ollama/ml/backend.go

242 lines
5.7 KiB
Go

package ml
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"strconv"
"strings"
)
type Config interface {
Architecture() string
String(string, ...string) string
Uint(string, ...uint32) uint32
Float(string, ...float32) float32
Strings(string, ...[]string) []string
Uints(string, ...[]uint32) []uint32
}
type Backend interface {
Config() Config
Get(name string) Tensor
NewContext() Context
}
var backends = make(map[string]func(*os.File) (Backend, error))
func RegisterBackend(name string, f func(*os.File) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
backends[name] = f
}
func NewBackend(f *os.File) (Backend, error) {
if backend, ok := backends["ggml"]; ok {
return backend(f)
}
return nil, fmt.Errorf("unsupported backend")
}
// RopeType specifies the type of RoPE (Rotary Position Embedding) to use, these types are implemented in the backend
type RopeType int
const (
RopeTypeStandard RopeType = iota
_ // not yet used
RopeTypeNeoX
)
// RopeConfig contains all configuration for the RoPE (Rotary Position Embedding) operation
type RopeConfig struct {
// PositionIDs contains the position indices for each token in the sequence
// These indices are used to calculate the rotary embeddings
PositionIDs Tensor
// RopeFactors is an optional tensor containing pre-computed rotation factors
RopeFactors Tensor
// RopeDim specifies the dimension size for the rotary embeddings
RopeDim uint32
// RopeType indicates which RoPE variant to use (e.g. normal or neox)
RopeType RopeType
// OrigCtxLen stores the original context length the model was trained with
OrigCtxLen int
// RopeBase is the base value used in the frequency calculation
RopeBase float32
// RopeScale is a scaling factor applied to position indices
RopeScale float32
// YaRN parameters can be added here if they need to be configurable
}
type Context interface {
Zeros(dtype DType, shape ...int) Tensor
FromFloatSlice(s []float32, shape ...int) (Tensor, error)
FromIntSlice(s []int32, shape ...int) (Tensor, error)
Forward(Tensor)
Compute(...Tensor)
MaxTensors() int
Close()
}
type Tensor interface {
Dim(n int) int
Stride(n int) int
Shape() []int
DType() DType
Bytes() []byte
Floats() []float32
Add(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
MulmatFullPrec(ctx Context, t2 Tensor) Tensor
Softmax(ctx Context) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
RoPE(ctx Context, rc RopeConfig) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor
SILU(ctx Context) Tensor
Reshape(ctx Context, shape ...int) Tensor
View(ctx Context, offset int, shape ...int) Tensor
Permute(ctx Context, shape ...int) Tensor
Contiguous(ctx Context) Tensor
Pad(ctx Context, shape ...int) Tensor
Unpad(ctx Context, shape ...int) Tensor
Stack(ctx Context, dim int, s ...Tensor) Tensor
Concat(ctx Context, t2 Tensor, dim int) Tensor
Rows(ctx Context, t2 Tensor) Tensor
Copy(ctx Context, t2 Tensor) Tensor
}
type number interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
~float32 | ~float64 |
~complex64 | ~complex128
}
func mul[T number](s ...T) T {
p := T(1)
for _, v := range s {
p *= v
}
return p
}
type DumpOptions struct {
// Items is the number of elements to print at the beginning and end of each dimension.
Items int
// Precision is the number of decimal places to print. Applies to float32 and float64.
Precision int
}
func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
if len(opts) < 1 {
opts = append(opts, DumpOptions{
Items: 3,
Precision: 4,
})
}
switch t.DType() {
case DTypeF32:
return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeF16:
f32 := ctx.Zeros(DTypeF32, t.Shape()...)
f32 = t.Copy(ctx, f32)
return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeI32:
return dump[[]int32](ctx, t, opts[0].Items, func(i int32) string {
return strconv.FormatInt(int64(i), 10)
})
default:
return "<unsupported>"
}
}
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
if t.Bytes() == nil {
ctx.Forward(t)
ctx.Compute(t)
}
s := make(S, mul(t.Shape()...))
if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
panic(err)
}
shape := t.Shape()
var sb strings.Builder
var f func([]int, int)
f = func(dims []int, stride int) {
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
fmt.Fprint(&sb, "[")
defer func() { fmt.Fprint(&sb, "]") }()
for i := 0; i < dims[0]; i++ {
if i >= items && i < dims[0]-items {
fmt.Fprint(&sb, "..., ")
// skip to next printable element
skip := dims[0] - 2*items
if len(dims) > 1 {
stride += mul(append(dims[1:], skip)...)
fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
}
i += skip - 1
} else if len(dims) > 1 {
f(dims[1:], stride)
stride += mul(dims[1:]...)
if i < dims[0]-1 {
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
}
} else {
fmt.Fprint(&sb, fn(s[stride+i]))
if i < dims[0]-1 {
fmt.Fprint(&sb, ", ")
}
}
}
}
f(shape, 0)
return sb.String()
}
type DType int
const (
DTypeOther DType = iota
DTypeF32
DTypeF16
DTypeI32
)