Update to b7609
This commit is contained in:
parent
dfe3d70636
commit
25b43f8bb0
|
|
@ -1,6 +1,6 @@
|
|||
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
|
||||
WORKDIR=llama/vendor
|
||||
FETCH_HEAD=be47fb9285779e900915bd8246eb9664110d4ba5
|
||||
FETCH_HEAD=e86f3c22211d9b5c3842e2961a022aac9cdbacad
|
||||
|
||||
.PHONY: help
|
||||
help:
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
int LLAMA_BUILD_NUMBER = 0;
|
||||
char const *LLAMA_COMMIT = "be47fb9285779e900915bd8246eb9664110d4ba5";
|
||||
char const *LLAMA_COMMIT = "e86f3c22211d9b5c3842e2961a022aac9cdbacad";
|
||||
char const *LLAMA_COMPILER = "";
|
||||
char const *LLAMA_BUILD_TARGET = "";
|
||||
|
|
|
|||
|
|
@ -74,6 +74,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
|||
{ "seed_oss", LLM_CHAT_TEMPLATE_SEED_OSS },
|
||||
{ "grok-2", LLM_CHAT_TEMPLATE_GROK_2 },
|
||||
{ "pangu-embedded", LLM_CHAT_TEMPLATE_PANGU_EMBED },
|
||||
{ "solar-open", LLM_CHAT_TEMPLATE_SOLAR_OPEN },
|
||||
};
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name) {
|
||||
|
|
@ -216,6 +217,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
|||
return LLM_CHAT_TEMPLATE_GROK_2;
|
||||
} else if (tmpl_contains(LU8("[unused9]系统:[unused10]"))) {
|
||||
return LLM_CHAT_TEMPLATE_PANGU_EMBED;
|
||||
} else if (tmpl_contains("<|begin|>") && tmpl_contains("<|end|>") && tmpl_contains("<|content|>")) {
|
||||
return LLM_CHAT_TEMPLATE_SOLAR_OPEN;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||
}
|
||||
|
|
@ -845,6 +848,14 @@ int32_t llm_chat_apply_template(
|
|||
if (add_ass) {
|
||||
ss << "[unused9]助手:";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_SOLAR_OPEN) {
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|begin|>" << role << "<|content|>" << message->content << "<|end|>";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|begin|>assistant";
|
||||
}
|
||||
} else {
|
||||
// template not supported
|
||||
return -1;
|
||||
|
|
|
|||
|
|
@ -54,6 +54,7 @@ enum llm_chat_template {
|
|||
LLM_CHAT_TEMPLATE_SEED_OSS,
|
||||
LLM_CHAT_TEMPLATE_GROK_2,
|
||||
LLM_CHAT_TEMPLATE_PANGU_EMBED,
|
||||
LLM_CHAT_TEMPLATE_SOLAR_OPEN,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -126,6 +126,7 @@ const char * llm_type_name(llm_type type) {
|
|||
case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
|
||||
case LLM_TYPE_80B_A3B: return "80B.A3B";
|
||||
case LLM_TYPE_100B_A6B: return "100B.A6B";
|
||||
case LLM_TYPE_102B_A12B: return "102B.A12B";
|
||||
case LLM_TYPE_106B_A12B: return "106B.A12B";
|
||||
case LLM_TYPE_230B_A10B: return "230B.A10B";
|
||||
case LLM_TYPE_235B_A22B: return "235B.A22B";
|
||||
|
|
@ -1682,7 +1683,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
||||
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
|
||||
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
|
||||
|
|
@ -1778,6 +1779,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
|
||||
switch (hparams.n_layer) {
|
||||
case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
|
||||
case 48: type = LLM_TYPE_102B_A12B; break; // Solar Open
|
||||
case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
|
|
@ -3335,7 +3337,14 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
|
||||
|
||||
const auto tn_ffn_up_weight = tn(LLM_TENSOR_FFN_UP, "weight", i);
|
||||
ggml_tensor * t_ffn_up = ml.get_tensor_meta(tn_ffn_up_weight.str().c_str());
|
||||
const int64_t n_ffn_up = t_ffn_up ? t_ffn_up->ne[1] : n_ff;
|
||||
|
||||
GGML_ASSERT(n_ffn_up == n_ff || n_ffn_up == n_ff * 2);
|
||||
layer.ffn_up = create_tensor(tn_ffn_up_weight, {n_embd, n_ffn_up}, 0);
|
||||
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ffn_up}, TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
|
||||
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
|
||||
|
|
@ -4791,7 +4800,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
||||
// try to load output.weight, if not found, use token_embd (tied embeddings)
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
if (!output) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
|
@ -4854,7 +4867,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
|
||||
// try to load output.weight, if not found, use token_embd (tied embeddings)
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||
if (!output) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
|
@ -5221,9 +5238,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
|
||||
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags);
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags);
|
||||
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, TENSOR_NOT_REQUIRED | flags);
|
||||
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, TENSOR_NOT_REQUIRED | flags);
|
||||
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, TENSOR_NOT_REQUIRED | flags);
|
||||
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);
|
||||
|
||||
|
|
@ -7483,7 +7500,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
|||
} break;
|
||||
case LLM_ARCH_MODERN_BERT:
|
||||
{
|
||||
llm = std::make_unique<llm_build_modern_bert<true>>(*this, params);
|
||||
llm = std::make_unique<llm_build_modern_bert>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
{
|
||||
|
|
|
|||
|
|
@ -120,6 +120,7 @@ enum llm_type {
|
|||
LLM_TYPE_31B_A3_5B,
|
||||
LLM_TYPE_80B_A3B, // Qwen3 Next
|
||||
LLM_TYPE_100B_A6B,
|
||||
LLM_TYPE_102B_A12B, // Solar-Open
|
||||
LLM_TYPE_106B_A12B, // GLM-4.5-Air
|
||||
LLM_TYPE_230B_A10B, // Minimax M2
|
||||
LLM_TYPE_235B_A22B,
|
||||
|
|
|
|||
|
|
@ -314,6 +314,12 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|||
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_YOUTU:
|
||||
regex_exprs = {
|
||||
"[가-힣ㄱ-ㆎ]+|[!…“”‘’—:;,、-〿︰-﹏]+|[ㄅ-ㄯ]+|[一-龥-ゟ゠-ヿ]+",
|
||||
"[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
};
|
||||
break;
|
||||
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
|
||||
regex_exprs = {
|
||||
"[\r\n]",
|
||||
|
|
@ -355,6 +361,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|||
case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
|
||||
case LLAMA_VOCAB_PRE_TYPE_HUNYUAN:
|
||||
case LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN:
|
||||
regex_exprs = {
|
||||
// original regex from tokenizer.json
|
||||
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
||||
|
|
@ -1849,6 +1856,11 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
tokenizer_pre == "deepseek-v3") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM;
|
||||
clean_spaces = false;
|
||||
} else if (
|
||||
tokenizer_pre == "youtu") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_YOUTU;
|
||||
clean_spaces = false;
|
||||
ignore_merges = true;
|
||||
} else if (
|
||||
tokenizer_pre == "falcon") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_FALCON;
|
||||
|
|
@ -2004,6 +2016,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
tokenizer_pre == "minimax-m2") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
|
||||
clean_spaces = false;
|
||||
} else if (
|
||||
tokenizer_pre == "solar-open") {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN;
|
||||
clean_spaces = false;
|
||||
} else {
|
||||
LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
|
|
@ -2348,6 +2364,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|| t.first == "<|end|>"
|
||||
|| t.first == "<|return|>" // o200k_harmony
|
||||
|| t.first == "<|call|>" // o200k_harmony
|
||||
|| t.first == "<|flush|>" // solar-open
|
||||
|| t.first == "<|calls|>" // solar-open
|
||||
|| t.first == "<end_of_turn>"
|
||||
|| t.first == "<|endoftext|>"
|
||||
|| t.first == "<|eom_id|>"
|
||||
|
|
@ -2394,13 +2412,14 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
||||
}
|
||||
|
||||
// TODO: workaround for o200k_harmony tokenizer: the "<|end|>" token should not be EOG
