Update to b7616

This commit is contained in:
inforithmics 2026-01-03 08:21:08 +01:00
parent 25b43f8bb0
commit 47a8e00686
29 changed files with 979 additions and 124 deletions

View File

@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=e86f3c22211d9b5c3842e2961a022aac9cdbacad
FETCH_HEAD=18ddaea2aecf7fbfe7acab77465808f3cf6200d3
.PHONY: help
help:

2
llama/build-info.cpp generated vendored
View File

@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "e86f3c22211d9b5c3842e2961a022aac9cdbacad";
char const *LLAMA_COMMIT = "18ddaea2aecf7fbfe7acab77465808f3cf6200d3";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";

View File

@ -119,6 +119,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_MIMO2, "mimo2" },
{ LLM_ARCH_LLAMA_EMBED, "llama-embed" },
{ LLM_ARCH_MAINCODER, "maincoder" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@ -2237,6 +2238,23 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
return {
LLM_TENSOR_TOKEN_EMBD,
};
case LLM_ARCH_MAINCODER:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
};
case LLM_ARCH_SOLAR:
return {
LLM_TENSOR_TOKEN_EMBD,

View File

@ -123,6 +123,7 @@ enum llm_arch {
LLM_ARCH_MISTRAL3,
LLM_ARCH_MIMO2,
LLM_ARCH_LLAMA_EMBED,
LLM_ARCH_MAINCODER,
LLM_ARCH_UNKNOWN,
};

View File

@ -1110,6 +1110,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_MAINCODER:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 32: type = LLM_TYPE_1B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_QWEN3VL:
{
ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
@ -6821,6 +6829,37 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
}
} break;
case LLM_ARCH_MAINCODER:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
} break;
default:
throw std::runtime_error("unknown architecture");
}
@ -7466,6 +7505,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{
llm = std::make_unique<llm_build_llama<true>>(*this, params);
} break;
case LLM_ARCH_MAINCODER:
{
llm = std::make_unique<llm_build_maincoder>(*this, params);
} break;
case LLM_ARCH_DECI:
{
llm = std::make_unique<llm_build_deci>(*this, params);
@ -8079,6 +8122,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_ERNIE4_5_MOE:
case LLM_ARCH_MISTRAL3:
case LLM_ARCH_LLAMA_EMBED:
case LLM_ARCH_MAINCODER:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2

View File

@ -2193,6 +2193,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
// for now, we apply this workaround to find the tokens based on their text
for (const auto & t : token_to_id) {
auto & attr = id_to_token[t.second].attr;
// find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
if (special_eot_id == LLAMA_TOKEN_NULL) {
if (false
@ -2208,10 +2210,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<end_of_utterance>" // smoldocling
) {
special_eot_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@ -2222,10 +2224,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|eom_id|>"
) {
special_eom_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@ -2242,10 +2244,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|code_prefix|>" // GLM-4.5
) {
special_fim_pre_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@ -2262,10 +2264,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|code_suffix|>" // GLM-4.5
) {
special_fim_suf_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@ -2282,10 +2284,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|code_middle|>" // GLM-4.5
) {
special_fim_mid_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@ -2299,10 +2301,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<PAD>"
) {
special_fim_pad_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@ -2317,10 +2319,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<reponame>" // Granite
) {
special_fim_rep_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
@ -2331,15 +2333,41 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|file_sep|>" // Qwen
) {
special_fim_sep_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
}
}
}
// auto-detect unused tokens: e.g. control tokens with the word "unused"
// ideally, these tokens should be marked as unused during conversion
{
uint32_t n_unused = 0;
for (const auto & t : token_to_id) {
auto & attr = id_to_token[t.second].attr;
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
continue;
}
if ((attr & LLAMA_TOKEN_ATTR_UNUSED) == 0) {
if (strstr(t.first.c_str(), "unused") != NULL) {
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_UNUSED);
}
}
if (attr & LLAMA_TOKEN_ATTR_UNUSED) {
n_unused++;
}
}
LLAMA_LOG_INFO("%s: %u unused tokens\n", __func__, n_unused);
}
// maintain a list of tokens that cause end-of-generation
// this is currently determined based on the token text, which is obviously not ideal
// ref: https://github.com/ggerganov/llama.cpp/issues/9606
@ -2358,6 +2386,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
}
for (const auto & t : token_to_id) {
auto & attr = id_to_token[t.second].attr;
if (false
|| t.first == "<|eot_id|>"
|| t.first == "<|im_end|>"
@ -2375,24 +2405,28 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<end_of_utterance>" // smoldocling
) {
special_eog_ids.insert(t.second);
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
__func__, t.second, t.first.c_str());
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_CONTROL);
}
} else {
// token is control, but not marked as EOG -> print a debug log
if (id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && special_eog_ids.count(t.second) == 0) {
LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
__func__, t.second, t.first.c_str());
if (attr & LLAMA_TOKEN_ATTR_CONTROL && !(attr & LLAMA_TOKEN_ATTR_UNUSED)) {
// token is control, but not marked as EOG -> print a debug log
if (special_eog_ids.count(t.second) == 0) {
LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n",
__func__, t.second, t.first.c_str());
}
}
}
}
// @ngxson : quick hack for gpt-oss, always render these tokens
for (const auto & t : token_to_id) {
auto & attr = id_to_token[t.second].attr;
if (t.first == "<|channel|>" || t.first == "<|message|>" || t.first == "<|start|>" || t.first == "<|constrain|>") {
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_USER_DEFINED);
}
}
@ -2425,15 +2459,17 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
LLAMA_LOG_INFO("%s: printing all EOG tokens:\n", __func__);
for (auto tid : special_eog_ids) {
LLAMA_LOG_INFO("%s: - %d ('%s')\n", __func__, tid, id_to_token[tid].text.c_str());
auto & text = id_to_token[tid].text;
if (id_to_token[tid].text == "<|return|>") {
LLAMA_LOG_INFO("%s: - %d ('%s')\n", __func__, tid, text.c_str());
if (text == "<|return|>") {
has_return = true;
} else if (id_to_token[tid].text == "<|call|>" || id_to_token[tid].text == "<|calls|>") {
} else if (text == "<|call|>" || text == "<|calls|>") {
has_call = true;
} else if (id_to_token[tid].text == "<|flush|>") {
} else if (text == "<|flush|>") {
has_flush = true;
} else if (id_to_token[tid].text == "<|end|>") {
} else if (text == "<|end|>") {
has_end = true;
end_id = tid;
}
@ -2441,7 +2477,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if ((has_return && has_call && has_end) || (has_call && has_flush && has_end)) {
special_eog_ids.erase(end_id);
id_to_token[end_id].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
auto & attr = id_to_token[end_id].attr;
attr = (llama_token_attr) (attr | LLAMA_TOKEN_ATTR_USER_DEFINED);
LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>', or '<|calls|>' and '<|flush|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
}
}

View File

@ -3,12 +3,14 @@
llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
float kq_scale = 1.0f / sqrtf(float(n_embd_head));
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor *inpL, *cur;
ggml_tensor * inpL;
ggml_tensor * cur;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
@ -44,7 +46,7 @@ llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_pa
}
ggml_tensor * inpSA = inpL;
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
// build self attention
{

View File

@ -1,7 +1,5 @@
#include "models.h"
llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
@ -12,10 +10,8 @@ llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model,
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();

View File

@ -10,10 +10,9 @@ llm_build_gemma3<iswa>::llm_build_gemma3(const llama_model & model, const llm_gr
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();

View File

@ -1,7 +1,5 @@
#include "models.h"
llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model),
@ -15,10 +13,9 @@ llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
@ -248,7 +245,7 @@ ggml_tensor * llm_build_gemma3n_iswa::view_2d_slice(ggml_tensor * x, int idx) {
// equivalent to get_per_layer_inputs() in python code
// output shape: [n_embd_altup, n_layer, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::get_per_layer_inputs() {
auto inp = std::make_unique<llm_graph_input_embd>();
auto inp = std::make_unique<llm_graph_input_embd>();
ggml_tensor * inp_per_layer;
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);

117
llama/llama.cpp/src/models/maincoder.cpp vendored Normal file
View File

@ -0,0 +1,117 @@
#include "models.h"
llm_build_maincoder::llm_build_maincoder(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -312,6 +312,10 @@ struct llm_build_llama_iswa : public llm_graph_context {
llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_maincoder : public llm_graph_context {
llm_build_maincoder(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mamba : public llm_graph_context_mamba {
llm_build_mamba(const llama_model & model, const llm_graph_params & params);
};

View File

@ -144,7 +144,7 @@ index 353f6a4b4..bbbb5e825 100644
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-rpc/ggml-rpc.cpp b/ggml/src/ggml-rpc/ggml-rpc.cpp
index 164b39d01..b4646bdb6 100644
index d7c8ad8c1..281fa1bdb 100644
--- a/ggml/src/ggml-rpc/ggml-rpc.cpp
+++ b/ggml/src/ggml-rpc/ggml-rpc.cpp
@@ -557,6 +557,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@ -184,10 +184,10 @@ index e996d98be..84b679315 100644
static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 541e4a50b..eccaef426 100644
index 16254457b..aecd8ee59 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -12564,6 +12564,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@@ -12630,6 +12630,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_destroy_buffer(ctx->dev_buffer);
delete ctx;
@ -195,7 +195,7 @@ index 541e4a50b..eccaef426 100644
}
static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -12707,6 +12708,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
@@ -12773,6 +12774,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
ggml_vk_host_free(vk_instance.devices[0], buffer->context);

View File

@ -10,7 +10,7 @@ logs instead of throwing an error
1 file changed, 3 insertions(+), 11 deletions(-)
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index bd311bea4..a0188d392 100644
index a20c6525e..09874b67a 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1832,16 +1832,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {

