676 lines
28 KiB
Plaintext
676 lines
28 KiB
Plaintext
// Old and deprecated WMMA FlashAttention implementation.
|
|
// It is still needed for Volta since the memory layout of NVIDIA tensor cores changed with Turing.
|
|
// Long-term the WMMA code should be replaced with a dedicated Volta implementation.
|
|
|
|
#include "common.cuh"
|
|
#include "fattn-common.cuh"
|
|
#include "fattn-wmma-f16.cuh"
|
|
|
|
#ifdef GGML_USE_WMMA_FATTN
|
|
#if !defined(GGML_USE_HIP)
|
|
#include <mma.h>
|
|
#if defined(GGML_USE_MUSA)
|
|
namespace wmma = mtmusa::wmma;
|
|
#else // GGML_USE_MUSA
|
|
namespace wmma = nvcuda::wmma;
|
|
#endif // GGML_USE_MUSA
|
|
#elif defined(GGML_USE_HIP)
|
|
#include <rocwmma/rocwmma.hpp>
|
|
namespace wmma = rocwmma;
|
|
#endif // !defined(GGML_USE_HIP)
|
|
#endif // GGML_USE_WMMA_FATTN
|
|
|
|
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
|
template<int D, int ncols, int nwarps, int VKQ_stride, typename KQ_acc_t, bool use_logit_softcap>
|
|
__launch_bounds__(nwarps*ggml_cuda_get_physical_warp_size(), 1)
|
|
static __global__ void flash_attn_ext_f16(
|
|
const char * __restrict__ Q,
|
|
const char * __restrict__ K,
|
|
const char * __restrict__ V,
|
|
const char * __restrict__ mask,
|
|
const char * __restrict__ sinks,
|
|
const int * __restrict__ KV_max,
|
|
float * __restrict__ dst,
|
|
float2 * __restrict__ dst_meta,
|
|
const float scale,
|
|
const float max_bias,
|
|
const float m0,
|
|
const float m1,
|
|
const uint32_t n_head_log2,
|
|
const float logit_softcap,
|
|
const int32_t ne00, const uint3 ne01, const int32_t ne02, const int32_t ne03,
|
|
const int32_t nb01, const int32_t nb02, const int32_t nb03,
|
|
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
|
|
const int32_t nb11, const int32_t nb12, const int64_t nb13,
|
|
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
|
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
|
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
|
#if defined(FLASH_ATTN_AVAILABLE) && (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN))
|
|
// Skip unused kernel variants for faster compilation:
|
|
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
|
NO_DEVICE_CODE;
|
|
return;
|
|
}
|
|
|
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
|
|
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
|
|
|
const int ic0 = ncols*blockIdx.x; // Index of the first Q/QKV column to work on.
|
|
|
|
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
|
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
|
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
|
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
|
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
|
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, half, wmma::row_major> frag_a_K;
|
|
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, half, wmma::col_major> frag_a_V;
|
|
typedef wmma::fragment<wmma::matrix_b, frag_m, frag_n, 16, half, wmma::col_major> frag_b;
|
|
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
|
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
|
|
|
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
|
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
|
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
|
|
|
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
|
constexpr int D_padded = D + 8;
|
|
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
|
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
|
|
|
const int sequence = blockIdx.z / ne02;
|
|
const int head = blockIdx.z - sequence*ne02;
|
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
|
const float * Q_f = (const float *) (Q + nb03* sequence + nb02* head + nb01*ic0);
|
|
const half * K_h = (const half *) (K + nb13* sequence + nb12*(head / gqa_ratio));
|
|
const half * V_h = (const half *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
|
|
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
|
const half2 * mask2 = (const half2 *) maskh;
|
|
const float * sinksf = (const float *) sinks;
|
|
|
|
const int stride_Q = nb01 / sizeof(float);
|
|
const int stride_KV = nb11 / sizeof(half);
|
|
|
|
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
|
|
const half slopeh = __float2half(slopef);
|
|
const half2 slope2 = make_half2(slopef, slopef);
|
|
|
|
const half2 logit_softcap_2 = make_half2(logit_softcap, logit_softcap);
|
|
|
|
frag_b Q_b[D/16][ncols/frag_n];
|
|
|
|
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