|
||||
// we don't have a good way to detect this, so for now, if we have "<|return|>" and "<|call|>" tokens,
|
||||
// TODO: workaround for o200k_harmony and solar-open tokenizer: the "<|end|>" token should not be EOG
|
||||
// we don't have a good way to detect this, so for now, if we have "<|return|>" and "<|call|>" tokens ("<|calls|>" and "<|flush|>" for solar-open),
|
||||
// we remove the "<|end|>" token from the EOG list
|
||||
{
|
||||
bool has_return = false;
|
||||
bool has_call = false;
|
||||
bool has_end = false;
|
||||
bool has_flush = false;
|
||||
|
||||
llama_token end_id = LLAMA_TOKEN_NULL;
|
||||
|
||||
|
|
@ -2410,18 +2429,20 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|||
|
||||
if (id_to_token[tid].text == "<|return|>") {
|
||||
has_return = true;
|
||||
} else if (id_to_token[tid].text == "<|call|>") {
|
||||
} else if (id_to_token[tid].text == "<|call|>" || id_to_token[tid].text == "<|calls|>") {
|
||||
has_call = true;
|
||||
} else if (id_to_token[tid].text == "<|flush|>") {
|
||||
has_flush = true;
|
||||
} else if (id_to_token[tid].text == "<|end|>") {
|
||||
has_end = true;
|
||||
end_id = tid;
|
||||
}
|
||||
}
|
||||
|
||||
if (has_return && has_call && has_end) {
|
||||
if ((has_return && has_call && has_end) || (has_call && has_flush && has_end)) {
|
||||
special_eog_ids.erase(end_id);
|
||||
id_to_token[end_id].attr = LLAMA_TOKEN_ATTR_USER_DEFINED;
|
||||
LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
|
||||
LLAMA_LOG_WARN("%s: special_eog_ids contains both '<|return|>' and '<|call|>', or '<|calls|>' and '<|flush|>' tokens, removing '<|end|>' token from EOG list\n", __func__);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -51,6 +51,8 @@ enum llama_vocab_pre_type {
|
|||
LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
|
||||
LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 41,
|
||||
LLAMA_VOCAB_PRE_TYPE_AFMOE = 42,
|
||||
LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN = 43,
|
||||
LLAMA_VOCAB_PRE_TYPE_YOUTU = 44,
|
||||
};
|
||||
|
||||
struct LLM_KV;
|
||||
|
|
|
|||
|
|
@ -142,11 +142,13 @@ llm_build_bert::llm_build_bert(const llama_model & model, const llm_graph_params
|
|||
LLM_FFN_GELU, LLM_FFN_SEQ, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
|
||||
const bool up_contains_gate = !model.layers[il].ffn_gate && model.layers[il].ffn_up->ne[1] != hparams.n_ff();
|
||||
auto type_op = up_contains_gate ? LLM_FFN_GEGLU : LLM_FFN_GELU;
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
|
||||
model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
|
||||
type_op, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
cur = build_ffn(cur,
|
||||
|
|
|
|||
|
|
@ -215,7 +215,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
|
|||
model.layers[il].ffn_exp_probs_b,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, hparams.expert_weights_norm,
|
||||
true, hparams.expert_weights_scale,
|
||||
hparams.expert_weights_scale, hparams.expert_weights_scale,
|
||||
(llama_expert_gating_func_type) hparams.expert_gating_func,
|
||||
il);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
|
|
|||
|
|
@ -332,7 +332,6 @@ struct llm_build_mistral3 : public llm_graph_context {
|
|||
llm_build_mistral3(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
template <bool iswa>
|
||||
struct llm_build_modern_bert : public llm_graph_context {
|
||||
llm_build_modern_bert(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
|
|
|||
|
|
@ -1,7 +1,6 @@
|
|||
#include "models.h"
|
||||
|
||||
template <bool iswa>
|
||||
llm_build_modern_bert<iswa>::llm_build_modern_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
llm_build_modern_bert::llm_build_modern_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
|
|
@ -24,13 +23,7 @@ llm_build_modern_bert<iswa>::llm_build_modern_bert(const llama_model & model, co
|
|||
auto * inp_attn = build_attn_inp_no_cache();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
float freq_base_l = 0.0f;
|
||||
|
||||
if constexpr (iswa) {
|
||||
freq_base_l = model.get_rope_freq_base(cparams, il);
|
||||
} else {
|
||||
freq_base_l = freq_base;
|
||||
}
|
||||
float freq_base_l = model.get_rope_freq_base(cparams, il);
|
||||
|
||||
cur = inpL;
|
||||
|
||||
|
|
@ -120,7 +113,3 @@ llm_build_modern_bert<iswa>::llm_build_modern_bert(const llama_model & model, co
|
|||
res->t_embd = cur;
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template struct llm_build_modern_bert<false>;
|
||||
template struct llm_build_modern_bert<true>;
|
||||
|
|
|
|||
|
|
@ -985,6 +985,11 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
|||
{ "\\p{P}", unicode_cpt_flags::PUNCTUATION },
|
||||
{ "\\p{M}", unicode_cpt_flags::ACCENT_MARK },
|
||||
{ "\\p{S}", unicode_cpt_flags::SYMBOL },
|
||||
{ "\\p{Lu}", unicode_cpt_flags::LETTER }, // Uppercase letter
|
||||
{ "\\p{Ll}", unicode_cpt_flags::LETTER }, // Lowercase letter
|
||||
{ "\\p{Lt}", unicode_cpt_flags::LETTER }, // Titlecase letter
|
||||
{ "\\p{Lm}", unicode_cpt_flags::LETTER }, // Modifier letter
|
||||
{ "\\p{Lo}", unicode_cpt_flags::LETTER }, // Other letter
|
||||
};
|
||||
|
||||
static const std::map<int, int> k_ucat_cpt = {
|
||||
|
|
@ -1095,22 +1100,26 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
|||
continue;
|
||||
}
|
||||
|
||||
if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() &&
|
||||
// Match \p{...} Unicode properties of varying lengths
|
||||
if (regex_expr[i + 0] == '\\' && i + 3 < regex_expr.size() &&
|
||||
regex_expr[i + 1] == 'p' &&
|
||||
regex_expr[i + 2] == '{' &&
|
||||
regex_expr[i + 4] == '}') {
|
||||
const std::string pat = regex_expr.substr(i, 5);
|
||||
if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
|
||||
if (!inside) {
|
||||
regex_expr_collapsed += '[';
|
||||
regex_expr[i + 2] == '{') {
|
||||
// Find the closing brace
|
||||
size_t closing_brace = regex_expr.find('}', i + 3);
|
||||
if (closing_brace != std::string::npos && closing_brace <= i + 10) { // reasonable limit
|
||||
const std::string pat = regex_expr.substr(i, closing_brace - i + 1);
|
||||
if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
|
||||
if (!inside) {
|
||||
regex_expr_collapsed += '[';
|
||||
}
|
||||
regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
|
||||
regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
|
||||
if (!inside) {
|
||||
regex_expr_collapsed += ']';
|
||||
}
|
||||
i = closing_brace;
|
||||
continue;
|
||||
}
|
||||
regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
|
||||
regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
|
||||
if (!inside) {
|
||||
regex_expr_collapsed += ']';
|
||||
}
|
||||
i += 4;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -45,13 +45,14 @@
|
|||
#define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
|
||||
#define KEY_IS_DEEPSTACK_LAYERS "clip.vision.is_deepstack_layers"
|
||||
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
|
||||
#define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
|
||||
#define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_MINICPMV_QUERY_NUM "clip.minicpmv_query_num"
|
||||
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
|
||||
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
|
||||
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
|
||||
#define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
|
||||
#define KEY_WIN_ATTN_LAYER_INDEXES "clip.vision.wa_layer_indexes"
|
||||
#define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
|
||||
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
|
||||
#define KEY_MINICPMV_QUERY_NUM "clip.minicpmv_query_num"
|
||||
|
||||
// audio-specific
|
||||
#define KEY_AUDIO_PROJ_TYPE "clip.audio.projector_type" // for models with mixed modalities
