ollama/model/bert/model.go

158 lines
4.9 KiB
Go

package bert
import (
"fmt"
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
func init() {
model.Register("bert", New)
}
type Options struct {
hiddenSize, numHeads int64
eps float32
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `ggml:"token_embd"`
TypeEmbedding *nn.Embedding `ggml:"type_embd,alt:token_types"`
PositionEmbedding *nn.Embedding `ggml:"position_embd"`
TokenEmbeddingNorm *nn.LayerNorm `ggml:"token_embd_norm"`
Layers []EncoderLayer `ggml:"blk"`
*Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
fmt.Println("inputs", inputs.Shape(), ml.Dump(inputs))
types, err := ctx.FromIntSlice([]int32{0}, 1)
if err != nil {
return nil, err
}
fmt.Println("types", types.Shape(), ml.Dump(types))
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
fmt.Println("positions", positions.Shape(), ml.Dump(positions))
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
fmt.Println("TokenEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
return hiddenState, nil
hiddenState = hiddenState.Add(ctx, m.TypeEmbedding.Forward(ctx, types))
fmt.Println("TypeEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
hiddenState = hiddenState.Add(ctx, m.PositionEmbedding.Forward(ctx, positions))
fmt.Println("PositionEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
hiddenState = m.TokenEmbeddingNorm.Forward(ctx, hiddenState, m.eps)
fmt.Println("TokenEmbeddingNorm.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
for i, layer := range m.Layers {
hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
fmt.Println("EncoderLayer.Forward", i, hiddenState.Shape(), ml.Dump(hiddenState))
}
return hiddenState, nil
}
type EncoderLayer struct {
*SelfAttention
MLPNorm *nn.LayerNorm `ggml:"attn_output_norm"`
*MLP
LayerOutputNorm *nn.LayerNorm `ggml:"ffn_output_norm"`
}
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
hiddenState = hiddenState.Add(ctx, residual)
return e.LayerOutputNorm.Forward(ctx, hiddenState, opts.eps)
}
type SelfAttention struct {
Query *nn.Linear `ggml:"attn_q"`
Key *nn.Linear `ggml:"attn_k"`
Value *nn.Linear `ggml:"attn_v"`
Output *nn.Linear `ggml:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, opts.numHeads, headDim, batchSize)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numHeads, batchSize)
key, value = cache.Put(ctx, key, value, cache.Options)
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scores := key.Mulmat(ctx, query)
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
scores = scores.Softmax(ctx)
attention := value.Mulmat(ctx, scores)
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `ggml:"ffn_up"`
Down *nn.Linear `ggml:"ffn_down"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
return mlp.Down.Forward(ctx, mlp.Up.Forward(ctx, hiddenState).GELU(ctx))
}
func New(c ml.Config) (model.Model, error) {
return &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
},
),
Options: &Options{
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
eps: c.Float("attention.layer_norm_epsilon"),
},
}, nil
}