of \"from\", \"license\", \"template\", \"system\", \"adapter\", \"parameter\", or \"message\"")
errInvalidCommand = errors.New("command must be one of \"from\", \"license\", \"template\", \"system\", \"adapter\", \"renderer\", \"parser\", \"parameter\", or \"message\"")
)
type ParserError struct {
@ -606,7 +610,7 @@ func isValidMessageRole(role string) bool {
func isValidCommand(cmd string) bool {
switch strings.ToLower(cmd) {
case "from", "license", "template", "system", "adapter", "parameter", "message":
case "from", "license", "template", "system", "adapter", "renderer", "parser", "parameter", "message":
return true
default:
return false

View File

@ -198,6 +198,34 @@ BADCOMMAND param1 value1
}
}
func TestParseFileRenderer(t *testing.T) {
input := `
FROM foo
RENDERER renderer1
`
reader := strings.NewReader(input)
modelfile, err := ParseFile(reader)
require.NoError(t, err)
assert.Equal(t, []Command{{Name: "model", Args: "foo"}, {Name: "renderer", Args: "renderer1"}}, modelfile.Commands)
}
func TestParseFileParser(t *testing.T) {
input := `
FROM foo
PARSER parser1
`
reader := strings.NewReader(input)
modelfile, err := ParseFile(reader)
require.NoError(t, err)
assert.Equal(t, []Command{{Name: "model", Args: "foo"}, {Name: "parser", Args: "parser1"}}, modelfile.Commands)
}
func TestParseFileMessages(t *testing.T) {
cases := []struct {
input string

View File

@ -1,126 +0,0 @@
package parser
import (
"encoding/json"
"errors"
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/harmony"
)
type TokenParserType int
const (
TokenParserTypeDefault TokenParserType = iota
TokenParserTypeHarmony
)
type TokenParser struct {
messageHandler MessageHandler
parserEngine ParserInternals
toolParser ToolParser
lastToken string
tokenRepeat int
repeatLimit int
}
const defaultTokenRepeatLimit = 30
type MessageHandler interface {
AddContent(token string) (content, thinking string, toolContent string)
}
type ParserInternals interface {
AddImplicitStartOrPrefill(prefillString string)
}
type ToolParser interface {
Add(token string)
Drain() (toolName *string, toolContent string)
}
// Default implementation for the TokenParser interface as a no-op passthrough
type defaultMessageHandler struct{}
func (defaultMessageHandler) AddContent(token string) (string, string, string) {
return token, "", ""
}
type defaultEngine struct{}
func (defaultEngine) AddImplicitStartOrPrefill(prefillString string) {}
type defaultToolParser struct{}
func (defaultToolParser) Add(token string) {}
func (defaultToolParser) Drain() (*string, string) { return nil, "" }
func NewTokenParser(parserType TokenParserType, prefillString string) TokenParser {
switch parserType {
case TokenParserTypeHarmony:
harmonyMessageHandler := harmony.NewHarmonyMessageHandler()
harmonyMessageHandler.HarmonyParser.AddImplicitStartOrPrefill(prefillString)
return TokenParser{
messageHandler: harmonyMessageHandler,
parserEngine: harmonyMessageHandler.HarmonyParser,
toolParser: harmonyMessageHandler.ToolParser,
repeatLimit: defaultTokenRepeatLimit,
}
default:
return TokenParser{
messageHandler: defaultMessageHandler{},
parserEngine: defaultEngine{},
toolParser: defaultToolParser{},
repeatLimit: 30,
}
}
}
func (p *TokenParser) AddContent(token string) (string, string, error) {
if p.repeatLimitReached(token) {
return "", "", errors.New("token repeat limit reached")
}
content, thinking, toolContent := p.messageHandler.AddContent(token)
p.toolParser.Add(toolContent)
return content, thinking, nil
}
// repeatLimitReached updates repeat counters and returns true if the repeat limit is reached.
func (p *TokenParser) repeatLimitReached(token string) bool {
if p == nil {
return false
}
trimmed := strings.TrimSpace(token)
if trimmed == p.lastToken {
p.tokenRepeat++
} else {
p.tokenRepeat = 0
}
p.lastToken = trimmed
return p.tokenRepeat >= p.repeatLimit
}
// TODO: update to work with multiple toolcalls - unmarshalling should also happen on parser level
func (p *TokenParser) Drain() []api.ToolCall {
toolName, toolContent := p.toolParser.Drain()
if toolName != nil {
*toolName = strings.TrimPrefix(*toolName, "functions.")
var args api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(toolContent), &args); err != nil {
return nil
}
return []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: *toolName,
Arguments: args,
},
},
}
}
return nil
}