|
||||
|
|
@ -188,6 +189,7 @@ enum projector_type {
|
|||
PROJECTOR_TYPE_JANUS_PRO,
|
||||
PROJECTOR_TYPE_LFM2A,
|
||||
PROJECTOR_TYPE_GLM4V,
|
||||
PROJECTOR_TYPE_YOUTUVL,
|
||||
PROJECTOR_TYPE_UNKNOWN,
|
||||
};
|
||||
|
||||
|
|
@ -218,6 +220,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
|||
{ PROJECTOR_TYPE_JANUS_PRO, "janus_pro"},
|
||||
{ PROJECTOR_TYPE_LFM2A, "lfm2a"},
|
||||
{ PROJECTOR_TYPE_GLM4V, "glm4v"},
|
||||
{ PROJECTOR_TYPE_YOUTUVL, "youtuvl"},
|
||||
};
|
||||
|
||||
static projector_type clip_projector_type_from_string(const std::string & str) {
|
||||
|
|
|
|||
|
|
@ -61,6 +61,7 @@ struct clip_hparams {
|
|||
std::unordered_set<int32_t> vision_feature_layer;
|
||||
int32_t attn_window_size = 0;
|
||||
int32_t n_wa_pattern = 0;
|
||||
std::unordered_set<int32_t> wa_layer_indexes; // explicit layer indexes that use full attention (for irregular patterns like YoutuVL)
|
||||
|
||||
// audio
|
||||
int32_t n_mel_bins = 0; // whisper preprocessor
|
||||
|
|
|
|||
|
|
@ -859,6 +859,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
{
|
||||
builder = std::make_unique<clip_graph_glm4v>(ctx, img);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
builder = std::make_unique<clip_graph_youtuvl>(ctx, img);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("missing cgraph builder");
|
||||
}
|
||||
|
|
@ -1176,6 +1180,20 @@ struct clip_model_loader {
|
|||
LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
|
||||
}
|
||||
} break;
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
hparams.n_merge = 2;
|
||||
get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
|
||||
get_u32(KEY_ATTN_WINDOW_SIZE, hparams.attn_window_size, true);
|
||||
std::vector<int> wa_layer_indexes_vec;
|
||||
get_arr_int(KEY_WIN_ATTN_LAYER_INDEXES, wa_layer_indexes_vec, true);
|
||||
for (auto & layer : wa_layer_indexes_vec) {
|
||||
hparams.wa_layer_indexes.insert(layer);
|
||||
}
|
||||
// support max_height * max_width = 8000 * 8000. 8000/16/2 = 250 image tokens
|
||||
hparams.set_limit_image_tokens(1, 62500);
|
||||
hparams.set_warmup_n_tokens(16*16); // avoid OOM on warmup
|
||||
} break;
|
||||
case PROJECTOR_TYPE_GLM4V:
|
||||
{
|
||||
hparams.rope_theta = 10000.0f;
|
||||
|
|
@ -1244,7 +1262,14 @@ struct clip_model_loader {
|
|||
LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
|
||||
LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
|
||||
LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
|
||||
LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
|
||||
LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
|
||||
if (!hparams.wa_layer_indexes.empty()) {
|
||||
LOG_INF("%s: wa_layer_indexes: ", __func__);
|
||||
for (auto & layer : hparams.wa_layer_indexes) {
|
||||
LOG_INF("%d ", layer);
|
||||
}
|
||||
LOG_INF("\n");
|
||||
}
|
||||
if (hparams.image_min_pixels > 0) {
|
||||
LOG_INF("%s: image_min_pixels: %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : "");
|
||||
}
|
||||
|
|
@ -1512,6 +1537,14 @@ struct clip_model_loader {
|
|||
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
|
||||
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM); // merger.ln_q (RMS norm)
|
||||
model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight")); // merger.mlp.0
|
||||
model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
|
||||
model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); // merger.mlp.2
|
||||
model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_GLM4V:
|
||||
{
|
||||
model.projection = get_tensor(TN_MM_PROJECTOR);
|
||||
|
|
@ -2740,6 +2773,57 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
|||
// res_imgs->data[0] = *res;
|
||||
res_imgs->entries.push_back(std::move(img_f32));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
const int patch_size = params.patch_size; // typically 16
|
||||
const int merge_size = params.n_merge; // typically 2
|
||||
const int align_size = patch_size * merge_size; // 32
|
||||
|
||||
const int max_num_patches = params.image_max_pixels > 0 ?
|
||||
params.image_max_pixels / (patch_size * patch_size) : 256;
|
||||
|
||||
// Linear search for optimal scale to fit within max_num_patches
|
||||
float scale = 1.0f;
|
||||
int target_height = original_size.height;
|
||||
int target_width = original_size.width;
|
||||
|
||||
auto get_scaled_image_size = [align_size](float scale, int size) -> int {
|
||||
float scaled_size = size * scale;
|
||||
// Round up to nearest multiple of align_size
|
||||
int aligned = static_cast<int>(std::ceil(scaled_size / align_size)) * align_size;
|
||||
// Ensure at least one patch
|
||||
return std::max(align_size, aligned);
|
||||
};
|
||||
|
||||
// Linear search with 0.02 step size
|
||||
while (scale > 0.0f) {
|
||||
target_height = get_scaled_image_size(scale, original_size.height);
|
||||
target_width = get_scaled_image_size(scale, original_size.width);
|
||||
|
||||
int num_patches_h = target_height / patch_size;
|
||||
int num_patches_w = target_width / patch_size;
|
||||
int num_patches = num_patches_h * num_patches_w;
|
||||
|
||||
if (num_patches > max_num_patches) {
|
||||
scale -= 0.02f;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
clip_image_size new_size = {target_width, target_height};
|
||||
|
||||
// Resize the image
|
||||
clip_image_u8 resized;
|
||||
img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
|
||||
|
||||
// Normalize to float32
|
||||
clip_image_f32_ptr img_f32(clip_image_f32_init());
|
||||
normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
|
||||
|
||||
// Add to results
|
||||
res_imgs->entries.push_back(std::move(img_f32));
|
||||
} break;
|
||||
|
||||
case PROJECTOR_TYPE_IDEFICS3:
|
||||
{
|
||||
|
|
@ -2972,6 +3056,7 @@ int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 *
|
|||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_QWEN3VL:
|
||||
case PROJECTOR_TYPE_GLM4V:
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
return (img->nx / params.patch_size) / 2;
|
||||
default:
|
||||
break;
|
||||
|
|
@ -2987,6 +3072,7 @@ int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 *
|
|||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_QWEN3VL:
|
||||
case PROJECTOR_TYPE_GLM4V:
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
return (img->ny / params.patch_size) / 2;
|
||||
default:
|
||||
break;
|
||||
|
|
@ -3047,6 +3133,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
|
|||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_QWEN3VL:
|
||||
case PROJECTOR_TYPE_GLM4V:
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
// dynamic size (2 conv, so double patch size)
|
||||
int x_patch = img->nx / (params.patch_size * 2);
|
||||
|
|
@ -3174,7 +3261,6 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
const int pos_w = image_size_width / patch_size;
|
||||
const int pos_h = image_size_height / patch_size;
|
||||
|
||||
const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
|
||||
|
||||
auto get_inp_tensor = [&gf](const char * name) {
|
||||
ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
|
||||
|
|
@ -3323,9 +3409,11 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
set_input_i32("positions", positions);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
{
|
||||
// pw * ph = number of tokens output by ViT after apply patch merger
|
||||
// ipw * ipw = number of vision token been processed inside ViT
|
||||
const bool use_window_attn = ctx->model.proj_type == PROJECTOR_TYPE_QWEN25VL ? hparams.n_wa_pattern > 0 : !hparams.wa_layer_indexes.empty();
|
||||
const int merge_ratio = 2;
|
||||
const int pw = image_size_width / patch_size / merge_ratio;
|
||||
const int ph = image_size_height / patch_size / merge_ratio;
|
||||
|
|