View File

@ -19,10 +19,10 @@ adds support for the Solar Pro architecture
create mode 100644 src/models/solar.cpp
diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt
index 762ea65c7..61821ef6a 100644
index b0932794d..12e14f55c 100644
--- a/src/CMakeLists.txt
+++ b/src/CMakeLists.txt
@@ -128,6 +128,7 @@ add_library(llama
@@ -129,6 +129,7 @@ add_library(llama
models/seed-oss.cpp
models/smallthinker.cpp
models/smollm3.cpp
@ -31,7 +31,7 @@ index 762ea65c7..61821ef6a 100644
models/starcoder.cpp
models/starcoder2.cpp
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index 94a6807ea..09505831b 100644
index 93fed1a9a..bc26eb846 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -89,6 +89,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
@ -42,7 +42,7 @@ index 94a6807ea..09505831b 100644
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_PLM, "plm" },
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
@@ -213,6 +214,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
@@ -214,6 +215,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_OUTPUT_SCALE, "%s.attention.output_scale" },
{ LLM_KV_ATTENTION_TEMPERATURE_LENGTH, "%s.attention.temperature_length" },
{ LLM_KV_ATTENTION_TEMPERATURE_SCALE, "%s.attention.temperature_scale" },
@ -50,7 +50,7 @@ index 94a6807ea..09505831b 100644
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
@@ -345,6 +347,7 @@ static const std::map<llm_tensor, const char *> LLM_TENSOR_NAMES = {
@@ -346,6 +348,7 @@ static const std::map<llm_tensor, const char *> LLM_TENSOR_NAMES = {
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
@ -58,10 +58,11 @@ index 94a6807ea..09505831b 100644
{ LLM_TENSOR_POS_EMBD, "position_embd" },
{ LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
@@ -2234,6 +2237,22 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
return {
LLM_TENSOR_TOKEN_EMBD,
};
@@ -2251,6 +2254,22 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
+ };
+ case LLM_ARCH_SOLAR:
+ return {
+ LLM_TENSOR_TOKEN_EMBD,
@ -77,11 +78,10 @@ index 94a6807ea..09505831b 100644
+ LLM_TENSOR_FFN_DOWN,
+ LLM_TENSOR_FFN_UP,
+ LLM_TENSOR_BSKCN_TV,
+ };
};
default:
GGML_ABORT("unknown architecture for tensor mapping");
}
@@ -2402,6 +2421,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
@@ -2420,6 +2439,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_LAUREL_POST_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
@ -90,7 +90,7 @@ index 94a6807ea..09505831b 100644
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 714ead402..fc3df4506 100644
index 57e470a9f..5af69cb9d 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -93,6 +93,7 @@ enum llm_arch {
@ -101,7 +101,7 @@ index 714ead402..fc3df4506 100644
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_PLM,
LLM_ARCH_BAILINGMOE,
@@ -217,6 +218,7 @@ enum llm_kv {
@@ -218,6 +219,7 @@ enum llm_kv {
LLM_KV_ATTENTION_OUTPUT_SCALE,
LLM_KV_ATTENTION_TEMPERATURE_LENGTH,
LLM_KV_ATTENTION_TEMPERATURE_SCALE,
@ -109,7 +109,7 @@ index 714ead402..fc3df4506 100644
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
@@ -471,6 +473,7 @@ enum llm_tensor {
@@ -472,6 +474,7 @@ enum llm_tensor {
LLM_TENSOR_ENC_OUTPUT_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
@ -173,10 +173,10 @@ index 5003b4fbf..243b296b5 100644
llama_model_loader::llama_model_loader(
const std::string & fname,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 0450db6c9..9591c3686 100644
index 6e6ca4850..654866d49 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -2050,6 +2050,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -2058,6 +2058,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
@ -198,7 +198,7 @@ index 0450db6c9..9591c3686 100644
case LLM_ARCH_WAVTOKENIZER_DEC:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -5585,6 +5600,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -5593,6 +5608,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
@ -233,7 +233,7 @@ index 0450db6c9..9591c3686 100644
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
@@ -7755,6 +7798,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
@@ -7798,6 +7841,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{
llm = std::make_unique<llm_build_chameleon>(*this, params);
} break;
@ -244,7 +244,7 @@ index 0450db6c9..9591c3686 100644
case LLM_ARCH_WAVTOKENIZER_DEC:
{
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
@@ -8023,6 +8070,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
@@ -8066,6 +8113,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_GRANITE_HYBRID:
case LLM_ARCH_CHAMELEON:
@ -274,10 +274,10 @@ index 79200a0d9..740cb7094 100644
struct llama_layer_convnext convnext;
diff --git a/src/models/models.h b/src/models/models.h
index e78a788d4..30f04d956 100644
index 72b2b760c..4e2162c77 100644
--- a/src/models/models.h
+++ b/src/models/models.h
@@ -529,6 +529,11 @@ struct llm_build_smollm3 : public llm_graph_context {
@@ -533,6 +533,11 @@ struct llm_build_smollm3 : public llm_graph_context {
llm_build_smollm3(const llama_model & model, const llm_graph_params & params);
};

View File

@ -12,7 +12,7 @@ regex
2 files changed, 22 insertions(+), 1 deletion(-)
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index a0188d392..67dac0f05 100644
index 09874b67a..0049d59bf 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -299,7 +299,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {

View File

@ -53,7 +53,7 @@ index b165d8bdc..f91d4faba 100644
}
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index 67dac0f05..eed381aab 100644
index 0049d59bf..fefa6b478 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1788,9 +1788,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {

View File

@ -278,10 +278,10 @@ index 8fc1c2fb5..ba95b4acc 100644
static void ggml_backend_metal_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index eccaef426..f76ee7737 100644
index aecd8ee59..317914c3b 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -13353,7 +13353,7 @@ static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const stru
@@ -13419,7 +13419,7 @@ static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const stru
return num_adds;
}
@ -290,7 +290,7 @@ index eccaef426..f76ee7737 100644
VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
@@ -13640,6 +13640,7 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
@@ -13706,6 +13706,7 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
return GGML_STATUS_SUCCESS;
UNUSED(backend);

View File

@ -1,8 +1,18 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: inforithmics <thomas.stocker@gmail.com>
Date: Fri, 26 Dec 2025 16:41:00 +0100
From: Daniel Hiltgen <daniel@ollama.com>
Date: Tue, 26 Aug 2025 12:48:29 -0700
Subject: [PATCH] GPU discovery enhancements
Expose more information about the devices through backend props, and leverage
management libraries for more accurate VRAM usage reporting if available.
vulkan: get GPU ID (ollama v0.11.5)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Vulkan PCI and Memory
fix vulkan PCI ID and ID handling
---
ggml/include/ggml-backend.h | 6 +
ggml/src/CMakeLists.txt | 2 +
@ -233,7 +243,7 @@ index ba95b4acc..f6f8f7a10 100644
/* .async = */ true,
/* .host_buffer = */ false,
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index f76ee7737..56a34e18a 100644
index 317914c3b..4d613bc53 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -236,6 +236,7 @@ class vk_memory_logger;
@ -244,7 +254,7 @@ index f76ee7737..56a34e18a 100644
static constexpr uint32_t mul_mat_vec_max_cols = 8;
static constexpr uint32_t p021_max_gqa_ratio = 8;
@@ -12549,6 +12550,29 @@ static void ggml_vk_get_device_description(int device, char * description, size_
@@ -12615,6 +12616,29 @@ static void ggml_vk_get_device_description(int device, char * description, size_
snprintf(description, description_size, "%s", props.deviceName.data());
}
@ -274,7 +284,7 @@ index f76ee7737..56a34e18a 100644
// backend interface
#define UNUSED GGML_UNUSED
@@ -13990,15 +14014,72 @@ void ggml_backend_vk_get_device_description(int device, char * description, size
@@ -14056,15 +14080,72 @@ void ggml_backend_vk_get_device_description(int device, char * description, size
ggml_vk_get_device_description(dev_idx, description, description_size);
}
@ -351,7 +361,7 @@ index f76ee7737..56a34e18a 100644
if (membudget_supported) {
memprops.pNext = &budgetprops;
@@ -14050,8 +14131,13 @@ static std::string ggml_backend_vk_get_device_pci_id(int device_idx) {
@@ -14116,8 +14197,13 @@ static std::string ggml_backend_vk_get_device_pci_id(int device_idx) {
}
}
@ -366,7 +376,7 @@ index f76ee7737..56a34e18a 100644
}
vk::PhysicalDeviceProperties2 props = {};
@@ -14068,19 +14154,24 @@ static std::string ggml_backend_vk_get_device_pci_id(int device_idx) {
@@ -14134,19 +14220,24 @@ static std::string ggml_backend_vk_get_device_pci_id(int device_idx) {
char pci_bus_id[16] = {};
snprintf(pci_bus_id, sizeof(pci_bus_id), "%04x:%02x:%02x.%x", pci_domain, pci_bus, pci_device, pci_function);
@ -400,7 +410,7 @@ index f76ee7737..56a34e18a 100644
static const char * ggml_backend_vk_device_get_name(ggml_backend_dev_t dev) {
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
@@ -14092,9 +14183,14 @@ static const char * ggml_backend_vk_device_get_description(ggml_backend_dev_t de
@@ -14158,9 +14249,14 @@ static const char * ggml_backend_vk_device_get_description(ggml_backend_dev_t de
return ctx->description.c_str();
}
@ -416,7 +426,7 @@ index f76ee7737..56a34e18a 100644
}
static ggml_backend_buffer_type_t ggml_backend_vk_device_get_buffer_type(ggml_backend_dev_t dev) {
@@ -14118,8 +14214,9 @@ static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml
@@ -14184,8 +14280,9 @@ static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml
props->name = ggml_backend_vk_device_get_name(dev);
props->description = ggml_backend_vk_device_get_description(dev);
@ -427,7 +437,7 @@ index f76ee7737..56a34e18a 100644
ggml_backend_vk_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ true,
@@ -14127,6 +14224,13 @@ static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml
@@ -14193,6 +14290,13 @@ static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml
/* .buffer_from_host_ptr = */ false,
/* .events = */ true,
};
@ -441,7 +451,7 @@ index f76ee7737..56a34e18a 100644
}
static ggml_backend_t ggml_backend_vk_device_init(ggml_backend_dev_t dev, const char * params) {
@@ -14740,6 +14844,8 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
@@ -14806,6 +14910,8 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
@ -450,7 +460,7 @@ index f76ee7737..56a34e18a 100644
for (int i = 0; i < ggml_backend_vk_get_device_count(); i++) {
ggml_backend_vk_device_context * ctx = new ggml_backend_vk_device_context;
char desc[256];
@@ -14748,12 +14854,41 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
@@ -14814,12 +14920,41 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
ctx->name = GGML_VK_NAME + std::to_string(i);
ctx->description = desc;
ctx->is_integrated_gpu = ggml_backend_vk_get_device_type(i) == vk::PhysicalDeviceType::eIntegratedGpu;