View File

@ -11,7 +11,6 @@ import (
"image"
"log"
"log/slog"
"math"
"net"
"net/http"
"os"
@ -32,9 +31,9 @@ import (
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/runner/common"
"github.com/ollama/ollama/sample"
@ -406,7 +405,7 @@ func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
func (s *Server) run(ctx context.Context) {
s.ready.Wait()
supportsAsync := s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32
supportsAsync := pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone
var activeBatch batchState
for {
@ -468,6 +467,7 @@ func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, er
// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
var batchInputs []*input.Input
var batchOutputs []int32
var batch input.Batch
resumeSeq := -1
@ -550,9 +550,9 @@ func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, er
batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
batch.Sequences = append(batch.Sequences, seq.cache.Id)
seq.iBatch = len(batch.Outputs)
if i+1 == len(seq.inputs) {
batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
seq.iBatch = len(batchOutputs)
if i+1 == len(seq.inputs) || seq.embeddingOnly {
batchOutputs = append(batchOutputs, int32(len(batchInputs)-1))
}
logutil.Trace("forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
seq.pendingInputs = append(seq.pendingInputs, inp)
@ -577,6 +577,7 @@ func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, er
// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
batch.Outputs = nextBatch.ctx.Input().FromIntSlice(batchOutputs, len(batchOutputs))
nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
if err != nil {
err = fmt.Errorf("failed to build graph: %w", err)
@ -704,8 +705,8 @@ func (s *Server) computeBatch(activeBatch batchState) {
}
// sample a token
vocabSize := len(outputs) / len(activeBatch.batch.Outputs)
logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", len(activeBatch.batch.Outputs), "vocabSize", vocabSize, "iBatches", iBatches)
vocabSize := len(outputs) / activeBatch.batch.Outputs.Dim(0)
logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", activeBatch.batch.Outputs.Dim(0), "vocabSize", vocabSize, "iBatches", iBatches)
token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
if err != nil {
s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
@ -781,8 +782,6 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
}
tokenParser := parser.NewTokenParser(req.ParserType, req.PrefillString)
if req.Options == nil {
opts := api.DefaultOptions()
req.Options = &opts
@ -873,18 +872,8 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
case content, ok := <-seq.responses:
if ok {
var thinking string
var err error
content, thinking, err = tokenParser.AddContent(content)
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)
close(seq.quit)
return
}
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
Content: content,
Thinking: thinking,
Content: content,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
close(seq.quit)
@ -893,9 +882,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
flusher.Flush()
} else {
toolCalls := tokenParser.Drain()
if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
ToolCalls: toolCalls,
Done: true,
DoneReason: seq.doneReason,
PromptEvalCount: seq.numPromptInputs,
@ -913,7 +900,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
}
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
if s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32 {
if pooling.Type(s.model.Backend().Config().Uint("pooling_type")) == pooling.TypeNone {
http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
return
}
@ -1061,12 +1048,8 @@ func (s *Server) reserveWorstCaseGraph() error {
batch.Positions[i] = int32(i)
}
batch.Outputs = make([]int32, s.parallel)
for i := range batch.Outputs {
batch.Outputs[i] = int32(i)
}
batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
batch.Outputs = ctx.Input().Empty(ml.DTypeI32, s.parallel)
cache := s.model.Config().Cache
if cache != nil {

View File

@ -323,6 +323,8 @@ func createModel(r api.CreateRequest, name model.Name, baseLayers []*layerGGML,
RootFS: RootFS{
Type: "layers",
},
Renderer: r.Renderer,
Parser: r.Parser,
}
var layers []Layer