@ -3336,7 +3424,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
std::vector<int> inv_idx(ph * pw);
|
||||
|
||||
if (use_window_attn) {
|
||||
const int attn_window_size = 112;
|
||||
const int attn_window_size = hparams.attn_window_size > 0 ? hparams.attn_window_size : 112;
|
||||
const int grid_window = attn_window_size / patch_size / merge_ratio;
|
||||
int dst = 0;
|
||||
// [num_vision_tokens, num_vision_tokens] attention mask tensor
|
||||
|
|
@ -3574,6 +3662,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|||
case PROJECTOR_TYPE_QWEN2VL:
|
||||
case PROJECTOR_TYPE_QWEN25VL:
|
||||
case PROJECTOR_TYPE_JANUS_PRO:
|
||||
case PROJECTOR_TYPE_YOUTUVL:
|
||||
return ctx->model.mm_1_b->ne[0];
|
||||
case PROJECTOR_TYPE_QWEN3VL:
|
||||
// main path + deepstack paths
|
||||
|
|
|
|||
|
|
@ -27,6 +27,11 @@ struct clip_graph_qwen3vl : clip_graph {
|
|||
ggml_cgraph * build() override;
|
||||
};
|
||||
|
||||
struct clip_graph_youtuvl : clip_graph {
|
||||
clip_graph_youtuvl(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
|
||||
ggml_cgraph * build() override;
|
||||
};
|
||||
|
||||
struct clip_graph_minicpmv : clip_graph {
|
||||
clip_graph_minicpmv(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
|
||||
ggml_cgraph * build() override;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,179 @@
|
|||
#include "models.h"
|
||||
|
||||
ggml_cgraph * clip_graph_youtuvl::build() {
|
||||
GGML_ASSERT(model.class_embedding == nullptr);
|
||||
const int batch_size = 1;
|
||||
const bool use_window_attn = !hparams.wa_layer_indexes.empty();
|
||||
const int n_pos = n_patches;
|
||||
const int num_position_ids = n_pos * 4;
|
||||
const int m = 2;
|
||||
const int Wp = n_patches_x;
|
||||
const int Hp = n_patches_y;
|
||||
const int Hm = Hp / m;
|
||||
const int Wm = Wp / m;
|
||||
norm_type norm_t = NORM_TYPE_NORMAL;
|
||||
|
||||
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
|
||||
|
||||
ggml_tensor * inp = build_inp_raw();
|
||||
|
||||
// change conv3d to linear
|
||||
// reshape and permute to get patches, permute from (patch_size, m, Wm, patch_size, m, Hm, C) to (C, patch_size, patch_size, m, m, Wm, Hm)
|
||||
{
|
||||
inp = ggml_reshape_4d(
|
||||
ctx0, inp,
|
||||
Wm * m * patch_size, m * patch_size, Hm, 3);
|
||||
inp = ggml_permute(ctx0, inp, 1, 2, 3, 0);
|
||||
inp = ggml_cont_4d(
|
||||
ctx0, inp,
|
||||
m * patch_size * 3, Wm, m * patch_size, Hm);
|
||||
|
||||
inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
|
||||
inp = ggml_cont_4d(
|
||||
ctx0, inp,
|
||||
m * patch_size * 3, patch_size, m, Hm * Wm);
|
||||
|
||||
inp = ggml_permute(ctx0, inp, 1, 0, 2, 3);
|
||||
inp = ggml_cont_4d(
|
||||
ctx0, inp,
|
||||
patch_size, 3, patch_size, Hm * Wm * m * m);
|
||||
|
||||
inp = ggml_permute(ctx0, inp, 2, 0, 1, 3);
|
||||
inp = ggml_cont_3d(
|
||||
ctx0, inp,
|
||||
3*patch_size* patch_size, Hm * Wm * m * m, 1);
|
||||
}
|
||||
inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
|
||||
|
||||
if (model.patch_bias) {
|
||||
inp = ggml_add(ctx0, inp, model.patch_bias);
|
||||
}
|
||||
|
||||
inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
|
||||
|
||||
ggml_tensor * inpL = inp;
|
||||
ggml_tensor * window_mask = nullptr;
|
||||
ggml_tensor * window_idx = nullptr;
|
||||
ggml_tensor * inv_window_idx = nullptr;
|
||||
|
||||
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
|
||||
ggml_set_name(positions, "positions");
|
||||
ggml_set_input(positions);
|
||||
|
||||
// pre-layernorm
|
||||
if (model.pre_ln_w) {
|
||||
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
|
||||
}
|
||||
if (use_window_attn) {
|
||||
inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
|
||||
ggml_set_name(inv_window_idx, "inv_window_idx");
|
||||
ggml_set_input(inv_window_idx);
|
||||
// mask for window attention
|
||||
window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
|
||||
ggml_set_name(window_mask, "window_mask");
|
||||
ggml_set_input(window_mask);
|
||||
|
||||
// if flash attn is used, we need to pad the mask and cast to f16
|
||||
if (flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
|
||||
window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
|
||||
}
|
||||
|
||||
// inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
|
||||
inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
|
||||
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
|
||||
}
|
||||
|
||||
// loop over layers
|
||||
for (int il = 0; il < n_layer; il++) {
|
||||
const auto & layer = model.layers[il];
|
||||
const bool full_attn = use_window_attn ? hparams.wa_layer_indexes.count(il) > 0 : true;
|
||||
|
||||
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
|
||||
|
||||
// layernorm1
|
||||
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
|
||||
// self-attention
|
||||
{
|
||||
ggml_tensor * Qcur = ggml_add(ctx0,
|
||||
ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
|
||||
ggml_tensor * Kcur = ggml_add(ctx0,
|
||||
ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
|
||||
ggml_tensor * Vcur = ggml_add(ctx0,
|
||||
ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
|
||||
|
||||
Qcur = ggml_rope_multi(
|
||||
ctx0, Qcur, positions, nullptr,
|
||||
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
|
||||
Kcur = ggml_rope_multi(
|
||||
ctx0, Kcur, positions, nullptr,
|
||||
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
|
||||
|
||||
ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
|
||||
|
||||
cur = build_attn(layer.o_w, layer.o_b,
|
||||
Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
|
||||
}
|
||||
// re-add the layer input, e.g., residual
|
||||
cur = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
inpL = cur; // inpL = residual, cur = hidden_states
|
||||
|
||||
// layernorm2
|
||||
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
|
||||
|
||||
// ffn
|
||||
cur = build_ffn(cur,
|
||||
layer.ff_up_w, layer.ff_up_b,
|
||||
nullptr, nullptr,
|
||||
layer.ff_down_w, layer.ff_down_b,
|
||||
hparams.ffn_op, il);
|
||||
|
||||
// residual 2
|
||||
cur = ggml_add(ctx0, inpL, cur);
|
||||
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
ggml_tensor * embeddings = inpL;
|
||||
if (use_window_attn) {
|
||||
const int spatial_merge_unit = 4;
|
||||
window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / spatial_merge_unit);
|
||||
ggml_set_name(window_idx, "window_idx");
|
||||
ggml_set_input(window_idx);
|
||||
GGML_ASSERT(batch_size == 1);
|
||||
embeddings = ggml_reshape_2d(ctx0, embeddings, n_embd * spatial_merge_unit, n_patches / spatial_merge_unit);
|
||||
embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd, n_patches, batch_size);
|
||||
cb(embeddings, "window_order_restored", -1);
|
||||
}
|
||||
|
||||
// post-layernorm (part of Siglip2VisionTransformer, applied after encoder)
|
||||
if (model.post_ln_w) {
|
||||
embeddings = build_norm(embeddings, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
|
||||
}
|
||||
|
||||
// Now apply merger (VLPatchMerger):
|
||||
// 1. Apply RMS norm (ln_q in VLPatchMerger)
|
||||
embeddings = build_norm(embeddings, model.mm_input_norm_w, nullptr, NORM_TYPE_RMS, 1e-6, -1);
|
||||
cb(embeddings, "merger_normed", -1);
|
||||
|
||||
// 2. First reshape for spatial merge (merge 2x2 patches)
|
||||
embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
|
||||
cb(embeddings, "merger_reshaped", -1);
|
||||
|
||||
embeddings = build_ffn(embeddings,
|
||||
model.mm_0_w, model.mm_0_b,
|
||||
nullptr, nullptr,
|
||||
model.mm_1_w, model.mm_1_b,
|
||||
FFN_GELU,
|
||||
-1);
|
||||
ggml_build_forward_expand(gf, embeddings);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
|
@ -293,7 +293,7 @@ struct mtmd_context {
|
|||
// https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