View File

@ -38,7 +38,7 @@ index 9549d0495..eacabb191 100644
#ifdef __cplusplus
}
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 56a34e18a..9caedbf2e 100644
index 4d613bc53..aa9c2d949 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -74,6 +74,7 @@ DispatchLoaderDynamic & ggml_vk_default_dispatcher();
@ -49,7 +49,7 @@ index 56a34e18a..9caedbf2e 100644
typedef struct VkPhysicalDeviceShaderBfloat16FeaturesKHR {
VkStructureType sType;
@@ -14031,6 +14032,7 @@ struct ggml_backend_vk_device_context {
@@ -14097,6 +14098,7 @@ struct ggml_backend_vk_device_context {
std::string pci_id;
std::string id;
std::string uuid;
@ -57,7 +57,7 @@ index 56a34e18a..9caedbf2e 100644
int major;
int minor;
int driver_major;
@@ -14049,6 +14051,20 @@ void ggml_backend_vk_get_device_memory(ggml_backend_vk_device_context *ctx, size
@@ -14115,6 +14117,20 @@ void ggml_backend_vk_get_device_memory(ggml_backend_vk_device_context *ctx, size
vk::PhysicalDeviceProperties2 props2;
vkdev.getProperties2(&props2);
@ -78,7 +78,7 @@ index 56a34e18a..9caedbf2e 100644
if (!is_integrated_gpu)
{
@@ -14080,7 +14096,6 @@ void ggml_backend_vk_get_device_memory(ggml_backend_vk_device_context *ctx, size
@@ -14146,7 +14162,6 @@ void ggml_backend_vk_get_device_memory(ggml_backend_vk_device_context *ctx, size
}
// else fallback to memory budget if supported
@ -86,7 +86,7 @@ index 56a34e18a..9caedbf2e 100644
if (membudget_supported) {
memprops.pNext = &budgetprops;
}
@@ -14861,7 +14876,6 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
@@ -14927,7 +14942,6 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
/* .reg = */ reg,
/* .context = */ ctx,
});
@ -94,7 +94,7 @@ index 56a34e18a..9caedbf2e 100644
// Gather additional information about the device
int dev_idx = vk_instance.device_indices[i];
vk::PhysicalDeviceProperties props1;
@@ -14884,6 +14898,14 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
@@ -14950,6 +14964,14 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
}
}
ctx->uuid = oss.str();

View File

@ -2181,7 +2181,11 @@ size_t ggml_metal_op_flash_attn_ext_extra_pad(const ggml_tensor * op) {
const bool has_mask = op->src[3] != nullptr;
if (ggml_metal_op_flash_attn_ext_use_vec(op)) {
// note: the non-vec kernel requires more extra memory, so always reserve for it
GGML_ASSERT(OP_FLASH_ATTN_EXT_NCPSG >= OP_FLASH_ATTN_EXT_VEC_NCPSG);
//if (ggml_metal_op_flash_attn_ext_use_vec(op)) {
if (false) {
// note: always reserve the padding space to avoid graph reallocations
//const bool has_kvpad = ne11 % OP_FLASH_ATTN_EXT_VEC_NCPSG != 0;
const bool has_kvpad = true;

View File

@ -767,6 +767,9 @@ struct vk_device_struct {
vk_pipeline pipeline_topk_f32[num_topk_pipelines];
vk_pipeline pipeline_sum_rows_f32;
vk_pipeline pipeline_cumsum_f32;
vk_pipeline pipeline_cumsum_small_f32;
vk_pipeline pipeline_cumsum_multipass1_f32;
vk_pipeline pipeline_cumsum_multipass2_f32;
vk_pipeline pipeline_argmax_f32;
vk_pipeline pipeline_count_equal_i32;
std::map<vk_solve_tri_pipeline_state, vk_pipeline> pipeline_solve_tri_f32;
@ -2704,7 +2707,7 @@ static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vec
switch (src0_type) {
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
lut_size = 2*2048;
lut_size = 2*2048 + 4*2048;
break;
case GGML_TYPE_IQ2_XXS:
lut_size = 8*256;
@ -3629,6 +3632,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
uint32_t rm_kq = 2;
uint32_t rm_stdq_int = 1;
uint32_t rm_kq_int = 1;
auto const &rm_iq_int = [](uint32_t i) { return i == 0 ? 8u : 4u; };
if (device->vendor_id == VK_VENDOR_ID_AMD) {
if (device->architecture == AMD_GCN) {
rm_stdq = 2;
@ -3732,6 +3736,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_q8_1_f32", arr_dmmv_q4_k_q8_1_f32_len[reduc], arr_dmmv_q4_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_q8_1_f32", arr_dmmv_q5_k_q8_1_f32_len[reduc], arr_dmmv_q5_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_q8_1_f32", arr_dmmv_q6_k_q8_1_f32_len[reduc], arr_dmmv_q6_k_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int, i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_IQ1_S][i], "mul_mat_vec_iq1_s_q8_1_f32", arr_dmmv_iq1_s_q8_1_f32_len[reduc], arr_dmmv_iq1_s_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_iq_int(i), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(i), i+1}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_q8_1_f32[w][GGML_TYPE_IQ1_M][i], "mul_mat_vec_iq1_m_q8_1_f32", arr_dmmv_iq1_m_q8_1_f32_len[reduc], arr_dmmv_iq1_m_q8_1_f32_data[reduc], "main", mul_mat_vec_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_iq_int(i), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(i), i+1}, 1, true, use_subgroups, subgroup_size_int);
}
#endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT
}
@ -3778,6 +3786,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_q8_1_f32", arr_dmmv_id_q4_k_q8_1_f32_len[reduc], arr_dmmv_id_q4_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_q8_1_f32", arr_dmmv_id_q5_k_q8_1_f32_len[reduc], arr_dmmv_id_q5_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_q8_1_f32", arr_dmmv_id_q6_k_q8_1_f32_len[reduc], arr_dmmv_id_q6_k_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_kq_int, 1, 1}, {wg_size_subgroup_int, 1*rm_kq_int}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_IQ1_S], "mul_mat_vec_id_iq1_s_q8_1_f32", arr_dmmv_id_iq1_s_q8_1_f32_len[reduc], arr_dmmv_id_iq1_s_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_iq_int(0), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(0)}, 1, true, use_subgroups, subgroup_size_int);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_q8_1_f32[w][GGML_TYPE_IQ1_M], "mul_mat_vec_id_iq1_m_q8_1_f32", arr_dmmv_id_iq1_m_q8_1_f32_len[reduc], arr_dmmv_id_iq1_m_q8_1_f32_data[reduc], "main", mul_mat_vec_id_num_bindings, sizeof(vk_mat_vec_push_constants), {1*rm_iq_int(0), 1, 1}, {wg_size_subgroup_int, 1*rm_iq_int(0)}, 1, true, use_subgroups, subgroup_size_int);
}
#endif // GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT
}
@ -3785,6 +3796,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
#if !defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
GGML_UNUSED(rm_stdq_int);
GGML_UNUSED(rm_kq_int);
GGML_UNUSED(rm_iq_int);
#endif
// dequant shaders
@ -4171,7 +4183,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_cumsum_f32, "cumsum_f32", cumsum_f32_len, cumsum_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { 128, device->subgroup_size }, 1, true, true, device->subgroup_size);
const uint32_t cumsum_elem_per_thread = (device->vendor_id == VK_VENDOR_ID_AMD || device->vendor_id == VK_VENDOR_ID_INTEL) ? 2 : 4;
ggml_vk_create_pipeline(device, device->pipeline_cumsum_f32, "cumsum_f32", cumsum_f32_len, cumsum_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { 256, device->subgroup_size, cumsum_elem_per_thread }, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_cumsum_small_f32, "cumsum_f32", cumsum_f32_len, cumsum_f32_data, "main", 2, sizeof(vk_op_sum_rows_push_constants), {1, 1, 1}, { 128, device->subgroup_size, 1 }, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_cumsum_multipass1_f32, "cumsum_multipass1_f32", cumsum_multipass1_f32_len, cumsum_multipass1_f32_data, "main", 3, sizeof(vk_op_sum_rows_push_constants), {256, 1, 1}, { 256, device->subgroup_size }, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_cumsum_multipass2_f32, "cumsum_multipass2_f32", cumsum_multipass2_f32_len, cumsum_multipass2_f32_data, "main", 3, sizeof(vk_op_sum_rows_push_constants), {256, 1, 1}, { 256, device->subgroup_size }, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline(device, device->pipeline_count_equal_i32, "count_equal_i32", count_equal_i32_len, count_equal_i32_data, "main", 3, sizeof(vk_op_push_constants), {512, 1, 1}, { device->subgroup_size }, 1);
@ -5618,6 +5634,8 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
break;
default:
return nullptr;
@ -5774,6 +5792,8 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
break;
default:
return nullptr;
@ -7039,7 +7059,7 @@ static bool ggml_vk_should_use_mmvq(const vk_device& device, uint32_t m, uint32_
// Quantization overhead is not worth it for small k
switch (device->vendor_id) {
case VK_VENDOR_ID_NVIDIA:
if (src0_type == GGML_TYPE_Q2_K) {
if (src0_type == GGML_TYPE_Q2_K || src0_type == GGML_TYPE_IQ1_S || src0_type == GGML_TYPE_IQ1_M) {
return true;
}
@ -8793,7 +8813,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return nullptr;
case GGML_OP_CUMSUM:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_cumsum_f32;
if (src0->ne[0] <= 512) {
return ctx->device->pipeline_cumsum_small_f32;
} else {
return ctx->device->pipeline_cumsum_f32;
}
}
return nullptr;
case GGML_OP_SOLVE_TRI:
@ -10697,8 +10721,50 @@ static void ggml_vk_mean(ggml_backend_vk_context * ctx, vk_context& subctx, cons
}
static void ggml_vk_cumsum(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
vk_op_sum_rows_push_constants p = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_CUMSUM, p);
vk_op_sum_rows_push_constants pc = vk_op_sum_rows_push_constants_init(src0, dst, src0->ne[0]);
// Use the single pass shader when the rows are small or there are enough rows to fill the GPU.
// For fewer, larger rows, use the multipass shader to spread each row across SMs.
if (dst->ne[0] <= 4096 || ggml_nrows(dst) >= ctx->device->shader_core_count) {
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_CUMSUM, pc);
return;
}
// First pass computes partial sums within a block, and stores the last partial
// to the temp buffer. Second pass sums the block partials from the temp buffer
// and adds that to the result of the first pass.
vk_pipeline pipeline1 = ctx->device->pipeline_cumsum_multipass1_f32;
vk_pipeline pipeline2 = ctx->device->pipeline_cumsum_multipass2_f32;
GGML_ASSERT(pipeline1 != nullptr && pipeline2 != nullptr);
ggml_pipeline_request_descriptor_sets(ctx, pipeline1, 1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline2, 1);
std::array<uint32_t, 3> elements;
elements[0] = dst->ne[0];
elements[1] = (uint32_t)ggml_nrows(dst);
elements[2] = 1;
size_t temp_size = sizeof(float) * elements[0] * ggml_nrows(dst);
if (ctx->prealloc_size_split_k < temp_size) {
ctx->prealloc_size_split_k = temp_size;
ggml_vk_preallocate_buffers(ctx, subctx);
}
vk_subbuffer src_buf = ggml_vk_tensor_subbuffer(ctx, src0);
vk_subbuffer dst_buf = ggml_vk_tensor_subbuffer(ctx, dst);
vk_subbuffer temp_buf = ggml_vk_subbuffer(ctx, ctx->prealloc_split_k, 0);
if (ctx->prealloc_split_k_need_sync) {
ggml_vk_sync_buffers(ctx, subctx);
}
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline1, {src_buf, dst_buf, temp_buf}, pc, elements);
ggml_vk_sync_buffers(ctx, subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline2, {src_buf, dst_buf, temp_buf}, pc, elements);
ctx->prealloc_split_k_need_sync = true;
}
static void ggml_vk_argmax(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {

