158 lines
4.9 KiB
Go
158 lines
4.9 KiB
Go
package bert
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
|
|
"github.com/ollama/ollama/ml"
|
|
"github.com/ollama/ollama/ml/nn"
|
|
"github.com/ollama/ollama/model"
|
|
)
|
|
|
|
func init() {
|
|
model.Register("bert", New)
|
|
}
|
|
|
|
type Options struct {
|
|
hiddenSize, numHeads int64
|
|
eps float32
|
|
}
|
|
|
|
type Model struct {
|
|
model.Base
|
|
model.BytePairEncoding
|
|
|
|
TokenEmbedding *nn.Embedding `ggml:"token_embd"`
|
|
TypeEmbedding *nn.Embedding `ggml:"type_embd,alt:token_types"`
|
|
PositionEmbedding *nn.Embedding `ggml:"position_embd"`
|
|
TokenEmbeddingNorm *nn.LayerNorm `ggml:"token_embd_norm"`
|
|
|
|
Layers []EncoderLayer `ggml:"blk"`
|
|
|
|
*Options
|
|
}
|
|
|
|
// Forward implements model.Model.
|
|
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
|
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
fmt.Println("inputs", inputs.Shape(), ml.Dump(inputs))
|
|
|
|
types, err := ctx.FromIntSlice([]int32{0}, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
fmt.Println("types", types.Shape(), ml.Dump(types))
|
|
|
|
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
fmt.Println("positions", positions.Shape(), ml.Dump(positions))
|
|
|
|
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
|
fmt.Println("TokenEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
|
|
return hiddenState, nil
|
|
hiddenState = hiddenState.Add(ctx, m.TypeEmbedding.Forward(ctx, types))
|
|
fmt.Println("TypeEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
|
|
hiddenState = hiddenState.Add(ctx, m.PositionEmbedding.Forward(ctx, positions))
|
|
fmt.Println("PositionEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
|
|
hiddenState = m.TokenEmbeddingNorm.Forward(ctx, hiddenState, m.eps)
|
|
fmt.Println("TokenEmbeddingNorm.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
|
|
|
|
for i, layer := range m.Layers {
|
|
hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
|
|
fmt.Println("EncoderLayer.Forward", i, hiddenState.Shape(), ml.Dump(hiddenState))
|
|
}
|
|
|
|
return hiddenState, nil
|
|
}
|
|
|
|
type EncoderLayer struct {
|
|
*SelfAttention
|
|
MLPNorm *nn.LayerNorm `ggml:"attn_output_norm"`
|
|
*MLP
|
|
LayerOutputNorm *nn.LayerNorm `ggml:"ffn_output_norm"`
|
|
}
|
|
|
|
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
|
|
residual := hiddenState
|
|
|
|
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
|
hiddenState = hiddenState.Add(ctx, residual)
|
|
residual = hiddenState
|
|
|
|
hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
|
|
hiddenState = hiddenState.Add(ctx, residual)
|
|
return e.LayerOutputNorm.Forward(ctx, hiddenState, opts.eps)
|
|
}
|
|
|
|
type SelfAttention struct {
|
|
Query *nn.Linear `ggml:"attn_q"`
|
|
Key *nn.Linear `ggml:"attn_k"`
|
|
Value *nn.Linear `ggml:"attn_v"`
|
|
Output *nn.Linear `ggml:"attn_output"`
|
|
}
|
|
|
|
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
|
|
batchSize := hiddenState.Dim(1)
|
|
headDim := opts.hiddenSize / opts.numHeads
|
|
|
|
query := sa.Query.Forward(ctx, hiddenState)
|
|
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
|
key := sa.Key.Forward(ctx, hiddenState)
|
|
key = key.Reshape(ctx, opts.numHeads, headDim, batchSize)
|
|
|
|
value := sa.Value.Forward(ctx, hiddenState)
|
|
value = value.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
|
key, value = cache.Put(ctx, key, value, cache.Options)
|
|
|
|
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
|
|
|
scores := key.Mulmat(ctx, query)
|
|
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
|
|
scores = scores.Softmax(ctx)
|
|
|
|
attention := value.Mulmat(ctx, scores)
|
|
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
|
|
|
|
return sa.Output.Forward(ctx, attention)
|
|
}
|
|
|
|
type MLP struct {
|
|
Up *nn.Linear `ggml:"ffn_up"`
|
|
Down *nn.Linear `ggml:"ffn_down"`
|
|
}
|
|
|
|
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
|
return mlp.Down.Forward(ctx, mlp.Up.Forward(ctx, hiddenState).GELU(ctx))
|
|
}
|
|
|
|
func New(c ml.Config) (model.Model, error) {
|
|
return &Model{
|
|
BytePairEncoding: model.NewBytePairEncoding(
|
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
&model.Vocabulary{
|
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
|
Types: c.Uints("tokenizer.ggml.token_type"),
|
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
|
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
|
|
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
|
|
},
|
|
),
|
|
Options: &Options{
|
|
hiddenSize: int64(c.Uint("embedding_length")),
|
|
numHeads: int64(c.Uint("attention.head_count")),
|
|
eps: c.Float("attention.layer_norm_epsilon"),
|
|
},
|
|
}, nil
|
|
}
|