|
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
|
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
|
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
|
float * KQ_f = (float *) KQ;
|
|
half2 * KQ2 = (half2 *) KQ;
|
|
|
|
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
|
float KQ_max_f[ncols/nwarps];
|
|
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
|
KQ_max_f[j] = -FLT_MAX/2.0f;
|
|
}
|
|
|
|
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
|
half2 KQ_max_h2[ncols/nwarps];
|
|
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
|
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
|
}
|
|
|
|
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
|
half2 * VKQ2 = (half2 *) VKQ;
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
const int j = j0 + threadIdx.y;
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
|
const int i = i0 + threadIdx.x;
|
|
if (i0 + warp_size > D/2 && i >= D/2) {
|
|
break;
|
|
}
|
|
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
|
}
|
|
}
|
|
|
|
// Convert Q to half and apply scale, temporarily store in KQ:
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
const int j = j0 + threadIdx.y;
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D; i0 += warp_size) {
|
|
const int i = i0 + threadIdx.x;
|
|
if (i0 + warp_size > D && i >= D) {
|
|
break;
|
|
}
|
|
KQ[j*D_padded + i] = ic0 + j < int(ne01.z) ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
// Load Q into tensor core fragments/registers since it will be used frequently:
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D; i0 += 16) {
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
// Iterate over ne11 == previous tokens:
|
|
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
|
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE) {
|
|
// Calculate tile of KQ:
|
|
#pragma unroll
|
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
|
frag_c_KQ KQ_c[ncols/frag_n];
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
wmma::fill_fragment(KQ_c[j], static_cast<KQ_acc_t>(0.0f));
|
|
}
|
|
#pragma unroll
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
|
frag_a_K K_a;
|
|
wmma::load_matrix_sync(K_a, K_h + int64_t(k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
|
}
|
|
}
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, wmma::mem_col_major);
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
// Calculate softmax for each KQ column using the current max. value.
|
|
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
const int j = j0 + threadIdx.y;
|
|
|
|
if (std::is_same<KQ_acc_t, float>::value) {
|
|
float KQ_f_tmp[FATTN_KQ_STRIDE / warp_size];
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
KQ_f_tmp[k0/warp_size] = KQ_f[j*kqs_padded + k];
|
|
|
|
if (use_logit_softcap) {
|
|
KQ_f_tmp[k0/warp_size] = logit_softcap*tanhf(KQ_f_tmp[k0/warp_size]);
|
|
}
|
|
}
|
|
|
|
float KQ_max_new = KQ_max_f[j0/nwarps];
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
KQ_f_tmp[k0/warp_size] += mask && ic0 + j < int(ne01.z) ?
|
|
__half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
|
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/warp_size] + FATTN_KQ_MAX_OFFSET);
|
|
}
|
|
KQ_max_new = warp_reduce_max<warp_size>(KQ_max_new);
|
|
|
|
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
|
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
|
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
|
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
|
}
|
|
KQ_max_f[j0/nwarps] = KQ_max_new;
|
|
|
|
float KQ_rowsum_add = 0.0f;
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
const float diff = KQ_f_tmp[k0/warp_size] - KQ_max_f[j0/nwarps];
|
|
KQ_f_tmp[k0/warp_size] = expf(diff);
|
|
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
|
KQ_f_tmp[k0/warp_size] = 0.0f;
|
|
}
|
|
KQ_rowsum_add += KQ_f_tmp[k0/warp_size];
|
|
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/warp_size];
|
|
}
|
|
KQ_rowsum_add = warp_reduce_sum<warp_size>(KQ_rowsum_add);
|
|
|
|
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
|
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
|
} else {
|
|
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*warp_size)];
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
KQ2_tmp[k0/warp_size] = KQ2[j*(kqs_padded/2) + k];
|
|
|
|
if (use_logit_softcap) {
|
|
// There is no dedicated tangens hyperbolicus function for half2.