View File

@ -24,6 +24,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fs/gguf"
"github.com/ollama/ollama/model/parsers"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/thinking"
@ -94,8 +95,9 @@ func (m *Model) Capabilities() []model.Capability {
return capabilities
}
builtinParser := parsers.ParserForName(m.Config.Parser)
// Check for tools capability
if slices.Contains(m.Template.Vars(), "tools") {
if slices.Contains(m.Template.Vars(), "tools") || (builtinParser != nil && builtinParser.HasToolSupport()) {
capabilities = append(capabilities, model.CapabilityTools)
}
@ -112,7 +114,8 @@ func (m *Model) Capabilities() []model.Capability {
// Check for thinking capability
openingTag, closingTag := thinking.InferTags(m.Template.Template)
hasTags := openingTag != "" && closingTag != ""
if hasTags || slices.Contains([]string{"gptoss", "gpt-oss"}, m.Config.ModelFamily) {
isGptoss := slices.Contains([]string{"gptoss", "gpt-oss"}, m.Config.ModelFamily)
if hasTags || isGptoss || (builtinParser != nil && builtinParser.HasThinkingSupport()) {
capabilities = append(capabilities, model.CapabilityThinking)
}
@ -198,6 +201,20 @@ func (m *Model) String() string {
})
}
if m.Config.Renderer != "" {
modelfile.Commands = append(modelfile.Commands, parser.Command{
Name: "renderer",
Args: m.Config.Renderer,
})
}
if m.Config.Parser != "" {
modelfile.Commands = append(modelfile.Commands, parser.Command{
Name: "parser",
Args: m.Config.Parser,
})
}
for k, v := range m.Options {
switch v := v.(type) {
case []any:
@ -238,6 +255,8 @@ type ConfigV2 struct {
ModelFamilies []string `json:"model_families"`
ModelType string `json:"model_type"`
FileType string `json:"file_type"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
// required by spec
Architecture string `json:"architecture"`

View File

@ -11,6 +11,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/model/renderers"
"github.com/ollama/ollama/template"
)
@ -41,18 +42,12 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
}
}
thinkVal := false
thinkLevel := ""
if think != nil {
thinkVal = think.Bool()
thinkLevel = think.String()
}
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...), Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
p, err := renderPrompt(m, append(system, msgs[i:]...), tools, think)
if err != nil {
return "", nil, err
}
s, err := tokenize(ctx, b.String())
s, err := tokenize(ctx, p)
if err != nil {
return "", nil, err
}
@ -101,6 +96,23 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
}
// truncate any messages that do not fit into the context window
p, err := renderPrompt(m, append(system, msgs[currMsgIdx:]...), tools, think)
if err != nil {
return "", nil, err
}
return p, images, nil
}
func renderPrompt(m *Model, msgs []api.Message, tools []api.Tool, think *api.ThinkValue) (string, error) {
if m.Config.Renderer != "" {
rendered, err := renderers.RenderWithRenderer(m.Config.Renderer, msgs, tools, think)
if err != nil {
return "", err
}
return rendered, nil
}
var b bytes.Buffer
thinkVal := false
thinkLevel := ""
@ -108,9 +120,8 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
thinkVal = think.Bool()
thinkLevel = think.String()
}
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[currMsgIdx:]...), Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
return "", nil, err
if err := m.Template.Execute(&b, template.Values{Messages: msgs, Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
return "", err
}
return b.String(), images, nil
return b.String(), nil
}

