package convert import ( "cmp" "github.com/ollama/ollama/fs/ggml" ) type olmoModel struct { ModelParameters HiddenSize uint32 `json:"hidden_size"` NumHiddenLayers uint32 `json:"num_hidden_layers"` IntermediateSize uint32 `json:"intermediate_size"` NumAttentionHeads uint32 `json:"num_attention_heads"` NumKeyValueHeads uint32 `json:"num_key_value_heads"` MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` RMSNormEPS float32 `json:"rms_norm_eps"` RopeTheta float32 `json:"rope_theta"` ClampKQV float32 `json:"f_clamp_kqv"` } var _ ModelConverter = (*olmoModel)(nil) func (p *olmoModel) KV(t *Tokenizer) ggml.KV { kv := p.ModelParameters.KV(t) kv["general.architecture"] = "olmo" kv["olmo.block_count"] = p.NumHiddenLayers kv["olmo.context_length"] = p.MaxPositionEmbeddings kv["olmo.embedding_length"] = p.HiddenSize kv["olmo.feed_forward_length"] = p.IntermediateSize kv["olmo.attention.head_count"] = p.NumAttentionHeads kv["olmo.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) if p.RopeTheta > 0 { kv["olmo.rope.freq_base"] = p.RopeTheta } else { kv["olmo.rope.freq_base"] = float32(10000.0) } if p.RMSNormEPS > 0 { kv["olmo.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS } if p.ClampKQV > 0 { kv["olmo.attention.clamp_kqv"] = p.ClampKQV } return kv } func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor { var out []*ggml.Tensor for _, t := range ts { out = append(out, &ggml.Tensor{ Name: t.Name(), Kind: t.Kind(), Shape: t.Shape(), WriterTo: t, }) } return out } func (p *olmoModel) Replacements() []string { return []string{ "lm_head", "output", "model.embed_tokens", "token_embd", "model.layers", "blk", "input_layernorm", "attn_norm", "post_attention_layernorm", "ffn_norm", "model.norm", "output_norm", "self_attn.q_proj", "attn_q", "self_attn.k_proj", "attn_k", "self_attn.v_proj", "attn_v", "self_attn.o_proj", "attn_output", "mlp.gate_proj", "ffn_gate", "mlp.down_proj", "ffn_down", "mlp.up_proj", "ffn_up", } }