View File

@ -14,6 +14,7 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
layout (constant_id = 0) const uint BLOCK_SIZE = 128;
layout (constant_id = 1) const uint SUBGROUP_SIZE = 32;
layout (constant_id = 2) const uint ELEM_PER_THREAD = 4;
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
@ -38,32 +39,45 @@ void main() {
last_sum = 0;
}
uint col = tid;
uint num_iter = CEIL_DIV(p.n_cols, BLOCK_SIZE);
uint col = tid * ELEM_PER_THREAD;
uint num_iter = CEIL_DIV(p.n_cols, BLOCK_SIZE * ELEM_PER_THREAD);
for (int i = 0; i < num_iter; ++i) {
FLOAT_TYPE v = 0;
if (col < p.n_cols) {
v = FLOAT_TYPE(data_a[src_idx + col]);
FLOAT_TYPE v[ELEM_PER_THREAD];
FLOAT_TYPE thread_sum = 0;
[[unroll]] for (uint j = 0; j < ELEM_PER_THREAD; ++j) {
if (col + j < p.n_cols) {
thread_sum += FLOAT_TYPE(data_a[src_idx + col + j]);
}
v[j] = thread_sum;
}
v = subgroupInclusiveAdd(v);
thread_sum = subgroupExclusiveAdd(thread_sum);
[[unroll]] for (uint j = 0; j < ELEM_PER_THREAD; ++j) {
v[j] += thread_sum;
}
// Store the largest partial sum for each subgroup, then add the partials for all
// lower subgroups and the final partial sum from the previous iteration.
if (gl_SubgroupInvocationID == SUBGROUP_SIZE - 1) {
partial[subgroup_id] = v;
partial[subgroup_id] = v[ELEM_PER_THREAD - 1];
}
barrier();
for (int j = 0; j < subgroup_id; ++j) {
v += partial[j];
for (int s = 0; s < subgroup_id; ++s) {
[[unroll]] for (uint j = 0; j < ELEM_PER_THREAD; ++j) {
v[j] += partial[s];
}
}
[[unroll]] for (uint j = 0; j < ELEM_PER_THREAD; ++j) {
v[j] += last_sum;
}
v += last_sum;
barrier();
if (tid == BLOCK_SIZE - 1) {
last_sum = v;
last_sum = v[ELEM_PER_THREAD - 1];
}
if (col < p.n_cols) {
data_d[dst_idx + col] = D_TYPE(v);
[[unroll]] for (uint j = 0; j < ELEM_PER_THREAD; ++j) {
if (col + j < p.n_cols) {
data_d[dst_idx + col + j] = D_TYPE(v[j]);
}
}
col += BLOCK_SIZE;
col += BLOCK_SIZE * ELEM_PER_THREAD;
}
}

View File

@ -0,0 +1,60 @@
#version 450
#include "types.glsl"
#include "sum_rows.glsl"
#extension GL_EXT_control_flow_attributes : enable
#extension GL_KHR_shader_subgroup_arithmetic : enable
#extension GL_KHR_shader_subgroup_basic : enable
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
layout (binding = 2) writeonly buffer T {D_TYPE data_t[];};
layout (constant_id = 0) const uint BLOCK_SIZE = 128;
layout (constant_id = 1) const uint SUBGROUP_SIZE = 32;
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
shared FLOAT_TYPE partial[BLOCK_SIZE / SUBGROUP_SIZE];
void main() {
const uint row = gl_WorkGroupID.y;
const uint tid = gl_LocalInvocationID.x;
const uint col = gl_GlobalInvocationID.x;
const uint i03 = fastdiv(row, p.ne0_12mp, p.ne0_12L);
const uint i03_offset = i03 * p.ne01*p.ne02;
const uint i02 = fastdiv(row - i03_offset, p.ne0_1mp, p.ne0_1L);
const uint i01 = row - i03_offset - i02*p.ne01;
const uint src_idx = get_aoffset() + i01 * p.nb01 + i02 * p.nb02 + i03 * p.nb03;
const uint dst_idx = get_doffset() + i01 * p.nb11 + i02 * p.nb12 + i03 * p.nb13;
uint subgroup_id = tid / SUBGROUP_SIZE;
FLOAT_TYPE v = 0;
if (col < p.n_cols) {
v = FLOAT_TYPE(data_a[src_idx + col]);
}
v = subgroupInclusiveAdd(v);
// Store the largest partial sum for each subgroup, then add the partials for all
// lower subgroups and the final partial sum from the previous iteration.
if (gl_SubgroupInvocationID == SUBGROUP_SIZE - 1) {
partial[subgroup_id] = v;
}
barrier();
for (int j = 0; j < subgroup_id; ++j) {
v += partial[j];
}
barrier();
if (tid == BLOCK_SIZE - 1) {
data_t[gl_WorkGroupID.x + gl_NumWorkGroups.x * row] = v;
}
if (col < p.n_cols) {
data_d[dst_idx + col] = D_TYPE(v);
}
}

View File

@ -0,0 +1,66 @@
#version 450
#include "types.glsl"
#include "sum_rows.glsl"
#extension GL_EXT_control_flow_attributes : enable
#extension GL_KHR_shader_subgroup_arithmetic : enable
#extension GL_KHR_shader_subgroup_basic : enable
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) buffer D {D_TYPE data_d[];};
layout (binding = 2) readonly buffer T {D_TYPE data_t[];};
layout (constant_id = 0) const uint BLOCK_SIZE = 128;
layout (constant_id = 1) const uint SUBGROUP_SIZE = 32;
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
shared FLOAT_TYPE temp[BLOCK_SIZE / SUBGROUP_SIZE];
void main() {
const uint row = gl_WorkGroupID.y;
const uint tid = gl_LocalInvocationID.x;
const uint i03 = fastdiv(row, p.ne0_12mp, p.ne0_12L);
const uint i03_offset = i03 * p.ne01*p.ne02;
const uint i02 = fastdiv(row - i03_offset, p.ne0_1mp, p.ne0_1L);
const uint i01 = row - i03_offset - i02*p.ne01;
const uint src_idx = get_aoffset() + i01 * p.nb01 + i02 * p.nb02 + i03 * p.nb03;
const uint dst_idx = get_doffset() + i01 * p.nb11 + i02 * p.nb12 + i03 * p.nb13;
const uint col = gl_GlobalInvocationID.x;
float v = 0;
// prefetch value we're adding to
if (col < p.n_cols) {
v = data_d[dst_idx + col];
}
// compute the sum of all previous blocks
uint c = tid;
float sum = 0;
while (c < gl_WorkGroupID.x) {
sum += data_t[c + gl_NumWorkGroups.x * row];
c += BLOCK_SIZE;
}
sum = subgroupAdd(sum);
if (gl_SubgroupInvocationID == 0) {
temp[gl_SubgroupID] = sum;
}
barrier();
sum = 0;
[[unroll]] for (uint s = 0; s < BLOCK_SIZE / SUBGROUP_SIZE; ++s) {
sum += temp[s];
}
// Add the sum to what the first pass computed
if (col < p.n_cols) {
data_d[dst_idx + col] = v + sum;
}
}

View File

@ -14,6 +14,8 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
#define K_PER_ITER 8
#elif defined(DATA_A_QUANT_K)
#define K_PER_ITER 16
#elif defined(DATA_A_IQ1_S) || defined(DATA_A_IQ1_M)
#define K_PER_ITER 32
#else
#error unimplemented
#endif
@ -49,6 +51,15 @@ void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const
cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 1];
cache_b_qs[2] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 2];
cache_b_qs[3] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + b_qs_idx * 4 + 3];
#elif K_PER_ITER == 32
cache_b_qs[0] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 ];
cache_b_qs[1] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 1];
cache_b_qs[2] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 2];
cache_b_qs[3] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 3];
cache_b_qs[4] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 4];
cache_b_qs[5] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 5];
cache_b_qs[6] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 6];
cache_b_qs[7] = data_b[b_block_idx_outer].qs[b_block_idx_inner * 8 + 7];
#else
#error unimplemented
#endif