|
|
KQ2_tmp[k0/warp_size] = h2exp(KQ2_tmp[k0/warp_size]*make_half2(2.0f, 2.0f));
|
|
KQ2_tmp[k0/warp_size] = (KQ2_tmp[k0/warp_size] - make_half2(1.0f, 1.0f))
|
|
/(KQ2_tmp[k0/warp_size] + make_half2(1.0f, 1.0f));
|
|
|
|
KQ2_tmp[k0/warp_size] *= logit_softcap_2;
|
|
}
|
|
}
|
|
|
|
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
KQ2_tmp[k0/warp_size] += mask && ic0 + j < int(ne01.z) ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
|
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/warp_size]);
|
|
}
|
|
KQ_max_new = __half2half2(warp_reduce_max<warp_size>(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
|
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
|
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
|
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
|
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
|
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
|
|
|
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
const half2 diff = KQ2_tmp[k0/warp_size] - KQ_max_h2[j0/nwarps];
|
|
KQ2_tmp[k0/warp_size] = h2exp(diff);
|
|
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
|
*((uint32_t *) &KQ2_tmp[k0/warp_size]) &= ftz_mask;
|
|
KQ_rowsum_add += KQ2_tmp[k0/warp_size];
|
|
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/warp_size];
|
|
}
|
|
KQ_rowsum_add = warp_reduce_sum<warp_size>(KQ_rowsum_add);
|
|
|
|
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
|
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
|
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
|
wmma::load_matrix_sync(
|
|
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
|
KQ + j0*(kqar*kqs_padded) + k,
|
|
kqar*kqs_padded);
|
|
}
|
|
}
|
|
|
|
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
|
#pragma unroll
|
|
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], static_cast<half>(0.0f));
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
|
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
|
|
|
frag_a_V v_a;
|
|
wmma::load_matrix_sync(v_a, V_h + int64_t(k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
|
#pragma unroll
|
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
wmma::store_matrix_sync(
|
|
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
|
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
|
D_padded, wmma::mem_col_major);
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
const int j = j0 + threadIdx.y;
|
|
|
|
half2 VKQ_scale;
|
|
if (std::is_same<KQ_acc_t, float>::value) {
|
|
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
|
} else {
|
|
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
|
const int i = i0 + threadIdx.x;
|
|
if (i0 + warp_size > D/2 && i >= D/2) {
|
|
break;
|
|
}
|
|
|
|
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
|
#pragma unroll
|
|
for (int l = 0; l < VKQ_ratio; ++l) {
|
|
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
|
}
|
|
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
}
|
|
|
|
// Apply attention sinks
|
|
if (sinksf && blockIdx.y == 0) {
|
|
const float sinkf = sinksf[head];
|
|
const half sinkh = __float2half(sinkf);
|
|
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
const int j = j0 + threadIdx.y;
|
|
|
|
if (std::is_same<KQ_acc_t, float>::value) {
|
|
float kqmax_new = fmaxf(KQ_max_f[j0/nwarps], sinkf);
|
|
|
|
const float KQ_max_scale = expf(KQ_max_f[j0/nwarps] - kqmax_new);
|
|
KQ_max_f[j0/nwarps] = kqmax_new;
|
|
|
|
KQ_rowsum_f[j0/nwarps] = KQ_rowsum_f[j0/nwarps] * KQ_max_scale + expf(sinkf - KQ_max_f[j0/nwarps]);
|
|
|
|
const half2 scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
|
const int i = i0 + threadIdx.x;
|
|
if (i0 + warp_size > D/2 && i >= D/2) break;
|
|
VKQ2[j*(D_padded/2) + i] *= scale_h2;
|
|
}
|
|
} else {
|
|
half kqmax_old = __low2half(KQ_max_h2[j0/nwarps]);
|
|
half kqmax_new = fmaxf(kqmax_old, sinkh);
|
|
KQ_max_h2[j0/nwarps] = __half2half2(kqmax_new);
|
|
|
|
const half KQ_max_scale_h = hexp(kqmax_old - kqmax_new);
|
|
const half2 KQ_max_scale = __half2half2(KQ_max_scale_h);
|
|
|
|
KQ_rowsum_h2[j0/nwarps] = KQ_rowsum_h2[j0/nwarps] * KQ_max_scale;
|
|
const half val = hexp(sinkh - kqmax_new);
|
|
KQ_rowsum_h2[j0/nwarps].x = __hadd(KQ_rowsum_h2[j0/nwarps].x, val);
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
|
const int i = i0 + threadIdx.x;
|
|
if (i0 + warp_size > D/2 && i >= D/2) break;
|
|
VKQ2[j*(D_padded/2) + i] *= KQ_max_scale;
|
|
}
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
}
|
|
#pragma unroll
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
const int j_VKQ = j0 + threadIdx.y;
|
|
if (ic0 + j_VKQ >= int(ne01.z)) {
|
|
return;
|
|
}
|
|
|
|
float KQ_rowsum_j;
|
|
if (std::is_same<KQ_acc_t, float>::value) {
|
|
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
|
} else {
|
|
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
|
}
|
|
|
|
const int j_dst_unrolled = ((sequence*int(ne01.z) + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < D; i0 += warp_size) {
|
|
const int i = i0 + threadIdx.x;
|
|
if (i0 + warp_size > D && i >= D) {
|
|
break;
|
|
}
|
|
float dst_val = VKQ[j_VKQ*D_padded + i];
|
|
if (gridDim.y == 1) {
|
|
dst_val /= KQ_rowsum_j;
|
|
}
|
|
dst[j_dst_unrolled*D + i] = dst_val;
|
|
}
|
|
|
|