View File

@ -35,8 +35,8 @@ import (
"github.com/ollama/ollama/harmony"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/model/parsers"
"github.com/ollama/ollama/openai"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/server/internal/client/ollama"
"github.com/ollama/ollama/server/internal/registry"
"github.com/ollama/ollama/template"
@ -47,6 +47,18 @@ import (
"github.com/ollama/ollama/version"
)
func shouldUseHarmony(model *Model) bool {
if slices.Contains([]string{"gptoss", "gpt-oss"}, model.Config.ModelFamily) {
// heuristic to check whether the template expects to be parsed via harmony:
// search for harmony tags that are nearly always used
if model.Template.Contains("<|start|>") && model.Template.Contains("<|end|>") {
return true
}
}
return false
}
func experimentEnabled(name string) bool {
return slices.Contains(strings.Split(os.Getenv("OLLAMA_EXPERIMENT"), ","), name)
}
@ -196,17 +208,13 @@ func (s *Server) GenerateHandler(c *gin.Context) {
return
}
useHarmony := harmony.ShouldUseHarmony(m.Config.ModelFamily, m.Template) && !req.Raw
var parserType parser.TokenParserType
useHarmony := shouldUseHarmony(m) && !req.Raw
var harmonyMessageHandler *harmony.HarmonyMessageHandler
var harmonyToolParser *harmony.HarmonyToolCallAccumulator
if useHarmony {
parserType = parser.TokenParserTypeHarmony
} else {
parserType = parser.TokenParserTypeDefault
}
var functionNameMap *harmony.FunctionNameMap
if useHarmony {
functionNameMap = harmony.NewFunctionNameMap()
harmonyMessageHandler = harmony.NewHarmonyMessageHandler()
harmonyMessageHandler.HarmonyParser.AddImplicitStart()
harmonyToolParser = harmonyMessageHandler.CreateToolParser()
}
// Validate Think value: string values currently only allowed for gptoss models
@ -322,10 +330,10 @@ func (s *Server) GenerateHandler(c *gin.Context) {
// If debug mode is enabled, return the rendered template instead of calling the model
if req.DebugRenderOnly {
c.JSON(http.StatusOK, api.DebugTemplateResponse{
c.JSON(http.StatusOK, api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
DebugInfo: api.DebugInfo{
DebugInfo: &api.DebugInfo{
RenderedTemplate: prompt,
ImageCount: len(images),
},
@ -350,19 +358,16 @@ func (s *Server) GenerateHandler(c *gin.Context) {
var sb strings.Builder
defer close(ch)
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
ParserType: parserType,
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
}, func(cr llm.CompletionResponse) {
res := api.GenerateResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Response: cr.Content,
Done: cr.Done,
Thinking: cr.Thinking,
ToolCalls: cr.ToolCalls,
Metrics: api.Metrics{
PromptEvalCount: cr.PromptEvalCount,
PromptEvalDuration: cr.PromptEvalDuration,
@ -371,22 +376,12 @@ func (s *Server) GenerateHandler(c *gin.Context) {
},
}
if res.Done {
res.DoneReason = cr.DoneReason.String()
res.TotalDuration = time.Since(checkpointStart)
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
if useHarmony {
for i, tool := range res.ToolCalls {
res.ToolCalls[i].Function.Name = functionNameMap.OriginalFromConverted(tool.Function.Name)
}
if res.Response != "" || res.Thinking != "" || len(res.ToolCalls) > 0 || res.Done {
ch <- res
}
return
}
if thinkingState != nil {
content, thinking, toolContent := harmonyMessageHandler.AddContent(cr.Content, harmonyToolParser)
res.Response = content
res.Thinking = thinking
harmonyToolParser.Add(toolContent)
} else if thinkingState != nil {
thinking, content := thinkingState.AddContent(cr.Content)
res.Thinking = thinking
res.Response = content
@ -397,6 +392,30 @@ func (s *Server) GenerateHandler(c *gin.Context) {
}
if cr.Done {
if useHarmony {
toolName, toolContent := harmonyToolParser.Drain()
if toolName != nil {
*toolName = strings.TrimPrefix(*toolName, "functions.")
var args api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(toolContent), &args); err != nil {
errStr := fmt.Sprintf("error parsing tool call: raw='%s', err=%s", toolContent, err.Error())
ch <- gin.H{"error": errStr}
return
}
res.ToolCalls = append(res.ToolCalls, api.ToolCall{
Function: api.ToolCallFunction{
Name: *toolName,
Arguments: args,
},
})
}
}
res.DoneReason = cr.DoneReason.String()
res.TotalDuration = time.Since(checkpointStart)
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
if !req.Raw {
tokens, err := r.Tokenize(c.Request.Context(), prompt+sb.String())
if err != nil {
@ -470,7 +489,6 @@ func (s *Server) EmbedHandler(c *gin.Context) {
}
truncate := true
if req.Truncate != nil && !*req.Truncate {
truncate = false
}
@ -537,7 +555,16 @@ func (s *Server) EmbedHandler(c *gin.Context) {
return
}
if bos := kvData.Uint("tokenizer.ggml.bos_token_id"); tokens[0] != int(bos) && kvData.Bool("add_bos_token", true) {
ctxLen--
}
if eos := kvData.Uint("tokenizer.ggml.eos_token_id"); tokens[len(tokens)-1] != int(eos) && kvData.Bool("add_eos_token", true) {
ctxLen--
}
tokens = tokens[:ctxLen]
s, err = r.Detokenize(c.Request.Context(), tokens)