|
||||
img_end = "[IMG_END]";
|
||||
|
||||
} else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL || proj == PROJECTOR_TYPE_QWEN3VL) {
|
||||
} else if (proj == PROJECTOR_TYPE_QWEN2VL || proj == PROJECTOR_TYPE_QWEN25VL || proj == PROJECTOR_TYPE_QWEN3VL || proj == PROJECTOR_TYPE_YOUTUVL) {
|
||||
// <|vision_start|> ... (image embeddings) ... <|vision_end|>
|
||||
img_beg = "<|vision_start|>";
|
||||
img_end = "<|vision_end|>";
|
||||
|
|
|
|||
|
|
@ -84,10 +84,10 @@ index ef23ec78d..581f26ed3 100644
|
|||
|
||||
/**
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index 55e1c20c9..da2eb6760 100644
|
||||
index 84eccea3f..b388e363e 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -583,6 +583,7 @@ struct ggml_backend_cuda_buffer_context {
|
||||
@@ -573,6 +573,7 @@ struct ggml_backend_cuda_buffer_context {
|
||||
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
|
|
@ -95,7 +95,7 @@ index 55e1c20c9..da2eb6760 100644
|
|||
}
|
||||
|
||||
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
|
||||
@@ -838,6 +839,7 @@ struct ggml_backend_cuda_split_buffer_context {
|
||||
@@ -828,6 +829,7 @@ struct ggml_backend_cuda_split_buffer_context {
|
||||
static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
|
|
@ -103,7 +103,7 @@ index 55e1c20c9..da2eb6760 100644
|
|||
}
|
||||
|
||||
static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
@@ -1119,6 +1121,7 @@ static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
|
||||
@@ -1109,6 +1111,7 @@ static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
|
||||
|
||||
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
CUDA_CHECK(cudaFreeHost(buffer->context));
|
||||
|
|
|
|||
|
|
@ -10,10 +10,10 @@ logs instead of throwing an error
|
|||
1 file changed, 3 insertions(+), 11 deletions(-)
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index cd4092ca0..af2276960 100644
|
||||
index bd311bea4..a0188d392 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -1825,16 +1825,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
@@ -1832,16 +1832,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
if (type == LLAMA_VOCAB_TYPE_BPE) {
|
||||
add_space_prefix = false;
|
||||
clean_spaces = true;
|
||||
|
|
@ -31,8 +31,8 @@ index cd4092ca0..af2276960 100644
|
|||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (
|
||||
tokenizer_pre == "llama3" ||
|
||||
@@ -2016,7 +2007,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
|
||||
@@ -2032,7 +2023,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_SOLAR_OPEN;
|
||||
clean_spaces = false;
|
||||
} else {
|
||||
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ filesystems for paths that include wide characters
|
|||
1 file changed, 39 insertions(+)
|
||||
|
||||
diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp
|
||||
index fb08dd258..25dd02272 100644
|
||||
index 9f551e8f3..4e26cda95 100644
|
||||
--- a/tools/mtmd/clip.cpp
|
||||
+++ b/tools/mtmd/clip.cpp
|
||||
@@ -24,6 +24,19 @@
|
||||
|
|
@ -33,7 +33,7 @@ index fb08dd258..25dd02272 100644
|
|||
struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
|
||||
|
||||
//#define CLIP_DEBUG_FUNCTIONS
|
||||
@@ -1691,7 +1704,29 @@ struct clip_model_loader {
|
||||
@@ -1724,7 +1737,29 @@ struct clip_model_loader {
|
||||
{
|
||||
std::vector<uint8_t> read_buf;
|
||||
|
||||
|
|
@ -63,7 +63,7 @@ index fb08dd258..25dd02272 100644
|
|||
if (!fin) {
|
||||
throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
|
||||
}
|
||||
@@ -1718,7 +1753,11 @@ struct clip_model_loader {
|
||||
@@ -1751,7 +1786,11 @@ struct clip_model_loader {
|
||||
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -173,10 +173,10 @@ index 5003b4fbf..243b296b5 100644
|
|||
llama_model_loader::llama_model_loader(
|
||||
const std::string & fname,
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index 5e664c8c5..1762850ed 100644
|
||||
index 0450db6c9..9591c3686 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -2048,6 +2048,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
@@ -2050,6 +2050,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
|
|
@ -198,7 +198,7 @@ index 5e664c8c5..1762850ed 100644
|
|||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
@@ -5568,6 +5583,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
@@ -5585,6 +5600,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
|
|
@ -233,7 +233,7 @@ index 5e664c8c5..1762850ed 100644
|
|||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
@@ -7738,6 +7781,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||
@@ -7755,6 +7798,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||
{
|
||||
llm = std::make_unique<llm_build_chameleon>(*this, params);
|
||||
} break;
|
||||
|
|
@ -244,7 +244,7 @@ index 5e664c8c5..1762850ed 100644
|
|||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
{
|
||||
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
|
||||
@@ -8006,6 +8053,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
@@ -8023,6 +8070,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_GRANITE_HYBRID:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
|
|
@ -253,7 +253,7 @@ index 5e664c8c5..1762850ed 100644
|
|||
case LLM_ARCH_NEO_BERT:
|
||||
case LLM_ARCH_SMOLLM3:
|
||||
diff --git a/src/llama-model.h b/src/llama-model.h
|
||||
index f4f44a92b..3b54c83aa 100644
|
||||
index 79200a0d9..740cb7094 100644
|
||||
--- a/src/llama-model.h
|
||||
+++ b/src/llama-model.h
|
||||
@@ -79,6 +79,7 @@ enum llm_type {
|
||||
|
|
@ -264,7 +264,7 @@ index f4f44a92b..3b54c83aa 100644
|
|||
LLM_TYPE_26B,
|
||||
LLM_TYPE_27B,
|
||||
LLM_TYPE_30B,
|
||||
@@ -409,6 +410,8 @@ struct llama_layer {
|
||||
@@ -410,6 +411,8 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_act_beta = nullptr;
|
||||
struct ggml_tensor * ffn_act_eps = nullptr;
|
||||
|
||||
|
|
@ -274,10 +274,10 @@ index f4f44a92b..3b54c83aa 100644
|
|||
|
||||
struct llama_layer_convnext convnext;
|
||||
diff --git a/src/models/models.h b/src/models/models.h
|
||||
index e2cd4e484..89afb5f24 100644
|
||||
index e78a788d4..30f04d956 100644
|
||||
--- a/src/models/models.h
|
||||
+++ b/src/models/models.h
|
||||
@@ -530,6 +530,11 @@ struct llm_build_smollm3 : public llm_graph_context {
|
||||
@@ -529,6 +529,11 @@ struct llm_build_smollm3 : public llm_graph_context {
|
||||
llm_build_smollm3(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ regex
|
|||
2 files changed, 22 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index af2276960..e05314272 100644
|
||||
index a0188d392..67dac0f05 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -299,7 +299,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
|
|
@ -25,7 +25,7 @@ index af2276960..e05314272 100644
|
|||
"\\s+$",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
diff --git a/src/unicode.cpp b/src/unicode.cpp
|
||||
index bb44edfad..13ced055f 100644
|
||||
index b47dcbe61..6d1084f26 100644
|
||||
--- a/src/unicode.cpp
|
||||
+++ b/src/unicode.cpp
|
||||
@@ -2,6 +2,11 @@
|
||||
|
|
|
|||
|
|
@ -53,10 +53,10 @@ index b165d8bdc..f91d4faba 100644
|
|||
}
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index e05314272..325ef9843 100644
|
||||
index 67dac0f05..eed381aab 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -1781,9 +1781,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
@@ -1788,9 +1788,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
||||
if (precompiled_charsmap_keyidx != -1) {
|
||||
const gguf_type pc_type = gguf_get_arr_type(ctx, precompiled_charsmap_keyidx);
|
||||
|
|
|
|||
|
|
@ -234,10 +234,10 @@ index 7697c292d..00d773dd3 100644
|
|||
+ *dst = *src;
|
||||
+}
|
||||
diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu
|
||||
index c4ceb4fc5..0e53ecc39 100644
|
||||
index ee84303ef..178e82d76 100644