View File

@ -377,3 +377,118 @@ FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
return FLOAT_TYPE(float(cache_b_ds.x) * float(d_scale) * float(q_sum));
}
#endif
#if defined(DATA_A_IQ1_S)
void repack8(uint ib, uint iqs, out i32vec4 out0, out i32vec4 out1) {
const uint ib32 = iqs / 32;
const uint qh = data_a[ib].qh[ib32];
const uint qs16_0 = data_a_packed16[ib].qs[(4 * ib32 + 0) / 2];
const uint qs16_1 = data_a_packed16[ib].qs[(4 * ib32 + 2) / 2];
const uint qs0 = qs16_0 & 0xFF;
const uint qs1 = qs16_0 >> 8;
const uint qs2 = qs16_1 & 0xFF;
const uint qs3 = qs16_1 >> 8;
const uint hi0 = bitfieldExtract(qh, 3 * int(0), 3);
const uint hi1 = bitfieldExtract(qh, 3 * int(1), 3);
const uint hi2 = bitfieldExtract(qh, 3 * int(2), 3);
const uint hi3 = bitfieldExtract(qh, 3 * int(3), 3);
const int32_t grid0 = int32_t(iq1s_grid_gpu[qs0 | (hi0 << 8)]);
const int32_t grid1 = int32_t(iq1s_grid_gpu[qs1 | (hi1 << 8)]);
const int32_t grid2 = int32_t(iq1s_grid_gpu[qs2 | (hi2 << 8)]);
const int32_t grid3 = int32_t(iq1s_grid_gpu[qs3 | (hi3 << 8)]);
out0 = i32vec4((grid0 >> 0) & 0x0F0F0F0F,
(grid0 >> 4) & 0x0F0F0F0F,
(grid1 >> 0) & 0x0F0F0F0F,
(grid1 >> 4) & 0x0F0F0F0F);
out1 = i32vec4((grid2 >> 0) & 0x0F0F0F0F,
(grid2 >> 4) & 0x0F0F0F0F,
(grid3 >> 0) & 0x0F0F0F0F,
(grid3 >> 4) & 0x0F0F0F0F);
}
vec2 get_dm(uint ib, uint iqs) {
const uint ib32 = iqs / 32;
const uint qh = data_a[ib].qh[ib32];
const float delta = ((qh & 0x8000) != 0) ? -IQ1S_DELTA : IQ1S_DELTA;
const float d = float(data_a[ib].d);
const float dl = d * float(2 * bitfieldExtract(qh, 12, 3) + 1);
// the -1 cancels out the bias in iq1s_grid_gpu
return FLOAT_TYPE_VEC2(dl, dl * (delta - 1));
}
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
int32_t q_sum = 0;
const uint ib_k = ib_a / 8;
const uint iqs_k = (ib_a % 8) * 32 + iqs * 32;
i32vec4 qs_a0;
i32vec4 qs_a1;
repack8(ib_k, iqs_k, qs_a0, qs_a1);
const vec2 dm = get_dm(ib_k, iqs_k);
q_sum += dotPacked4x8EXT(qs_a0.x, cache_b_qs[0]);
q_sum += dotPacked4x8EXT(qs_a0.y, cache_b_qs[1]);
q_sum += dotPacked4x8EXT(qs_a0.z, cache_b_qs[2]);
q_sum += dotPacked4x8EXT(qs_a0.w, cache_b_qs[3]);
q_sum += dotPacked4x8EXT(qs_a1.x, cache_b_qs[4]);
q_sum += dotPacked4x8EXT(qs_a1.y, cache_b_qs[5]);
q_sum += dotPacked4x8EXT(qs_a1.z, cache_b_qs[6]);
q_sum += dotPacked4x8EXT(qs_a1.w, cache_b_qs[7]);
return FLOAT_TYPE(float(cache_b_ds.x) * float(dm.x) * float(q_sum) + float(dm.y) * float(cache_b_ds.y));
}
#endif
#if defined(DATA_A_IQ1_M)
FLOAT_TYPE mmvq_dot_product(const uint ib_a, const uint iqs) {
const uint ib_k = ib_a / 8;
const uint iqs_k = (ib_a % 8) * 32 + iqs * 32;
const uint ib32 = iqs_k / 32;
const uint ib64 = ib32 / 2;
const uint16_t[4] scales = data_a[ib_k].scales;
const u16vec4 s = u16vec4(scales[0], scales[1], scales[2], scales[3]) >> 12;
const float d = float(unpackHalf2x16(s.x | (s.y << 4) | (s.z << 8) | (s.w << 12)).x);
const uint qs32 = data_a_packed32[ib_k].qs[ib32];
const uint qh16 = data_a_packed16[ib_k].qh[ib32];
float sum = 0;
const uint sc = data_a[ib_k].scales[ib64];
[[unroll]] for (int l = 0; l < 4; ++l) {
const uint ib16 = 2 * ib32 + l / 2;
const float dl = d * (2 * bitfieldExtract(sc, 3 * int(ib16 & 3), 3) + 1);
const uint qh = qh16 >> (4 * l);
const uint qs = (qs32 >> (8 * l)) & 0xFF;
const float delta = ((qh & 8) != 0) ? -IQ1M_DELTA : IQ1M_DELTA;
const int32_t grid = int32_t(iq1s_grid_gpu[qs | ((qh & 7) << 8)]);
int32_t q_sum = 0;
q_sum += dotPacked4x8EXT((grid >> 0) & 0x0F0F0F0F, cache_b_qs[2 * l + 0]);
q_sum += dotPacked4x8EXT((grid >> 4) & 0x0F0F0F0F, cache_b_qs[2 * l + 1]);
int32_t y_sum = 0;
y_sum += dotPacked4x8EXT(int(0x01010101), cache_b_qs[2 * l + 0]);
y_sum += dotPacked4x8EXT(int(0x01010101), cache_b_qs[2 * l + 1]);
// the -1 cancels out the bias in iq1s_grid_gpu
sum += dl * (q_sum + y_sum * (delta - 1));
}
sum *= float(cache_b_ds.x);
return sum;
}
#endif