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
@ -1599,27 +1626,32 @@ func (s *Server) ChatHandler(c *gin.Context) {
}
msgs = filterThinkTags(msgs, m)
useHarmony := harmony.ShouldUseHarmony(m.Config.ModelFamily, m.Template)
var parserType parser.TokenParserType
if useHarmony {
parserType = parser.TokenParserTypeHarmony
} else {
parserType = parser.TokenParserTypeDefault
var builtinParser parsers.Parser
if m.Config.Parser != "" {
builtinParser = parsers.ParserForName(m.Config.Parser)
}
var harmonyMessageHandler *harmony.HarmonyMessageHandler
var harmonyToolParser *harmony.HarmonyToolCallAccumulator
useHarmony := shouldUseHarmony(m) || m.Config.Parser == "harmony"
processedTools := req.Tools
var functionNameMap *harmony.FunctionNameMap
var prefillString string
// TODO(parthsareen): this can be abstracted to not be model specific and potentially moved to the runner
if useHarmony {
prefillString = harmony.Prefill(msgs[len(msgs)-1])
functionNameMap = harmony.NewFunctionNameMap()
harmonyMessageHandler = harmony.NewHarmonyMessageHandler()
var lastMessage *api.Message
if len(msgs) > 0 {
lastMessage = &msgs[len(msgs)-1]
}
harmonyMessageHandler.HarmonyParser.AddImplicitStartOrPrefill(lastMessage)
harmonyToolParser = harmonyMessageHandler.CreateToolParser()
// make a copy of tools to pass to the chat prompt. Function names may be
// renamed to be valid Harmony function names.
processedTools = make([]api.Tool, len(req.Tools))
copy(processedTools, req.Tools)
for i, tool := range processedTools {
processedTools[i].Function.Name = functionNameMap.ConvertAndAdd(tool.Function.Name)
processedTools[i].Function.Name = harmonyMessageHandler.FunctionNameMap.ConvertAndAdd(tool.Function.Name)
}
}
@ -1632,10 +1664,10 @@ func (s *Server) ChatHandler(c *gin.Context) {
// If debug mode is enabled, return the rendered template instead of calling the model
if req.DebugRenderOnly {
c.JSON(http.StatusOK, api.DebugTemplateResponse{
c.JSON(http.StatusOK, api.ChatResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
DebugInfo: api.DebugInfo{
DebugInfo: &api.DebugInfo{
RenderedTemplate: prompt,
ImageCount: len(images),
},
@ -1672,17 +1704,15 @@ func (s *Server) ChatHandler(c *gin.Context) {
defer close(ch)
if err := r.Completion(c.Request.Context(), llm.CompletionRequest{
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
ParserType: parserType,
PrefillString: prefillString,
Prompt: prompt,
Images: images,
Format: req.Format,
Options: opts,
}, func(r llm.CompletionResponse) {
res := api.ChatResponse{
Model: req.Model,
CreatedAt: time.Now().UTC(),
Message: api.Message{Role: "assistant", Content: r.Content, Thinking: r.Thinking, ToolCalls: r.ToolCalls},
Message: api.Message{Role: "assistant", Content: r.Content},
Done: r.Done,
Metrics: api.Metrics{
PromptEvalCount: r.PromptEvalCount,
@ -1697,14 +1727,54 @@ func (s *Server) ChatHandler(c *gin.Context) {
res.LoadDuration = checkpointLoaded.Sub(checkpointStart)
}
// TODO(drifkin): fold this as much as possibleinto the generic m.Config.Parser logic
if useHarmony {
for i, tool := range res.Message.ToolCalls {
res.Message.ToolCalls[i].Function.Name = functionNameMap.OriginalFromConverted(tool.Function.Name)
content, thinking, toolContent := harmonyMessageHandler.AddContent(r.Content, harmonyToolParser)
res.Message.Content = content
res.Message.Thinking = thinking
harmonyToolParser.Add(toolContent)
if r.Done {
toolName, toolContent := harmonyToolParser.Drain()
if toolName != nil {
*toolName = strings.TrimPrefix(*toolName, "functions.")
*toolName = harmonyMessageHandler.FunctionNameMap.OriginalFromConverted(*toolName)
var args api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(toolContent), &args); err != nil {
errStr := fmt.Sprintf("error parsing tool call: raw='%s', err=%s", toolContent, err.Error())
ch <- gin.H{"error": errStr}
return
}
res.Message.ToolCalls = []api.ToolCall{{Function: api.ToolCallFunction{Name: *toolName, Arguments: args}}}
}
}
// only send messages with meaningful content (empty messages confuse clients)
if res.Message.Content != "" || res.Message.Thinking != "" || len(res.Message.ToolCalls) > 0 || res.Done {
ch <- res
}
return
} else if builtinParser != nil {
slog.Log(context.TODO(), logutil.LevelTrace, "builtin parser input", "parser", m.Config.Parser, "content", r.Content)
content, thinking, toolCalls, err := builtinParser.Add(r.Content, req.Tools)
if err != nil {
ch <- gin.H{"error": err.Error()}
return
}
res.Message.Content = content
res.Message.Thinking = thinking
res.Message.ToolCalls = toolCalls
if res.Message.Content != "" || res.Message.Thinking != "" || len(res.Message.ToolCalls) > 0 || r.Done {
slog.Log(context.TODO(), logutil.LevelTrace, "builtin parser output", "parser", m.Config.Parser, "content", content, "thinking", thinking, "toolCalls", toolCalls, "done", r.Done)
ch <- res
} else {
slog.Log(context.TODO(), logutil.LevelTrace, "builtin parser empty output", "parser", m.Config.Parser)
}
return
}