|
||||
--- a/ggml/src/ggml-cuda/cpy.cu
|
||||
+++ b/ggml/src/ggml-cuda/cpy.cu
|
||||
@@ -352,6 +352,43 @@ static void ggml_cpy_f32_iq4_nl_cuda(
|
||||
@@ -369,6 +369,43 @@ static void ggml_cpy_f32_iq4_nl_cuda(
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
|
|
@ -281,7 +281,7 @@ index c4ceb4fc5..0e53ecc39 100644
|
|||
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
const int64_t ne = ggml_nelements(src0);
|
||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||
@@ -481,6 +518,9 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
@@ -495,6 +532,9 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
ggml_cpy_scalar_cuda<half, float>
|
||||
(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -22,7 +22,7 @@ index 393c329be..609209459 100644
|
|||
size_t memory_total;
|
||||
// device type
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index da2eb6760..ff0624b78 100644
|
||||
index b388e363e..3d2afac43 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -189,6 +189,51 @@ static int ggml_cuda_parse_id(char devName[]) {
|
||||
|
|
@ -77,7 +77,7 @@ index da2eb6760..ff0624b78 100644
|
|||
static ggml_cuda_device_info ggml_cuda_init() {
|
||||
ggml_cuda_device_info info = {};
|
||||
|
||||
@@ -255,22 +300,24 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
@@ -245,22 +290,24 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
info.devices[id].cc += prop.minor * 0x10;
|
||||
}
|
||||
}
|
||||
|
|
@ -108,7 +108,7 @@ index da2eb6760..ff0624b78 100644
|
|||
std::string device_name(prop.name);
|
||||
if (device_name == "NVIDIA GeForce MX450") {
|
||||
turing_devices_without_mma.push_back({ id, device_name });
|
||||
@@ -4120,6 +4167,7 @@ struct ggml_backend_cuda_device_context {
|
||||
@@ -4110,6 +4157,7 @@ struct ggml_backend_cuda_device_context {
|
||||
std::string name;
|
||||
std::string description;
|
||||
std::string pci_bus_id;
|
||||
|
|
@ -116,7 +116,7 @@ index da2eb6760..ff0624b78 100644
|
|||
};
|
||||
|
||||
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
|
||||
@@ -4208,6 +4256,11 @@ static bool ggml_backend_cuda_get_available_uma_memory(long * available_memory_k
|
||||
@@ -4198,6 +4246,11 @@ static bool ggml_backend_cuda_get_available_uma_memory(long * available_memory_k
|
||||
}
|
||||
#endif // defined(__linux__)
|
||||
|
||||
|
|
@ -128,7 +128,7 @@ index da2eb6760..ff0624b78 100644
|
|||
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
@@ -4248,6 +4301,7 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
@@ -4238,6 +4291,7 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
|
||||
props->name = ggml_backend_cuda_device_get_name(dev);
|
||||
props->description = ggml_backend_cuda_device_get_description(dev);
|
||||
|
|
@ -136,7 +136,7 @@ index da2eb6760..ff0624b78 100644
|
|||
props->type = ggml_backend_cuda_device_get_type(dev);
|
||||
props->device_id = ctx->pci_bus_id.empty() ? nullptr : ctx->pci_bus_id.c_str();
|
||||
ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
@@ -4854,6 +4908,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
@@ -4844,6 +4898,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
cudaDeviceProp prop;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
|
||||
dev_ctx->description = prop.name;
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
|
|||
2 files changed, 13 insertions(+)
|
||||
|
||||
diff --git a/tools/mtmd/mtmd.cpp b/tools/mtmd/mtmd.cpp
|
||||
index b0b5ab42a..1b7aa90af 100644
|
||||
index fca55b76f..d28643fef 100644
|
||||
--- a/tools/mtmd/mtmd.cpp
|
||||
+++ b/tools/mtmd/mtmd.cpp
|
||||
@@ -87,6 +87,16 @@ enum mtmd_slice_tmpl {
|
||||
|
|
|
|||
|
|
@ -178,10 +178,10 @@ index f4713a421..92ba577a5 100644
|
|||
|
||||
static const struct ggml_backend_i ggml_backend_cpu_i = {
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index ff0624b78..17464770d 100644
|
||||
index 3d2afac43..1e09cf1f0 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -2901,7 +2901,7 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
||||
@@ -2891,7 +2891,7 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
|
||||
|
|
@ -190,7 +190,7 @@ index ff0624b78..17464770d 100644
|
|||
|
||||
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
|
||||
|
||||
@@ -2934,24 +2934,34 @@ static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
|
||||
@@ -2924,24 +2924,34 @@ static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
@ -241,7 +241,7 @@ index ff0624b78..17464770d 100644
|
|||
}
|
||||
|
||||
if (!use_cuda_graph) {
|
||||
@@ -3752,7 +3762,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
@@ -3742,7 +3752,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -250,7 +250,7 @@ index ff0624b78..17464770d 100644
|
|||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
@@ -3790,7 +3800,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
@@ -3780,7 +3790,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
if (use_cuda_graph) {
|
||||
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
|
||||
|
||||
|
|
|
|||
|
|
@ -323,10 +323,10 @@ index 62e618850..dac9cfcdf 100644
|
|||
|
||||
struct ggml_cuda_mm_fusion_args_host {
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index 17464770d..d73cb0e47 100644
|
||||
index 1e09cf1f0..c0f42012d 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -365,6 +365,8 @@ const ggml_cuda_device_info & ggml_cuda_info() {
|
||||
@@ -355,6 +355,8 @@ const ggml_cuda_device_info & ggml_cuda_info() {
|
||||
|
||||
// #define DEBUG_CUDA_MALLOC
|
||||
|
||||
|
|
@ -335,7 +335,7 @@ index 17464770d..d73cb0e47 100644
|
|||
// buffer pool for cuda (legacy)
|
||||
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
static const int MAX_BUFFERS = 256;
|
||||
@@ -377,9 +379,12 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
@@ -367,9 +369,12 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
|
||||
ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
|
||||
size_t pool_size = 0;
|
||||
|
|
@ -350,7 +350,7 @@ index 17464770d..d73cb0e47 100644
|
|||
}
|
||||
|
||||
~ggml_cuda_pool_leg() {
|
||||
@@ -387,7 +392,9 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
@@ -377,7 +382,9 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
for (int i = 0; i < MAX_BUFFERS; ++i) {
|
||||
ggml_cuda_buffer & b = buffer_pool[i];
|
||||
if (b.ptr != nullptr) {
|
||||
|
|
@ -361,7 +361,7 @@ index 17464770d..d73cb0e47 100644
|
|||
pool_size -= b.size;
|
||||
}
|
||||
}
|
||||
@@ -435,8 +442,15 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
@@ -425,8 +432,15 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
void * ptr;
|
||||
size_t look_ahead_size = (size_t) (1.05 * size);
|
||||
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
|
||||
|
|
@ -379,7 +379,7 @@ index 17464770d..d73cb0e47 100644
|
|||
*actual_size = look_ahead_size;
|
||||
pool_size += look_ahead_size;
|
||||
#ifdef DEBUG_CUDA_MALLOC
|
||||
@@ -456,10 +470,20 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
@@ -446,10 +460,20 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
}
|
||||
}
|
||||
GGML_LOG_DEBUG(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
|
||||
|
|
@ -402,7 +402,7 @@ index 17464770d..d73cb0e47 100644
|
|||
};
|
||||
|
||||
// pool with virtual memory
|
||||
@@ -471,18 +495,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
@@ -461,18 +485,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
CUdeviceptr pool_addr = 0;
|
||||
size_t pool_used = 0;
|
||||
size_t pool_size = 0;
|
||||
|
|
@ -430,7 +430,7 @@ index 17464770d..d73cb0e47 100644
|
|||
#if defined(GGML_USE_HIP)
|
||||
// Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285
|
||||
for (std::pair<CUdeviceptr, size_t> & mapping : mappings) {
|
||||
@@ -509,35 +539,49 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