View File

@ -396,6 +396,12 @@ struct block_iq1_s {
uint16_t qh[QUANT_K_IQ1_S/32];
};
struct block_iq1_s_packed16 {
float16_t d;
uint16_t qs[QUANT_K_IQ1_S/8/2];
uint16_t qh[QUANT_K_IQ1_S/32];
};
#define QUANT_K_IQ1_M 256
#define QUANT_R_IQ1_M 1
@ -405,6 +411,18 @@ struct block_iq1_m {
uint16_t scales[QUANT_K_IQ1_M/64];
};
struct block_iq1_m_packed16 {
uint16_t qs[QUANT_K_IQ1_M/8/2];
uint16_t qh[QUANT_K_IQ1_M/16/2];
uint16_t scales[QUANT_K_IQ1_M/64];
};
struct block_iq1_m_packed32 {
uint32_t qs[QUANT_K_IQ1_M/8/4];
uint32_t qh[QUANT_K_IQ1_M/16/4];
uint32_t scales[QUANT_K_IQ1_M/64/2];
};
struct block_iq1_m_packed64 {
uint64_t qs[QUANT_K_IQ1_M/8/8];
uint64_t qh[QUANT_K_IQ1_M/16/8];
@ -415,12 +433,15 @@ struct block_iq1_m_packed64 {
#define QUANT_K QUANT_K_IQ1_S
#define QUANT_R QUANT_R_IQ1_S
#define A_TYPE block_iq1_s
#define A_TYPE_PACKED16 block_iq1_s_packed16
#endif
#if defined(DATA_A_IQ1_M)
#define QUANT_K QUANT_K_IQ1_M
#define QUANT_R QUANT_R_IQ1_M
#define A_TYPE block_iq1_m
#define A_TYPE_PACKED16 block_iq1_m_packed16
#define A_TYPE_PACKED32 block_iq1_m_packed32
#endif
#if defined(DATA_A_IQ1_S) || defined(DATA_A_IQ1_M)
@ -559,7 +580,270 @@ const uint[1024] iq1s_grid_const = {
0x55dd55df, 0x55d555d7, 0x5503550c, 0x557f5501, 0x5577557d, 0x55405575, 0x555d555f, 0x55555557
};
// Same content as iq1s_grid_const except each 2-bit value is expanded to 4-bit
// and has 1 added to it (allows packed values to be extracted with & 0x0F0F0F0F
// and 0xF0F0F0F0).
const uint32_t[2048] iq1s_grid_gpu_const = {
0x00000000, 0x00000002, 0x00000101, 0x00000200, 0x00000202, 0x00010001, 0x00010101, 0x00020000,
0x00020002, 0x00020200, 0x00020202, 0x01000101, 0x01010001, 0x01010100, 0x01010102, 0x01020101,
0x02000000, 0x02000002, 0x02000200, 0x02000202, 0x02010101, 0x02020000, 0x02020002, 0x02020200,
0x02020202, 0x00000110, 0x00000111, 0x00010011, 0x00010110, 0x00010112, 0x00010211, 0x00010212,
0x00020111, 0x01000011, 0x01000112, 0x01000211, 0x01010012, 0x01010111, 0x01010212, 0x01020011,
0x01020110, 0x01020112, 0x01020210, 0x02000111, 0x02010011, 0x02010110, 0x02010112, 0x02020111,
0x00000020, 0x00000022, 0x00000220, 0x00000222, 0x00010121, 0x00020020, 0x00020022, 0x00020220,
0x00020222, 0x01000121, 0x01010021, 0x01010221, 0x01020120, 0x01020221, 0x02000020, 0x02000022,
0x02000220, 0x02000222, 0x02010021, 0x02010121, 0x02010221, 0x02020020, 0x02020022, 0x02020220,
0x02020222, 0x00011001, 0x00011100, 0x00011102, 0x00021101, 0x01001001, 0x01001201, 0x01011101,
0x01011202, 0x01021100, 0x01021101, 0x02011001, 0x02011201, 0x02021101, 0x00001011, 0x00001110,
0x00001111, 0x00001112, 0x00011111, 0x00011210, 0x00011212, 0x00021211, 0x01001010, 0x01001111,
0x01001212, 0x01011010, 0x01011011, 0x01011110, 0x01011111, 0x01011112, 0x01011211, 0x01021010,
0x01021012, 0x01021111, 0x01021210, 0x01021212, 0x02001011, 0x02011011, 0x02011111, 0x02011210,
0x02011212, 0x02021011, 0x02021110, 0x02021111, 0x02021112, 0x02021211, 0x00011120, 0x00011221,
0x01001021, 0x01001120, 0x01011020, 0x01011022, 0x01011121, 0x01011220, 0x01021020, 0x01021021,
0x01021122, 0x01021221, 0x02001121, 0x02011021, 0x02011120, 0x02011221, 0x00002000, 0x00002002,
0x00002200, 0x00002202, 0x00012101, 0x00022000, 0x00022002, 0x00022200, 0x00022202, 0x01002101,
0x01012001, 0x01012102, 0x01022101, 0x02002000, 0x02002002, 0x02002200, 0x02002202, 0x02012101,
0x02022000, 0x02022002, 0x02022200, 0x02022202, 0x00002111, 0x00012011, 0x00012110, 0x00012211,
0x00022110, 0x00022111, 0x01002011, 0x01012010, 0x01012011, 0x01012111, 0x01022011, 0x01022110,
0x01022211, 0x02012011, 0x02012110, 0x02012112, 0x02012211, 0x02022111, 0x00002020, 0x00002022,
0x00002220, 0x00002222, 0x00012121, 0x00022020, 0x00022022, 0x00022220, 0x00022222, 0x01002121,
0x01012021, 0x01012221, 0x01022021, 0x01022121, 0x02002020, 0x02002022, 0x02002121, 0x02002220,
0x02002222, 0x02012121, 0x02022020, 0x02022022, 0x02022220, 0x02022222, 0x00110000, 0x00110001,
0x00110100, 0x00110201, 0x00120100, 0x00120101, 0x01100001, 0x01100100, 0x01110000, 0x01110101,
0x01110200, 0x01120001, 0x01120100, 0x01120101, 0x01120201, 0x02110001, 0x02110100, 0x02110102,
0x02120001, 0x02120101, 0x00100011, 0x00100110, 0x00100112, 0x00100211, 0x00110010, 0x00110012,
0x00110111, 0x00110210, 0x00120011, 0x00120110, 0x00120211, 0x01100111, 0x01100212, 0x01110010,
0x01110011, 0x01110012, 0x01110110, 0x01110111, 0x01110112, 0x01110211, 0x01120010, 0x01120111,
0x02100110, 0x02110012, 0x02110111, 0x02120011, 0x02120110, 0x00110021, 0x00110120, 0x00110122,
0x00120121, 0x01100020, 0x01100122, 0x01100221, 0x01110022, 0x01110121, 0x01110220, 0x01110222,
0x01120120, 0x01120122, 0x02100121, 0x02110021, 0x02110120, 0x02110122, 0x02120121, 0x00101001,
0x00101102, 0x00101201, 0x00111100, 0x00111101, 0x00111200, 0x00111201, 0x00121001, 0x00121102,
0x01101001, 0x01101101, 0x01101102, 0x01101200, 0x01101202, 0x01111001, 0x01111100, 0x01111101,
0x01111102, 0x01111201, 0x01121002, 0x01121101, 0x01121200, 0x02101100, 0x02101201, 0x02111000,
0x02111100, 0x02111101, 0x02111200, 0x02111201, 0x02111202, 0x02121001, 0x02121100, 0x02121101,
0x02121201, 0x00101012, 0x00101111, 0x00101212, 0x00111011, 0x00111110, 0x00111111, 0x00111112,
0x00111211, 0x00121010, 0x00121012, 0x00121111, 0x00121210, 0x00121212, 0x01101011, 0x01101110,
0x01101111, 0x01101112, 0x01111011, 0x01111012, 0x01111110, 0x01111111, 0x01111112, 0x01111211,
0x01111212, 0x01121011, 0x01121110, 0x01121111, 0x01121112, 0x01121211, 0x02101010, 0x02101012,
0x02101110, 0x02101111, 0x02101210, 0x02101212, 0x02111010, 0x02111011, 0x02111110, 0x02111111,
0x02111112, 0x02111211, 0x02111212, 0x02121010, 0x02121012, 0x02121111, 0x00101021, 0x00101120,
0x00101121, 0x00101122, 0x00111121, 0x00111122, 0x00111220, 0x00111222, 0x00121021, 0x00121122,
0x01101020, 0x01101022, 0x01101120, 0x01101121, 0x01101220, 0x01101222, 0x01111021, 0x01111121,
0x01111122, 0x01111220, 0x01111221, 0x01121021, 0x01121120, 0x01121121, 0x01121220, 0x01121221,
0x01121222, 0x02101122, 0x02101222, 0x02111022, 0x02111121, 0x02121120, 0x02121221, 0x00112001,
0x00112102, 0x00122101, 0x01102001, 0x01102100, 0x01102102, 0x01102201, 0x01112000, 0x01112101,
0x01112200, 0x01112202, 0x01122000, 0x01122001, 0x01122100, 0x01122102, 0x01122201, 0x02102101,
0x02112001, 0x02112100, 0x02122101, 0x00112010, 0x00112012, 0x00112111, 0x00112212, 0x00122011,
0x00122111, 0x01102012, 0x01102110, 0x01102111, 0x01102210, 0x01112011, 0x01112110, 0x01112111,
0x01112112, 0x01112211, 0x01112212, 0x01122010, 0x01122111, 0x01122212, 0x02102211, 0x02112011,
0x02112012, 0x02112111, 0x02112210, 0x02122011, 0x02122112, 0x02122211, 0x00102221, 0x00112122,
0x00122120, 0x00122122, 0x01102120, 0x01102122, 0x01102221, 0x01112020, 0x01112022, 0x01112121,
0x01112220, 0x01122021, 0x01122122, 0x01122221, 0x02102121, 0x02112021, 0x02112122, 0x02112222,
0x00200000, 0x00200002, 0x00200200, 0x00200202, 0x00210101, 0x00220000, 0x00220002, 0x00220101,
0x00220200, 0x00220202, 0x01200101, 0x01210001, 0x01210201, 0x01220001, 0x01220101, 0x02200000,
0x02200002, 0x02200200, 0x02200202, 0x02210101, 0x02220000, 0x02220002, 0x02220101, 0x02220200,
0x02220202, 0x00200111, 0x00210011, 0x00210110, 0x00210211, 0x00220111, 0x01200012, 0x01200110,
0x01200211, 0x01210111, 0x01210210, 0x01210212, 0x01220011, 0x01220110, 0x01220111, 0x01220112,
0x02200111, 0x02210010, 0x02210112, 0x02210211, 0x02220111, 0x00200021, 0x00200220, 0x00200222,
0x00210021, 0x00210121, 0x00220020, 0x00220022, 0x00220220, 0x00220222, 0x01200121, 0x01210021,
0x01210122, 0x01210221, 0x01220121, 0x02200021, 0x02200220, 0x02200222, 0x02210021, 0x02210121,
0x02220020, 0x02220022, 0x02220220, 0x02220222, 0x00201101, 0x00211100, 0x00211102, 0x00211201,
0x00221101, 0x01201100, 0x01201101, 0x01201102, 0x01201201, 0x01211002, 0x01211101, 0x01211200,
0x01211202, 0x01221102, 0x02201101, 0x02211001, 0x02211100, 0x02211201, 0x02221001, 0x02221101,
0x00201211, 0x00211111, 0x00221011, 0x00221211, 0x01201010, 0x01201111, 0x01201210, 0x01211011,
0x01211110, 0x01211111, 0x01211211, 0x01221012, 0x01221111, 0x01221210, 0x02201211, 0x02211010,
0x02211110, 0x02211111, 0x02211210, 0x02211212, 0x02221011, 0x02221110, 0x02221112, 0x02221211,
0x00201121, 0x00211020, 0x00211022, 0x00211221, 0x00221121, 0x01201021, 0x01201221, 0x01211121,
0x01221020, 0x01221021, 0x01221221, 0x02201120, 0x02201122, 0x02211020, 0x02211222, 0x00202000,
0x00202002, 0x00202200, 0x00202202, 0x00212101, 0x00222000, 0x00222002, 0x00222200, 0x00222202,
0x01202101, 0x01212001, 0x01212100, 0x01222101, 0x02202000, 0x02202002, 0x02202200, 0x02202202,
0x02222000, 0x02222002, 0x02222200, 0x02222202, 0x00202211, 0x00212011, 0x00212110, 0x00212211,
0x00222111, 0x01202112, 0x01202211, 0x01212012, 0x01212111, 0x01222011, 0x01222110, 0x01222112,
0x01222211, 0x02202111, 0x02212010, 0x02212112, 0x02212211, 0x02222110, 0x02222111, 0x00202020,
0x00202022, 0x00202220, 0x00202222, 0x00222020, 0x00222022, 0x00222220, 0x00222222, 0x01202121,
0x01212021, 0x01212122, 0x01212221, 0x01222121, 0x02202020, 0x02202022, 0x02202220, 0x02202222,
0x02212121, 0x02222020, 0x02222022, 0x02222220, 0x02222222, 0x10000101, 0x10010001, 0x10010102,
0x10020101, 0x11000201, 0x11010002, 0x11010101, 0x11010200, 0x11010202, 0x11020001, 0x11020100,
0x11020102, 0x12010100, 0x12010201, 0x12020001, 0x12020102, 0x10000010, 0x10000011, 0x10000110,
0x10000112, 0x10000211, 0x10010012, 0x10010111, 0x10010112, 0x10010210, 0x10010212, 0x10020011,
0x10020112, 0x10020211, 0x11000111, 0x11000210, 0x11000212, 0x11010011, 0x11010110, 0x11010111,
0x11010112, 0x11010211, 0x11010212, 0x11020111, 0x11020210, 0x11020212, 0x12000011, 0x12000110,
0x12000112, 0x12010010, 0x12010012, 0x12010111, 0x12020010, 0x12020011, 0x12020012, 0x10000121,
0x10010021, 0x10010120, 0x10010122, 0x10020121, 0x11000021, 0x11010022, 0x11010121, 0x11010222,
0x11020120, 0x11020221, 0x12000221, 0x12010120, 0x12020121, 0x10001001, 0x10011101, 0x10011201,
0x10021201, 0x11001101, 0x11001200, 0x11001202, 0x11011001, 0x11011100, 0x11011101, 0x11011102,
0x11021001, 0x11021002, 0x11021101, 0x11021200, 0x11021202, 0x12001001, 0x12001102, 0x12001201,
0x12011000, 0x12011002, 0x12011101, 0x12021000, 0x12021001, 0x12021201, 0x10001011, 0x10001012,
0x10001111, 0x10001212, 0x10011011, 0x10011110, 0x10011111, 0x10011112, 0x10011211, 0x10021010,
0x10021111, 0x10021212, 0x11001011, 0x11001110, 0x11001111, 0x11001112, 0x11001211, 0x11011010,
0x11011011, 0x11011110, 0x11011111, 0x11011112, 0x11011210, 0x11011211, 0x11021011, 0x11021110,
0x11021111, 0x11021112, 0x11021211, 0x12001012, 0x12001110, 0x12001111, 0x12001210, 0x12011011,
0x12011110, 0x12011111, 0x12011112, 0x12011211, 0x12011212, 0x12021111, 0x12021210, 0x12021212,
0x10001021, 0x10001121, 0x10001221, 0x10011120, 0x10011121, 0x10011220, 0x10011222, 0x10021021,
0x10021120, 0x10021221, 0x11001020, 0x11001022, 0x11001121, 0x11001220, 0x11011020, 0x11011021,
0x11011022, 0x11011121, 0x11011122, 0x11011221, 0x11021022, 0x11021121, 0x11021220, 0x12001021,
0x12001121, 0x12001222, 0x12011120, 0x12011121, 0x12021021, 0x12021120, 0x12021122, 0x10002101,
0x10012001, 0x10012101, 0x10012202, 0x10022101, 0x11002002, 0x11002201, 0x11012000, 0x11012101,
0x11012200, 0x11022001, 0x11022100, 0x11022102, 0x11022201, 0x12002101, 0x12012001, 0x12012100,
0x12012102, 0x12012201, 0x12022101, 0x10002011, 0x10002111, 0x10002112, 0x10002212, 0x10012010,
0x10012110, 0x10012111, 0x10012210, 0x10022011, 0x10022110, 0x10022112, 0x11002010, 0x11002111,
0x11002212, 0x11012011, 0x11012012, 0x11012110, 0x11012111, 0x11012112, 0x11012211, 0x11022010,
0x11022012, 0x11022111, 0x11022112, 0x11022212, 0x12002112, 0x12002211, 0x12012012, 0x12012111,
0x12012112, 0x12012210, 0x12022011, 0x12022110, 0x12022112, 0x12022211, 0x10012122, 0x11002120,
0x11002122, 0x11002221, 0x11012121, 0x11012220, 0x11012222, 0x11022120, 0x11022221, 0x12012120,
0x12022121, 0x10100001, 0x10100100, 0x10100101, 0x10100102, 0x10100201, 0x10110002, 0x10110101,
0x10110202, 0x10120001, 0x10120100, 0x10120201, 0x11100000, 0x11100101, 0x11100200, 0x11110001,
0x11110100, 0x11110101, 0x11110102, 0x11110201, 0x11120101, 0x11120200, 0x12100102, 0x12100201,
0x12110101, 0x12110200, 0x12120000, 0x12120001, 0x12120102, 0x12120201, 0x10100111, 0x10100210,
0x10100211, 0x10100212, 0x10110011, 0x10110110, 0x10110111, 0x10110112, 0x10110210, 0x10110211,
0x10120010, 0x10120111, 0x10120112, 0x10120210, 0x10120212, 0x11100011, 0x11100110, 0x11100111,
0x11100112, 0x11100211, 0x11110010, 0x11110011, 0x11110012, 0x11110110, 0x11110111, 0x11110112,
0x11110210, 0x11110211, 0x11110212, 0x11120011, 0x11120110, 0x11120111, 0x11120112, 0x11120211,
0x12100012, 0x12100111, 0x12110011, 0x12110110, 0x12110111, 0x12110112, 0x12110211, 0x12120010,
0x12120111, 0x12120212, 0x10100021, 0x10100122, 0x10110022, 0x10110121, 0x10110222, 0x10120021,
0x10120120, 0x11100022, 0x11100121, 0x11100222, 0x11110021, 0x11110120, 0x11110121, 0x11110122,
0x11110221, 0x11120022, 0x11120121, 0x12100121, 0x12110020, 0x12110022, 0x12110121, 0x12110221,
0x12110222, 0x12120120, 0x10101100, 0x10101101, 0x10111001, 0x10111100, 0x10111101, 0x10111102,
0x10111200, 0x10111201, 0x10121001, 0x10121101, 0x10121200, 0x10121202, 0x11101001, 0x11101100,
0x11101101, 0x11101102, 0x11101201, 0x11101202, 0x11111000, 0x11111001, 0x11111100, 0x11111101,
0x11111102, 0x11111200, 0x11111201, 0x11111202, 0x11121001, 0x11121002, 0x11121100, 0x11121101,