View File

@ -180,7 +180,7 @@ func TestGenerateDebugRenderOnly(t *testing.T) {
t.Errorf("expected status %d, got %d, body: %s", http.StatusOK, w.Code, w.Body.String())
}
var response api.DebugTemplateResponse
var response api.GenerateResponse
if err := json.Unmarshal(w.Body.Bytes(), &response); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}
@ -385,7 +385,7 @@ func TestChatDebugRenderOnly(t *testing.T) {
t.Errorf("expected status %d, got %d, body: %s", http.StatusOK, w.Code, w.Body.String())
}
var response api.DebugTemplateResponse
var response api.ChatResponse
if err := json.Unmarshal(w.Body.Bytes(), &response); err != nil {
t.Fatalf("failed to unmarshal response: %v", err)
}

View File

@ -7,6 +7,7 @@ import (
"bytes"
"context"
"encoding/json"
"net/http"
"strings"
"testing"
"time"
@ -117,7 +118,7 @@ func TestChatHarmonyParserStreamingRealtime(t *testing.T) {
name: "content streams as it arrives",
steps: []step{
{
input: llm.CompletionResponse{Content: "Hello", Done: false},
input: llm.CompletionResponse{Content: "<|message|>Hello", Done: false},
wantContent: "Hello",
},
{
@ -125,7 +126,7 @@ func TestChatHarmonyParserStreamingRealtime(t *testing.T) {
wantContent: ", world",
},
{
input: llm.CompletionResponse{Content: "!", Done: true, DoneReason: llm.DoneReasonStop},
input: llm.CompletionResponse{Content: "!<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
wantContent: "!",
},
},
@ -134,15 +135,20 @@ func TestChatHarmonyParserStreamingRealtime(t *testing.T) {
name: "thinking streams separately from content",
steps: []step{
{
input: llm.CompletionResponse{Thinking: "Thinking...", Done: false},
input: llm.CompletionResponse{Content: "<|channel|>analysis<|message|>Thinking...", Done: false},
wantThinking: "Thinking...",
},
{
input: llm.CompletionResponse{Content: "Answer", Done: false},
wantContent: "Answer",
input: llm.CompletionResponse{Content: "<|end|>", Done: false},
// No output expected - just closes the analysis message and resets state to normal
},
{
input: llm.CompletionResponse{Done: true, DoneReason: llm.DoneReasonStop},
input: llm.CompletionResponse{Content: "<|start|>assistant<|message|>Answer", Done: false},
wantContent: "Answer", // After message end, state is reset to normal
},
{
input: llm.CompletionResponse{Content: "<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
// No output expected - just closes the assistant message
},
},
},
@ -150,16 +156,24 @@ func TestChatHarmonyParserStreamingRealtime(t *testing.T) {
name: "partial tags buffer until complete",
steps: []step{
{
input: llm.CompletionResponse{Thinking: "Deep ", Done: false},
input: llm.CompletionResponse{Content: "<|chan", Done: false},
// No output - partial tag
},
{
input: llm.CompletionResponse{Content: "nel|>analysis<|mess", Done: false},
// No output - still building tags
},
{
input: llm.CompletionResponse{Content: "age|>Deep ", Done: false},
wantThinking: "Deep ",
},
{
input: llm.CompletionResponse{Thinking: "thought", Done: false},
input: llm.CompletionResponse{Content: "thought<|end|>", Done: false},
wantThinking: "thought",
},
{
input: llm.CompletionResponse{Content: "Done", Done: true, DoneReason: llm.DoneReasonStop},
wantContent: "Done",
input: llm.CompletionResponse{Content: "<|start|>assistant<|message|>Done<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
wantContent: "Done", // After message end, state is reset to normal
},
},
},
@ -167,7 +181,7 @@ func TestChatHarmonyParserStreamingRealtime(t *testing.T) {
name: "simple assistant after analysis",
steps: []step{
{
input: llm.CompletionResponse{Thinking: "Think", Content: "Answer", Done: true, DoneReason: llm.DoneReasonStop},