@@ -499,35 +529,49 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
|
||||
GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
|
||||
|
||||
|
|
@ -506,7 +506,7 @@ index 17464770d..d73cb0e47 100644
|
|||
|
||||
// add to the pool
|
||||
pool_size += reserve_size;
|
||||
@@ -570,17 +614,27 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
@@ -560,17 +604,27 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
// all deallocations must be in reverse order of the allocations
|
||||
GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
|
||||
}
|
||||
|
|
@ -537,7 +537,7 @@ index 17464770d..d73cb0e47 100644
|
|||
}
|
||||
|
||||
// destroying a cuBLAS handle while a graph is being captured in a different thread can result in a CUDA error
|
||||
@@ -764,11 +818,20 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
|
||||
@@ -754,11 +808,20 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
|
||||
}
|
||||
|
||||
static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
|
|
@ -559,7 +559,7 @@ index 17464770d..d73cb0e47 100644
|
|||
static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
size_t size = ggml_nbytes(tensor);
|
||||
int64_t ne0 = tensor->ne[0];
|
||||
@@ -792,6 +855,7 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface
|
||||
@@ -782,6 +845,7 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
|
||||
/* .is_host = */ NULL,
|
||||
|
|
@ -567,7 +567,7 @@ index 17464770d..d73cb0e47 100644
|
|||
};
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
|
||||
@@ -3284,6 +3348,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
@@ -3274,6 +3338,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
|
||||
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
||||
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
|
||||
|
|
@ -575,7 +575,7 @@ index 17464770d..d73cb0e47 100644
|
|||
// flag used to determine whether it is an integrated_gpu
|
||||
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
|
||||
|
||||
@@ -3420,6 +3485,10 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
@@ -3410,6 +3475,10 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
continue;
|
||||
}
|
||||
|
||||
|
|
@ -586,7 +586,7 @@ index 17464770d..d73cb0e47 100644
|
|||
|
||||
// start of fusion operations
|
||||
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
|
||||
@@ -3764,6 +3833,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
@@ -3754,6 +3823,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
|
||||
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph, int batch_size) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
|
@ -594,7 +594,7 @@ index 17464770d..d73cb0e47 100644
|
|||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
|
||||
@@ -3839,6 +3909,77 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
@@ -3829,6 +3899,77 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
@ -672,7 +672,7 @@ index 17464770d..d73cb0e47 100644
|
|||
static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
@@ -4107,6 +4248,9 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
|
||||
@@ -4097,6 +4238,9 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
|
||||
/* .event_record = */ ggml_backend_cuda_event_record,
|
||||
/* .event_wait = */ ggml_backend_cuda_event_wait,
|
||||
/* .graph_optimize = */ ggml_backend_cuda_graph_optimize,
|
||||
|
|
|
|||
|
|
@ -62,7 +62,7 @@ index 4cf0ec913..4e83f6431 100644
|
|||
GGML_ASSERT(device);
|
||||
return device->iface.get_buffer_type(device);
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index d73cb0e47..547d9d366 100644
|
||||
index c0f42012d..03cbdec8f 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -113,6 +113,11 @@ int ggml_cuda_get_device() {
|
||||
|
|
@ -77,7 +77,7 @@ index d73cb0e47..547d9d366 100644
|
|||
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
|
||||
ggml_cuda_set_device(device);
|
||||
cudaError_t err;
|
||||
@@ -4458,7 +4463,10 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
@@ -4448,7 +4453,10 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
props->id = ggml_backend_cuda_device_get_id(dev);
|
||||
props->type = ggml_backend_cuda_device_get_type(dev);
|
||||
props->device_id = ctx->pci_bus_id.empty() ? nullptr : ctx->pci_bus_id.c_str();
|
||||
|
|
@ -89,7 +89,7 @@ index d73cb0e47..547d9d366 100644
|
|||
|
||||
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
|
||||
#ifdef GGML_CUDA_NO_PEER_COPY
|
||||
@@ -4918,6 +4926,11 @@ static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, g
|
||||
@@ -4908,6 +4916,11 @@ static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, g
|
||||
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
|
||||
}
|
||||
|
||||
|
|
@ -101,7 +101,7 @@ index d73cb0e47..547d9d366 100644
|
|||
static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_device_get_name,
|
||||
/* .get_description = */ ggml_backend_cuda_device_get_description,
|
||||
@@ -4934,6 +4947,7 @@ static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
|
||||
@@ -4924,6 +4937,7 @@ static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
|
||||
/* .event_new = */ ggml_backend_cuda_device_event_new,
|
||||
/* .event_free = */ ggml_backend_cuda_device_event_free,
|
||||
/* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize,
|
||||
|
|
|
|||
|
|
@ -48,10 +48,10 @@ index 5a1403c4b..f0f734a6c 100644
|
|||
|
||||
set_target_properties(ggml-base PROPERTIES
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index 547d9d366..d7cf48691 100644
|
||||
index 03cbdec8f..eb383bba7 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -267,6 +267,16 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
@@ -257,6 +257,16 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
int device_vmm = 0;
|
||||
|
||||
|
|
@ -68,7 +68,7 @@ index 547d9d366..d7cf48691 100644
|
|||
#if defined(GGML_USE_VMM)
|
||||
CUdevice device;
|
||||
CU_CHECK(cuDeviceGet(&device, id));
|
||||
@@ -320,6 +330,11 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
@@ -310,6 +320,11 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
#else
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor;
|
||||
|
|
@ -80,7 +80,7 @@ index 547d9d366..d7cf48691 100644
|
|||
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s, ID: %s\n",
|
||||
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no",
|
||||
ggml_cuda_parse_uuid(prop, id).c_str());
|
||||
@@ -4327,6 +4342,11 @@ struct ggml_backend_cuda_device_context {
|
||||
@@ -4317,6 +4332,11 @@ struct ggml_backend_cuda_device_context {
|
||||
std::string description;
|
||||
std::string pci_bus_id;
|
||||
std::string id;
|
||||
|
|
@ -92,7 +92,7 @@ index 547d9d366..d7cf48691 100644
|
|||
};
|
||||
|
||||
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
|
||||
@@ -4423,6 +4443,28 @@ static const char * ggml_backend_cuda_device_get_id(ggml_backend_dev_t dev) {
|
||||
@@ -4413,6 +4433,28 @@ static const char * ggml_backend_cuda_device_get_id(ggml_backend_dev_t dev) {
|
||||
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
|
|
@ -121,7 +121,7 @@ index 547d9d366..d7cf48691 100644
|
|||
CUDA_CHECK(cudaMemGetInfo(free, total));
|
||||
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/17368
|
||||
@@ -4455,6 +4497,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
|
||||
@@ -4445,6 +4487,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
|
||||
return GGML_BACKEND_DEVICE_TYPE_GPU;
|
||||
}
|
||||
|
||||
|
|
@ -129,7 +129,7 @@ index 547d9d366..d7cf48691 100644
|
|||
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
|
||||
@@ -4468,6 +4511,19 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
@@ -4458,6 +4501,19 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
// If you need the memory data, call ggml_backend_dev_memory() explicitly.