if (gridDim.y == 1 || threadIdx.x != 0) {
|
|
continue;
|
|
}
|
|
|
|
float2 dst_meta_val;
|
|
if (std::is_same<KQ_acc_t, float>::value) {
|
|
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
|
} else {
|
|
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
|
}
|
|
dst_meta_val.y = KQ_rowsum_j;
|
|
dst_meta[j_dst_unrolled] = dst_meta_val;
|
|
}
|
|
#else
|
|
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
|
max_bias, m0, m1, n_head_log2, logit_softcap,
|
|
ne00, ne01, ne02, ne03,
|
|
nb01, nb02, nb03,
|
|
ne10, ne11, ne12, ne13,
|
|
nb11, nb12, nb13,
|
|
nb21, nb22, nb23,
|
|
ne31, ne32, ne33,
|
|
nb31, nb32, nb33);
|
|
NO_DEVICE_CODE;
|
|
#endif // defined(FLASH_ATTN_AVAILABLE) && (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN))
|
|
}
|
|
|
|
constexpr int get_max_power_of_2(int x) {
|
|
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
|
}
|
|
|
|
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
|
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
|
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
|
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
|
|
|
// Number of VKQ rows calculated in parallel:
|
|
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
|
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
|
}
|
|
|
|
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
|
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
|
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
|
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
|
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
|
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
|
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
|
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
|
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
|
|
|
template <int D, int cols_per_block, typename KQ_acc_t>
|
|
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * KQV = dst;
|
|
|
|
constexpr int nwarps = 4;
|
|
|
|
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
|
const int warp_size = ggml_cuda_info().devices[ggml_cuda_get_device()].warp_size;
|
|
|
|
float logit_softcap;
|
|
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
|
|
|
fattn_kernel_t fattn_kernel;
|
|
if (logit_softcap == 0.0f) {
|
|
constexpr bool use_logit_softcap = false;
|
|
fattn_kernel = flash_attn_ext_f16<
|
|
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), KQ_acc_t, use_logit_softcap>;
|
|
} else {
|
|
constexpr bool use_logit_softcap = true;
|
|
fattn_kernel = flash_attn_ext_f16<
|
|
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), KQ_acc_t, use_logit_softcap>;
|
|
}
|
|
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, 0, FATTN_KQ_STRIDE, true, true, false, warp_size);
|
|
}
|
|
|
|
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * KQV = dst;
|
|
const ggml_tensor * Q = dst->src[0];
|
|
|
|
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
|
|
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
|
|
|
|
if (prec != GGML_PREC_DEFAULT) {
|
|
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
|
constexpr int cols_per_block = 16;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
case 80:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
case 96:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
case 112:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
case 128:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
case 256:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
break;
|
|
}
|
|
} else {
|
|
constexpr int cols_per_block = 32;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
case 80:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
case 96:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
case 112:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
case 128:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
|
break;
|
|
// case 256:
|
|
// ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
|
// break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
#if !defined(GGML_USE_HIP)
|
|
if (Q->ne[1] <= 8 && Q->ne[0] % warp_size == 0) {
|
|
constexpr int cols_per_block = 8;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 96:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 128:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 256:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
#endif // !defined(GGML_USE_HIP)
|
|
|
|
if (Q->ne[1] <= 32) {
|
|
constexpr int cols_per_block = 16;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 80:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 96:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 112:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 128:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 256:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
constexpr int cols_per_block = 32;
|
|
switch (Q->ne[0]) {
|
|
case 64:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 80:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 96:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 112:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 128:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
case 256:
|
|
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
break;
|
|
}
|
|
}
|