ollama/model/models/qwen2/model.go

223 lines
7.3 KiB
Go

package qwen2
import (
"math"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
type Options struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
contextLength int
hiddenSize int
numAttnHeads int
numKVHeads int
modelEpsilon float32
ropeFreqBase float32
ropeFreqScale float32
ropeDimensions uint32
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*Options
}
func New(c ml.Config) (model.Model, error) {
m := &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
},
),
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numAttnHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
modelEpsilon: c.Float("attention.layer_norm_rms_epsilon"),
contextLength: int(c.Uint("context_length")),
ropeFreqBase: c.Float("rope.freq_base"),
ropeFreqScale: c.Float("rope.freq_scale", 1),
ropeDimensions: c.Uint("rope.dimension_count", 64),
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return m, nil
}
// Shift applies rotary position embeddings to the key tensor for causal attention caching
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.RoPE(
ctx,
ml.RopeConfig{
PositionIDs: shift,
RopeFactors: m.Options.RopeFactors,
RopeDim: m.Options.ropeDimensions,
RopeType: ml.RopeTypeNeoX,
OrigCtxLen: m.Options.contextLength,
RopeBase: m.Options.ropeFreqBase,
RopeScale: m.Options.ropeFreqScale,
},
), nil
}
// SelfAttention implements the multi-head self-attention mechanism
// with separate projections for query, key, value and output transformations
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, inputPositions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
// Initialize dimensions and configuration
batchSize := hiddenState.Dim(1)
headDimension := opts.hiddenSize / opts.numAttnHeads
ropeConfig := ml.RopeConfig{
PositionIDs: inputPositions,
RopeFactors: nil,
RopeDim: opts.ropeDimensions,
RopeType: ml.RopeTypeNeoX,
OrigCtxLen: opts.contextLength,
RopeBase: opts.ropeFreqBase,
RopeScale: opts.ropeFreqScale,
}
// Project and reshape query states with rotary embeddings
queryStates := sa.Query.Forward(ctx, hiddenState)
queryStates = queryStates.Reshape(ctx, headDimension, opts.numAttnHeads, batchSize)
queryStates = queryStates.RoPE(ctx, ropeConfig)
// Project and reshape key states with rotary embeddings
keyStates := sa.Key.Forward(ctx, hiddenState)
keyStates = keyStates.Reshape(ctx, headDimension, opts.numKVHeads, batchSize)
keyStates = keyStates.RoPE(ctx, ropeConfig)
// Project and reshape value states
valueStates := sa.Value.Forward(ctx, hiddenState)
valueStates = valueStates.Reshape(ctx, headDimension, opts.numKVHeads, batchSize)
// Update and retrieve from KV cache
cache.Put(ctx, keyStates, valueStates)
keyStates, valueStates, attentionMask := cache.Get(ctx)
// Prepare tensors for attention computation
queryStates = queryStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
keyStates = keyStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
valueStates = valueStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
// Apply scaling and attention mask to scores
attentionScores := keyStates.MulmatFullPrec(ctx, queryStates)
attentionScores = attentionScores.Scale(ctx, 1.0/math.Sqrt(float64(headDimension)))
attentionScores = attentionScores.Add(ctx, attentionMask)
// Compute scaled dot-product attention
attentionProbs := attentionScores.Softmax(ctx)
// Apply attention weights and reshape
weightedStates := valueStates.Mulmat(ctx, attentionProbs)
weightedStates = weightedStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
weightedStates = weightedStates.Reshape(ctx, opts.hiddenSize, batchSize)
// Project to output dimension
return sa.Output.Forward(ctx, weightedStates)
}
// MLP implements the feed-forward network component with SwiGLU activation
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
// Apply SwiGLU activation gating
gateActivation := mlp.Gate.Forward(ctx, hiddenState).SILU(ctx)
upProjection := mlp.Up.Forward(ctx, hiddenState)
intermediateStates := gateActivation.Mul(ctx, upProjection)
// Project back to hidden dimension
return mlp.Down.Forward(ctx, intermediateStates)
}
// Layer represents a single transformer layer combining self-attention and feed-forward components
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *SelfAttention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
// Self-attention branch with residual connection
residual := hiddenState
normalizedAttention := l.AttentionNorm.Forward(ctx, hiddenState, opts.modelEpsilon)
attentionOutput := l.SelfAttention.Forward(ctx, normalizedAttention, positionIDs, cache, opts)
hiddenState = attentionOutput.Add(ctx, residual)
// Feed-forward branch with residual connection
residual = hiddenState
normalizedMLP := l.MLPNorm.Forward(ctx, hiddenState, opts.modelEpsilon)
mlpOutput := l.MLP.Forward(ctx, normalizedMLP, opts)
output := mlpOutput.Add(ctx, residual)
return output
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
// Convert input tokens and positions to tensors
inputTensor, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
}
positionsTensor, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
if err != nil {
return nil, err
}
// Initial token embedding
hiddenStates := m.TokenEmbedding.Forward(ctx, inputTensor)
// Process through transformer layers
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
hiddenStates = layer.Forward(ctx, hiddenStates, positionsTensor, m.Cache, m.Options)
}
// Final layer normalization and output projection
normalizedOutput := m.OutputNorm.Forward(ctx, hiddenStates, m.modelEpsilon)
logits := m.Output.Forward(ctx, normalizedOutput)
// Extract requested output token positions
outputsTensor, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
if err != nil {
return nil, err
}
return logits.Rows(ctx, outputsTensor), nil
}
func init() {
model.Register("qwen2", New)
}