input: llm.CompletionResponse{Content: "<|channel|>analysis<|message|>Think<|end|><|start|>assistant<|message|>Answer<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
wantContent: "Answer",
wantThinking: "Think",
},
@ -177,7 +191,7 @@ func TestChatHarmonyParserStreamingRealtime(t *testing.T) {
name: "tool call parsed and returned correctly",
steps: []step{
{
input: llm.CompletionResponse{Content: "The weather is sunny", ToolCalls: []api.ToolCall{{Function: api.ToolCallFunction{Name: "get_weather", Arguments: api.ToolCallFunctionArguments{"location": "San Francisco"}}}}, Done: true, DoneReason: llm.DoneReasonStop},
input: llm.CompletionResponse{Content: "<|channel|>commentary to=functions.get_weather<|message|>{\"location\":\"San Francisco\"}<|end|><|start|>assistant<|message|>The weather is sunny<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
wantContent: "The weather is sunny",
wantToolCalls: []api.ToolCall{
{
@ -196,10 +210,15 @@ func TestChatHarmonyParserStreamingRealtime(t *testing.T) {
name: "tool call with streaming JSON across chunks",
steps: []step{
{
input: llm.CompletionResponse{Done: false},
input: llm.CompletionResponse{Content: "<|channel|>commentary to=functions.calculate<|message|>{\"expr", Done: false},
// No output yet - incomplete JSON
},
{
input: llm.CompletionResponse{ToolCalls: []api.ToolCall{{Function: api.ToolCallFunction{Name: "calculate", Arguments: api.ToolCallFunctionArguments{"expression": "2+2"}}}}, Done: true},
input: llm.CompletionResponse{Content: "ession\":\"2+", Done: false},
// Still no output - incomplete JSON
},
{
input: llm.CompletionResponse{Content: "2\"}", Done: true},
wantToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
@ -381,9 +400,9 @@ func TestChatHarmonyParserStreamingSimple(t *testing.T) {
gin.SetMode(gin.TestMode)
mockResponses := []llm.CompletionResponse{
{Content: "First ", Done: false},
{Content: "<|message|>First ", Done: false},
{Content: "chunk ", Done: false},
{Content: "here", Done: true, DoneReason: llm.DoneReasonStop},
{Content: "here<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
}
mock := mockRunner{
@ -488,3 +507,189 @@ func TestChatHarmonyParserStreamingSimple(t *testing.T) {
t.Errorf("expected at least 2 content chunks for streaming, got %d", contentChunks)
}
}
func TestChatHarmonyParserStreaming(t *testing.T) {
gin.SetMode(gin.TestMode)
type expectedChunk struct {
afterResponse int // Which mock response this chunk should appear after
content string // Expected content in this chunk
thinking string // Expected thinking in this chunk
}
testCases := []struct {
name string
mockResponses []llm.CompletionResponse
expectedChunks []expectedChunk
wantContent string
wantThinking string
}{
{
name: "simple message without thinking",
mockResponses: []llm.CompletionResponse{
{Content: "<|start|>assistant<|message|>Hello, ", Done: false},
{Content: "how can I help?", Done: false},
{Content: "<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
},
expectedChunks: []expectedChunk{
{afterResponse: 1, content: "Hello, "},
{afterResponse: 2, content: "how can I help?"},
},
wantContent: "Hello, how can I help?",
},
{
name: "message with analysis channel for thinking",
mockResponses: []llm.CompletionResponse{
{Content: "<|channel|>analysis<|message|>", Done: false},
{Content: "Let me think ", Done: false},
{Content: "about this problem...", Done: false},
{Content: "<|end|>", Done: false},
{Content: "<|start|>assistant<|message|>", Done: false},
{Content: "The answer ", Done: false},
{Content: "is 42", Done: false},
{Content: "<|end|>", Done: true, DoneReason: llm.DoneReasonStop},
},
expectedChunks: []expectedChunk{
{afterResponse: 2, thinking: "Let me think "},
{afterResponse: 3, thinking: "about this problem..."},
{afterResponse: 6, content: "The answer "},