|
||||
props->memory_total = props->memory_free = 0;
|
||||
|
||||
|
|
@ -149,7 +149,7 @@ index 547d9d366..d7cf48691 100644
|
|||
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
|
||||
#ifdef GGML_CUDA_NO_PEER_COPY
|
||||
bool events = false;
|
||||
@@ -5067,6 +5123,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
@@ -5057,6 +5113,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (!initialized) {
|
||||
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
|
||||
|
|
@ -157,7 +157,7 @@ index 547d9d366..d7cf48691 100644
|
|||
|
||||
for (int i = 0; i < ggml_cuda_info().device_count; i++) {
|
||||
ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
|
||||
@@ -5082,6 +5139,14 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
@@ -5072,6 +5129,14 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
snprintf(pci_bus_id, sizeof(pci_bus_id), "%04x:%02x:%02x.0", prop.pciDomainID, prop.pciBusID, prop.pciDeviceID);
|
||||
dev_ctx->pci_bus_id = pci_bus_id;
|
||||
|
||||
|
|
|
|||
|
|
@ -10,10 +10,10 @@ fallback to cpu
|
|||
1 file changed, 3 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index d7cf48691..890be973c 100644
|
||||
index eb383bba7..6a9d2746c 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -4643,6 +4643,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
@@ -4633,6 +4633,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
|
||||
return false;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -9,10 +9,10 @@ Rever to prior logic of assuming an empty projector type is mlp
|
|||
1 file changed, 4 insertions(+)
|
||||
|
||||
diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp
|
||||
index 25dd02272..403e17625 100644
|
||||
index 4e26cda95..ab61c6ea1 100644
|
||||
--- a/tools/mtmd/clip.cpp
|
||||
+++ b/tools/mtmd/clip.cpp
|
||||
@@ -965,6 +965,10 @@ struct clip_model_loader {
|
||||
@@ -969,6 +969,10 @@ struct clip_model_loader {
|
||||
if (proj_type.empty()) {
|
||||
if (modality == CLIP_MODALITY_VISION) {
|
||||
get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
|
||||
|
|
|
|||
|
|
@ -12,11 +12,11 @@ const int CUDA_CPY_BLOCK_NM = 8; // block size of 3rd dimension if available
|
|||
const int CUDA_CPY_BLOCK_ROWS = 8; // block dimension for marching through rows
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_scalar(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
static __global__ void cpy_scalar(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
|
|
@ -40,10 +40,10 @@ static __global__ void cpy_scalar(const char * cx, char * cdst, const int ne,
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
static __global__ void cpy_scalar_transpose(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
static __global__ void cpy_scalar_transpose(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
|
||||
const T* src = reinterpret_cast<const T*>(cx);
|
||||
T* dst = reinterpret_cast<T*>(cdst);
|
||||
|
|
@ -117,60 +117,60 @@ static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) {
|
|||
}
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
const int64_t i = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int64_t dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
static __global__ void cpy_q_f32(const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11,
|
||||
const int64_t nb12, const int64_t nb13) {
|
||||
const int64_t i = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
static __global__ void cpy_scalar_contiguous(const char * cx, char * cdst, const int64_t ne) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
|
|
@ -188,19 +188,20 @@ static void ggml_cpy_scalar_contiguous_cuda(
|
|||
cudaStream_t stream) {
|
||||
|
||||
const int64_t num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_scalar_contiguous<src_t, dst_t><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t, bool transposed = false>
|
||||
static void ggml_cpy_scalar_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
if (transposed) {
|
||||
GGML_ASSERT(ne == ne00*ne01*ne02); // ne[3] is 1 assumed
|
||||
int ne00n, ne01n, ne02n;
|
||||
int64_t ne00n, ne01n, ne02n;
|
||||
if (nb00 <= nb02) { // most likely safe to handle nb00 = nb02 case here
|
||||
ne00n = ne00;
|
||||
ne01n = ne01;
|
||||
|
|
@ -211,143 +212,159 @@ static void ggml_cpy_scalar_cuda(
|
|||
ne02n = 1;
|
||||
}
|
||||
|
||||
dim3 dimGrid( (ne01n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
|
||||
(ne00n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
|
||||
(ne/(ne01n*ne00n) + CUDA_CPY_BLOCK_NM - 1) / CUDA_CPY_BLOCK_NM);
|
||||
int64_t grid_x = (ne01n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D;
|
||||
int64_t grid_y = (ne00n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D;
|
||||
int64_t grid_z = (ne/(ne01n*ne00n) + CUDA_CPY_BLOCK_NM - 1) / CUDA_CPY_BLOCK_NM;
|
||||
GGML_ASSERT(grid_x < UINT_MAX);
|
||||
GGML_ASSERT(grid_y < USHRT_MAX);
|
||||
GGML_ASSERT(grid_z < USHRT_MAX);
|
||||
dim3 dimGrid(grid_x, grid_y, grid_z);
|
||||
dim3 dimBlock(CUDA_CPY_TILE_DIM_2D, CUDA_CPY_BLOCK_ROWS, 1);
|
||||
cpy_scalar_transpose<dst_t><<<dimGrid, dimBlock, 0, stream>>>
|
||||
(cx, cdst, ne, ne00n, ne01n, ne02n, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
} else {
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
const int64_t num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_scalar<cpy_1_scalar<src_t, dst_t>><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q8_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK8_0 == 0);
|
||||
const int num_blocks = ne / QK8_0;
|
||||
const int64_t num_blocks = ne / QK8_0;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q8_0_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q8_0_f32, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_0 == 0);
|
||||
const int num_blocks = ne / QK4_0;
|
||||
const int64_t num_blocks = ne / QK4_0;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q4_0_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_0, QK4_0>, QK4_0><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_1 == 0);
|
||||
const int num_blocks = ne / QK4_1;
|
||||
const int64_t num_blocks = ne / QK4_1;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q4_1_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q4_1, QK4_1>, QK4_1><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q5_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK5_0 == 0);
|
||||
const int num_blocks = ne / QK5_0;
|
||||
const int64_t num_blocks = ne / QK5_0;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q5_0_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_0, QK5_0>, QK5_0><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q5_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK5_1 == 0);
|
||||
const int num_blocks = ne / QK5_1;
|
||||
const int64_t num_blocks = ne / QK5_1;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_q5_1_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02,
|
||||
const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12,
|
||||
const int nb10, const int nb11, const int nb12, const int nb13,
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12,
|
||||
const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13,
|
||||
cudaStream_t stream) {
|
||||
const int num_blocks = ne;
|
||||
const int64_t num_blocks = ne;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_q_f32<cpy_blck_q_f32<dequantize_q5_1, QK5_1>, QK5_1><<<num_blocks, 1, 0, stream>>>(
|
||||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_iq4_nl_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t nb00, const int64_t nb01, const int64_t nb02,
|
||||
const int64_t nb03, const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t nb10, const int64_t nb11, const int64_t nb12, const int64_t nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_NL == 0);
|
||||
const int num_blocks = ne / QK4_NL;
|
||||
const int64_t num_blocks = ne / QK4_NL;
|
||||
GGML_ASSERT(num_blocks < UINT_MAX);
|
||||
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
|
@ -393,9 +410,6 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
|||
const int64_t ne = ggml_nelements(src0);
|
||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||
|
||||
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
|
|
|
|||
|
|
@ -251,16 +251,6 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
|||
GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
|
||||
|
||||
int64_t total_vram = 0;
|
||||
#ifdef GGML_CUDA_FORCE_MMQ
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
|
||||
#else
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
|
||||
#endif // GGML_CUDA_FORCE_MMQ
|
||||
#ifdef GGML_CUDA_FORCE_CUBLAS
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n", __func__);
|
||||
#else
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__);
|
||||
#endif // GGML_CUDA_FORCE_CUBLAS
|
||||
GGML_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
|
||||
|
||||
std::vector<std::pair<int, std::string>> turing_devices_without_mma;
|
||||
|
|
|
|||
Loading…
Reference in New Issue