0x11121102, 0x11121201, 0x12101000, 0x12101200, 0x12101202, 0x12111001, 0x12111100, 0x12111101,
0x12111102, 0x12111201, 0x12121001, 0x12121100, 0x12121101, 0x12121202, 0x10101011, 0x10101012,
0x10101110, 0x10101111, 0x10101112, 0x10101211, 0x10111010, 0x10111011, 0x10111012, 0x10111110,
0x10111111, 0x10111112, 0x10111211, 0x10111212, 0x10121011, 0x10121110, 0x10121111, 0x10121112,
0x10121211, 0x11101010, 0x11101011, 0x11101012, 0x11101110, 0x11101111, 0x11101112, 0x11101210,
0x11101211, 0x11111010, 0x11111011, 0x11111012, 0x11111110, 0x11111111, 0x11111112, 0x11111210,
0x11111211, 0x11111212, 0x11121010, 0x11121011, 0x11121110, 0x11121111, 0x11121112, 0x11121210,
0x11121211, 0x11121212, 0x12101011, 0x12101110, 0x12101111, 0x12101211, 0x12101212, 0x12111010,
0x12111011, 0x12111110, 0x12111111, 0x12111112, 0x12111210, 0x12111211, 0x12121011, 0x12121110,
0x12121111, 0x12121112, 0x12121211, 0x10101020, 0x10101021, 0x10101022, 0x10101120, 0x10101122,
0x10101220, 0x10101221, 0x10111021, 0x10111120, 0x10111121, 0x10111220, 0x10111221, 0x10121020,
0x10121021, 0x10121022, 0x10121120, 0x10121121, 0x10121122, 0x10121220, 0x10121221, 0x11101021,
0x11101121, 0x11101122, 0x11101220, 0x11101221, 0x11101222, 0x11111020, 0x11111021, 0x11111022,
0x11111120, 0x11111121, 0x11111122, 0x11111220, 0x11111221, 0x11111222, 0x11121021, 0x11121120,
0x11121121, 0x11121221, 0x12101022, 0x12101121, 0x12101122, 0x12101220, 0x12101221, 0x12101222,
0x12111021, 0x12111121, 0x12111222, 0x12121022, 0x12121121, 0x12121122, 0x12121220, 0x12121221,
0x10102100, 0x10102101, 0x10102102, 0x10102201, 0x10112000, 0x10112101, 0x10112200, 0x10122001,
0x10122202, 0x11102101, 0x11102200, 0x11102202, 0x11112001, 0x11112100, 0x11112101, 0x11112102,
0x11112200, 0x11112201, 0x11122000, 0x11122002, 0x11122100, 0x11122101, 0x12102002, 0x12102201,
0x12112000, 0x12112002, 0x12112101, 0x12112200, 0x12122001, 0x12122201, 0x10102011, 0x10102012,
0x10102111, 0x10102212, 0x10112011, 0x10112110, 0x10112111, 0x10112112, 0x10112211, 0x10122111,
0x11102011, 0x11102110, 0x11102111, 0x11102112, 0x11102211, 0x11112010, 0x11112011, 0x11112012,
0x11112110, 0x11112111, 0x11112112, 0x11112210, 0x11112211, 0x11112212, 0x11122011, 0x11122110,
0x11122111, 0x11122112, 0x11122211, 0x12102011, 0x12102111, 0x12102211, 0x12112011, 0x12112110,
0x12112111, 0x12112112, 0x12112210, 0x12112211, 0x12122111, 0x10102120, 0x10102220, 0x10112121,
0x10112222, 0x10122020, 0x10122121, 0x10122122, 0x10122221, 0x11102121, 0x11102220, 0x11102221,
0x11112021, 0x11112121, 0x11112122, 0x11112220, 0x11112221, 0x11122022, 0x11122121, 0x11122220,
0x11122222, 0x12102021, 0x12102222, 0x12112022, 0x12112121, 0x12112122, 0x12112220, 0x12112222,
0x12122021, 0x10200101, 0x10210100, 0x10210102, 0x10210201, 0x10220101, 0x11200100, 0x11210000,
0x11210101, 0x11210102, 0x11210200, 0x11210202, 0x11220001, 0x11220100, 0x11220102, 0x11220201,
0x12200001, 0x12210102, 0x12220101, 0x10200011, 0x10200110, 0x10200112, 0x10200211, 0x10210012,
0x10210111, 0x10220011, 0x10220012, 0x10220112, 0x10220211, 0x11200111, 0x11200211, 0x11210011,
0x11210111, 0x11210112, 0x11210211, 0x11220111, 0x11220112, 0x11220212, 0x12200110, 0x12200212,
0x12210012, 0x12210111, 0x12220011, 0x12220112, 0x12220211, 0x10210021, 0x10210122, 0x10210221,
0x11200020, 0x11200021, 0x11200122, 0x11210121, 0x11210122, 0x11210220, 0x11220020, 0x12200121,
0x12210021, 0x12210122, 0x12220121, 0x10211001, 0x10211002, 0x10211101, 0x10211102, 0x10211202,
0x10221001, 0x10221102, 0x10221201, 0x11201000, 0x11201002, 0x11201101, 0x11201200, 0x11201202,
0x11211001, 0x11211100, 0x11211101, 0x11211102, 0x11211201, 0x11211202, 0x11221000, 0x11221002,
0x11221101, 0x12201100, 0x12201101, 0x12201201, 0x12211000, 0x12211002, 0x12211100, 0x12211101,
0x12211102, 0x12211200, 0x12211202, 0x12221001, 0x12221100, 0x12221201, 0x10201111, 0x10201210,
0x10201212, 0x10211011, 0x10211111, 0x10211112, 0x10211211, 0x11201110, 0x11201111, 0x11201112,
0x11201211, 0x11211010, 0x11211011, 0x11211110, 0x11211111, 0x11211112, 0x11211211, 0x11221011,
0x11221110, 0x11221111, 0x11221112, 0x11221211, 0x12201112, 0x12201211, 0x12201212, 0x12211011,
0x12211111, 0x12211112, 0x12211211, 0x12211212, 0x12221012, 0x12221111, 0x12221112, 0x12221210,
0x10201022, 0x10201221, 0x10211121, 0x10221020, 0x10221122, 0x10221220, 0x10221221, 0x11201020,
0x11201121, 0x11201220, 0x11201222, 0x11211021, 0x11211120, 0x11211121, 0x11211122, 0x11211220,
0x11211222, 0x11221020, 0x11221121, 0x11221220, 0x12201020, 0x12201022, 0x12201121, 0x12201222,
0x12211120, 0x12211122, 0x12211220, 0x12211221, 0x12221020, 0x12221120, 0x12221122, 0x12221222,
0x10212102, 0x10212201, 0x10222101, 0x11202001, 0x11212002, 0x11212101, 0x11212202, 0x11222001,
0x11222201, 0x12202101, 0x12212001, 0x12212200, 0x12222102, 0x10202011, 0x10202110, 0x10212010,
0x10212111, 0x10222011, 0x10222110, 0x10222112, 0x10222211, 0x11202010, 0x11202011, 0x11202111,
0x11202112, 0x11202210, 0x11212011, 0x11212110, 0x11212111, 0x11212112, 0x11212211, 0x11222010,
0x11222111, 0x11222212, 0x12202012, 0x12202110, 0x12202212, 0x12212111, 0x12222011, 0x12222110,
0x12222111, 0x12222211, 0x10212021, 0x10212122, 0x10212220, 0x11202021, 0x11202120, 0x11202221,
0x11212020, 0x11212121, 0x11212220, 0x11212222, 0x11222120, 0x11222121, 0x11222221, 0x12202122,
0x12212120, 0x12212220, 0x12212222, 0x12222122, 0x20000000, 0x20000002, 0x20000200, 0x20000202,
0x20020000, 0x20020002, 0x20020200, 0x20020202, 0x21000101, 0x21010000, 0x21010001, 0x21010100,
0x21010102, 0x21010201, 0x21020101, 0x22000000, 0x22000002, 0x22000200, 0x22000202, 0x22010101,
0x22020000, 0x22020002, 0x22020200, 0x22020202, 0x20000111, 0x20010011, 0x20010110, 0x20010112,
0x20010211, 0x20020111, 0x21000011, 0x21000110, 0x21000211, 0x21010010, 0x21010012, 0x21010111,
0x21010112, 0x21010210, 0x21010211, 0x21020110, 0x21020112, 0x21020211, 0x22000111, 0x22000211,
0x22010110, 0x22010112, 0x22010211, 0x22020111, 0x20000020, 0x20000022, 0x20000220, 0x20000222,
0x20010121, 0x20020020, 0x20020022, 0x20020220, 0x20020222, 0x21010021, 0x21010120, 0x21010221,
0x21020121, 0x22000020, 0x22000022, 0x22000220, 0x22000222, 0x22010121, 0x22020020, 0x22020022,
0x22020220, 0x22020222, 0x20011100, 0x20011201, 0x21001001, 0x21001100, 0x21011001, 0x21011101,
0x21011202, 0x21021001, 0x21021100, 0x21021201, 0x22011100, 0x22011201, 0x20001011, 0x20001211,
0x20011012, 0x20011111, 0x20011212, 0x20021112, 0x20021211, 0x21001010, 0x21001011, 0x21001111,
0x21001210, 0x21011011, 0x21011110, 0x21011111, 0x21011112, 0x21011211, 0x21011212, 0x21021111,
0x21021112, 0x21021210, 0x21021212, 0x22001011, 0x22001110, 0x22001112, 0x22001211, 0x22011010,
0x22011012, 0x22011111, 0x22011210, 0x22021112, 0x20011021, 0x20011122, 0x20011221, 0x20021121,
0x21001021, 0x21001120, 0x21001221, 0x21001222, 0x21011020, 0x21011121, 0x21011221, 0x21011222,
0x21021021, 0x21021122, 0x21021222, 0x22001121, 0x22011021, 0x22011222, 0x22021120, 0x20002000,
0x20002002, 0x20002200, 0x20002202, 0x20012101, 0x20022000, 0x20022002, 0x20022200, 0x20022202,
0x21002001, 0x21002101, 0x21012001, 0x21012100, 0x21012201, 0x21022101, 0x21022201, 0x22002000,
0x22002002, 0x22002200, 0x22002202, 0x22012101, 0x22022000, 0x22022002, 0x22022200, 0x22022202,
0x20002111, 0x20002112, 0x20012011, 0x20012110, 0x20012112, 0x20022111, 0x21002011, 0x21002110,
0x21002112, 0x21002211, 0x21012010, 0x21012012, 0x21012111, 0x21012212, 0x21022011, 0x21022110,
0x22002111, 0x22012112, 0x22012211, 0x22022111, 0x20002020, 0x20002022, 0x20002220, 0x20002222,
0x20012121, 0x20022020, 0x20022022, 0x20022220, 0x20022222, 0x21002121, 0x21012021, 0x21012120,
0x21012122, 0x22002020, 0x22002022, 0x22002220, 0x22002222, 0x22012121, 0x22022020, 0x22022022,
0x22022220, 0x22022222, 0x20100101, 0x20110001, 0x20110102, 0x20110200, 0x20110201, 0x20120101,
0x21100001, 0x21100102, 0x21100201, 0x21110101, 0x21110200, 0x21110202, 0x21120201, 0x21120202,
0x22100101, 0x22110001, 0x22110100, 0x22110102, 0x22110201, 0x22120101, 0x20100011, 0x20100110,
0x20100112, 0x20100211, 0x20110010, 0x20110111, 0x20110210, 0x20110212, 0x20120011, 0x20120110,
0x20120112, 0x20120211, 0x21100010, 0x21100111, 0x21110010, 0x21110011, 0x21110110, 0x21110111,
0x21110112, 0x21110211, 0x21120012, 0x21120111, 0x22100110, 0x22100112, 0x22110012, 0x22110111,
0x22110210, 0x22120011, 0x22120110, 0x22120112, 0x22120211, 0x20100121, 0x20110021, 0x20110120,
0x20110221, 0x20120121, 0x21100120, 0x21100122, 0x21100221, 0x21110020, 0x21110022, 0x21110121,
0x21110220, 0x21120122, 0x21120221, 0x22100121, 0x22110120, 0x22110122, 0x22120221, 0x20101001,
0x20101100, 0x20101102, 0x20111000, 0x20111101, 0x20111200, 0x20121102, 0x21101000, 0x21101202,
0x21111001, 0x21111100, 0x21111101, 0x21111102, 0x21111200, 0x21111201, 0x21121000, 0x21121001,
0x21121002, 0x21121101, 0x22101100, 0x22101102, 0x22111002, 0x22111100, 0x22111101, 0x22111200,
0x22121001, 0x22121201, 0x20101010, 0x20101111, 0x20101210, 0x20101212, 0x20111010, 0x20111011,
0x20111110, 0x20111111, 0x20111112, 0x20111211, 0x20121011, 0x20121111, 0x20121211, 0x20121212,
0x21101011, 0x21101110, 0x21101111, 0x21101112, 0x21101211, 0x21111010, 0x21111011, 0x21111012,
0x21111110, 0x21111111, 0x21111112, 0x21111210, 0x21111211, 0x21111212, 0x21121011, 0x21121110,
0x21121111, 0x21121112, 0x21121211, 0x22101011, 0x22101111, 0x22101210, 0x22111011, 0x22111012,
0x22111110, 0x22111111, 0x22111112, 0x22111211, 0x22111212, 0x22121010, 0x22121012, 0x22121111,
0x22121210, 0x22121212, 0x20101021, 0x20101120, 0x20111020, 0x20111121, 0x20111221, 0x20121020,
0x20121122, 0x20121221, 0x21101121, 0x21101220, 0x21101221, 0x21111021, 0x21111022, 0x21111121,
0x21111122, 0x21111221, 0x21121121, 0x21121220, 0x22101022, 0x22101120, 0x22101221, 0x22101222,
0x22111022, 0x22111120, 0x22111121, 0x22121120, 0x22121122, 0x22121221, 0x20102101, 0x20112102,
0x20112201, 0x20122101, 0x21102001, 0x21102102, 0x21112000, 0x21112002, 0x21112101, 0x21112102,
0x21112202, 0x21122100, 0x21122101, 0x22102101, 0x22112001, 0x22112102, 0x22112201, 0x22122101,
0x20102110, 0x20102112, 0x20102211, 0x20112010, 0x20112012, 0x20112111, 0x20112210, 0x20112212,
0x20122010, 0x20122011, 0x20122110, 0x20122112, 0x21102010, 0x21102012, 0x21102111, 0x21102210,
0x21102212, 0x21112011, 0x21112110, 0x21112111, 0x21112112, 0x21112211, 0x21122012, 0x21122111,
0x21122112, 0x21122212, 0x22102011, 0x22102110, 0x22112010, 0x22112012, 0x22112111, 0x22112212,
0x22122011, 0x22122112, 0x20102121, 0x20112121, 0x20122121, 0x21102120, 0x21102122, 0x21102221,
0x21112020, 0x21112121, 0x21112220, 0x21122021, 0x22102121, 0x22112021, 0x22112120, 0x22112121,
0x22112122, 0x20200000, 0x20200002, 0x20200200, 0x20200202, 0x20210101, 0x20220000, 0x20220002,
0x20220200, 0x20220202, 0x21200101, 0x21210001, 0x21210100, 0x21210102, 0x21210201, 0x22200000,
0x22200002, 0x22200200, 0x22200202, 0x22210101, 0x22220000, 0x22220002, 0x22220200, 0x22220202,
0x20200111, 0x20200211, 0x20210011, 0x20210110, 0x20210112, 0x20210211, 0x20210212, 0x21200112,
0x21200211, 0x21210011, 0x21210111, 0x21210210, 0x21210212, 0x21220011, 0x21220110, 0x22200111,
0x22210010, 0x22210012, 0x22210112, 0x22210211, 0x20200022, 0x20200220, 0x20200222, 0x20210020,
0x20210221, 0x20220022, 0x20220220, 0x20220222, 0x21200121, 0x21210021, 0x21210122, 0x21210221,
0x21220121, 0x22200020, 0x22200022, 0x22200220, 0x22200222, 0x22210121, 0x22220020, 0x22220022,
0x22220220, 0x22220222, 0x20211201, 0x20221101, 0x21201001, 0x21201100, 0x21211000, 0x21211100,
0x21211101, 0x21211200, 0x21211202, 0x21221001, 0x21221101, 0x21221102, 0x21221200, 0x21221201,
0x22201101, 0x20201112, 0x20201211, 0x20211010, 0x20211012, 0x20211111, 0x20211210, 0x20221112,
0x20221211, 0x21201012, 0x21201111, 0x21211011, 0x21211110, 0x21211111, 0x21211112, 0x21211211,
0x21221111, 0x21221212, 0x22201011, 0x22201110, 0x22201111, 0x22201112, 0x22201211, 0x22211012,
0x22211111, 0x22211210, 0x20201121, 0x20211021, 0x20211122, 0x20211222, 0x20221021, 0x20221121,
0x21201120, 0x21201122, 0x21201222, 0x21211022, 0x21211121, 0x21211122, 0x21211220, 0x21221020,
0x21221022, 0x22201122, 0x22211020, 0x22211121, 0x22211122, 0x22211221, 0x22221021, 0x22221120,
0x22221122, 0x20202000, 0x20202002, 0x20202200, 0x20202202, 0x20222000, 0x20222002, 0x20222200,
0x20222202, 0x21212001, 0x21212100, 0x21212102, 0x21212201, 0x22202000, 0x22202002, 0x22202200,
0x22202202, 0x22212101, 0x22222000, 0x22222002, 0x22222200, 0x22222202, 0x20202111, 0x20212110,
0x20212211, 0x20222011, 0x20222111, 0x21202011, 0x21212010, 0x21212111, 0x21212212, 0x21222011,
0x21222112, 0x21222211, 0x22212010, 0x22212112, 0x20202020, 0x20202022, 0x20202220, 0x20202222,
0x20222020, 0x20222022, 0x20222220, 0x20222222, 0x21212021, 0x21212120, 0x21212122, 0x22202020,
0x22202022, 0x22202220, 0x22202222, 0x22212121, 0x22222020, 0x22222022, 0x22222220, 0x22222222,
};
shared uint16_t iq1s_grid[2048];
shared uint32_t iq1s_grid_gpu[2048];
#define NEEDS_INIT_IQ_SHMEM
void init_iq_shmem(uvec3 wgsize)
@ -573,6 +857,12 @@ void init_iq_shmem(uvec3 wgsize)
iq1s_grid[2*idx+1] = g.y;
}
}
[[unroll]] for (uint i = 0; i < iq1s_grid_gpu_const.length(); i += wgsize.x) {
uint idx = i + gl_LocalInvocationIndex.x;
if (iq1s_grid_gpu_const.length() % wgsize.x == 0 || idx < iq1s_grid_gpu_const.length()) {
iq1s_grid_gpu[idx] = iq1s_grid_gpu_const[idx];
}
}
barrier();
}
#endif