{afterResponse: 7, content: "is 42"},
},
wantContent: "The answer is 42",
wantThinking: "Let me think about this problem...",
},
{
name: "streaming with partial tags across boundaries",
mockResponses: []llm.CompletionResponse{
{Content: "<|chan", Done: false},
{Content: "nel|>analy", Done: false},
{Content: "sis<|mess", Done: false},
{Content: "age|>Think", Done: false},
{Content: "ing deeply...<|end|>", Done: false},
{Content: "<|start|>assi", Done: false},
{Content: "stant<|message|>Result ", Done: false},
{Content: "computed<|e", Done: false},
{Content: "nd|>", Done: true, DoneReason: llm.DoneReasonStop},
},
expectedChunks: []expectedChunk{
{afterResponse: 4, thinking: "Think"},
{afterResponse: 5, thinking: "ing deeply..."},
{afterResponse: 7, content: "Result "},
{afterResponse: 8, content: "computed"},
},
wantContent: "Result computed",
wantThinking: "Thinking deeply...",
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
// Channel to synchronize mock responses with chunk verification
responsesSent := make(chan int, len(tc.mockResponses))
mock := mockRunner{
CompletionFn: func(ctx context.Context, r llm.CompletionRequest, fn func(llm.CompletionResponse)) error {
// Send mock responses one at a time, notifying when each is sent
for i, resp := range tc.mockResponses {
fn(resp)
responsesSent <- i + 1
}
close(responsesSent)
return nil
},
}
s := Server{
sched: &Scheduler{
pendingReqCh: make(chan *LlmRequest, 1),
finishedReqCh: make(chan *LlmRequest, 1),
expiredCh: make(chan *runnerRef, 1),
unloadedCh: make(chan any, 1),
loaded: make(map[string]*runnerRef),
newServerFn: newMockServer(&mock),
getGpuFn: discover.GetGPUInfo,
getCpuFn: discover.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ discover.GpuInfoList, _ bool) bool {
req.successCh <- &runnerRef{
llama: &mock,
}
return false
},
},
}
go s.sched.Run(t.Context())
// Create a minimal model
_, digest := createHarmonyTestModel(t)
// Create model with passthrough template
stream := false
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "harmony-test",
Files: map[string]string{"file.gguf": digest},
Template: `<|start|><|end|>{{ with .Tools }}{{ end }}{{ .Prompt }}`,
Stream: &stream,
})
if w.Code != http.StatusOK {
t.Fatalf("failed to create model: %d", w.Code)
}
// Test chat endpoint with streaming
streamTrue := true
w = createRequest(t, s.ChatHandler, api.ChatRequest{
Model: "harmony-test",
Messages: []api.Message{{Role: "user", Content: "Hello"}},
Stream: &streamTrue,
Tools: getTestTools(),
})
if w.Code != http.StatusOK {
t.Fatalf("chat request failed: %d - %s", w.Code, w.Body.String())
}
// Parse streaming response
var chunks []api.ChatResponse
var content, thinking strings.Builder
decoder := json.NewDecoder(w.Body)
for decoder.More() {
var chunk api.ChatResponse
if err := decoder.Decode(&chunk); err != nil {
t.Fatalf("failed to decode chunk: %v", err)
}
chunks = append(chunks, chunk)
// Accumulate content and thinking from each chunk
content.WriteString(chunk.Message.Content)
thinking.WriteString(chunk.Message.Thinking)
// Debug output
t.Logf("Chunk %d: content=%q thinking=%q done=%v", len(chunks), chunk.Message.Content, chunk.Message.Thinking, chunk.Done)
}
// Verify we got streaming chunks
if len(chunks) == 0 {
t.Fatal("expected streaming chunks, got none")
}
gotContent := content.String()
gotThinking := thinking.String()
if gotContent != tc.wantContent {
t.Errorf("content mismatch: got %q, want %q", gotContent, tc.wantContent)
}
if gotThinking != tc.wantThinking {
t.Errorf("thinking mismatch: got %q, want %q", gotThinking, tc.wantThinking)
}
// Verify last chunk has done=true
lastChunk := chunks[len(chunks)-1]
if !lastChunk.Done {
t.Error("expected last chunk to have done=true")
}
})
}
}