View File

@ -685,7 +685,7 @@ void process_shaders() {
// mul mat vec with integer dot product
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (is_legacy_quant(tname) || tname == "mxfp4" || is_k_quant(tname)) {
if (is_legacy_quant(tname) || tname == "mxfp4" || is_k_quant(tname) || tname == "iq1_s" || tname == "iq1_m") {
string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}}));
string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}}));
string_to_spv("mul_mat_vec_" + tname + "_q8_1_f32_subgroup_no_shmem", "mul_mat_vecq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"FLOAT_TYPE_VEC2", "vec2"}, {"ACC_TYPE", "float"}, {"USE_SUBGROUP_ADD_NO_SHMEM", "1"}}));
@ -944,6 +944,8 @@ void process_shaders() {
string_to_spv("sum_rows_f32", "sum_rows.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("count_equal_i32", "count_equal.comp", merge_maps(base_dict, {{"A_TYPE", "int"}, {"B_TYPE", "int"}, {"D_TYPE", "int"}}));
string_to_spv("cumsum_f32", "cumsum.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("cumsum_multipass1_f32", "cumsum_multipass1.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("cumsum_multipass2_f32", "cumsum_multipass2.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("count_experts", "count_experts.comp", merge_maps(base_dict, {{"A_TYPE", "uint"}, {"D_TYPE", "uint"}}));
@ -1123,7 +1125,7 @@ void write_output_files() {
for (const std::string& btype : btypes) {
for (const auto& tname : type_names) {
if (btype == "q8_1" && !is_legacy_quant(tname) && tname != "mxfp4" && !is_k_quant(tname)) {
if (btype == "q8_1" && !is_legacy_quant(tname) && tname != "mxfp4" && !is_k_quant(tname) && tname != "iq1_s" && tname != "iq1_m") {
continue;
}
hdr << "extern const void * arr_dmmv_" << tname << "_" << btype << "_f32_data[3];\n";