#include "llama.h" #include "llama-impl.h" #include "llama-chat.h" #include "llama-context.h" #include "llama-mmap.h" #include "llama-vocab.h" #include "llama-model-loader.h" #include "llama-model-saver.h" #include "llama-model.h" #include "ggml.h" #include "ggml-backend.h" #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif // // interface implementation // const char * llama_flash_attn_type_name(enum llama_flash_attn_type flash_attn_type) { switch (flash_attn_type) { case LLAMA_FLASH_ATTN_TYPE_AUTO: return "auto"; case LLAMA_FLASH_ATTN_TYPE_DISABLED: return "disabled"; case LLAMA_FLASH_ATTN_TYPE_ENABLED: return "enabled"; } GGML_ABORT("fatal error"); } struct llama_device_memory_data { int64_t total; int64_t free; llama_memory_breakdown_data mb; }; static std::vector llama_get_device_memory_data( const char * path_model, const llama_model_params * mparams, const llama_context_params * cparams, std::vector & devs, uint32_t & hp_ngl, uint32_t & hp_n_ctx_train, uint32_t & hp_n_expert, const ggml_log_level log_level) { struct user_data_t { struct { ggml_log_callback callback; void * user_data; } original_logger; ggml_log_level min_level; // prints below this log level go to debug log }; user_data_t ud; llama_log_get(&ud.original_logger.callback, &ud.original_logger.user_data); ud.min_level = log_level; llama_log_set([](ggml_log_level level, const char * text, void * user_data) { const user_data_t * ud = (const user_data_t *) user_data; const ggml_log_level level_eff = level >= ud->min_level ? level : GGML_LOG_LEVEL_DEBUG; ud->original_logger.callback(level_eff, text, ud->original_logger.user_data); }, &ud); llama_model_params mparams_copy = *mparams; mparams_copy.no_alloc = true; mparams_copy.use_mmap = false; mparams_copy.use_mlock = false; llama_model * model = llama_model_load_from_file(path_model, mparams_copy); if (model == nullptr) { llama_log_set(ud.original_logger.callback, ud.original_logger.user_data); throw std::runtime_error("failed to load model"); } llama_context * ctx = llama_init_from_model(model, *cparams); if (ctx == nullptr) { llama_model_free(model); llama_log_set(ud.original_logger.callback, ud.original_logger.user_data); throw std::runtime_error("failed to create llama_context from model"); } std::vector ret(model->devices.size()); std::map memory_breakdown = ctx->memory_breakdown(); for (const auto & [buft, mb] : memory_breakdown) { if (ggml_backend_buft_is_host(buft)) { continue; } ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft); if (!dev) { continue; } for (size_t i = 0; i < ret.size(); i++) { if (model->devices[i] == dev) { ret[i].mb.model += mb.model; ret[i].mb.context += mb.context; ret[i].mb.compute += mb.compute; break; } } } for (size_t i = 0; i < ret.size(); i++) { size_t free, total; ggml_backend_dev_memory(model->devices[i], &free, &total); ret[i].free = free; ret[i].total = total; } devs = model->devices; hp_ngl = model->hparams.n_layer; hp_n_ctx_train = model->hparams.n_ctx_train; hp_n_expert = model->hparams.n_expert; llama_memory_breakdown_print(ctx); // goes to debug log llama_free(ctx); llama_model_free(model); llama_log_set(ud.original_logger.callback, ud.original_logger.user_data); return ret; } // enum to identify part of a layer for distributing its tensors: enum layer_fraction_t { LAYER_FRACTION_NONE = 0, // nothing LAYER_FRACTION_ATTN = 1, // attention LAYER_FRACTION_UP = 2, // attention + up LAYER_FRACTION_GATE = 3, // attention + up + gate LAYER_FRACTION_MOE = 4, // everything but sparse MoE weights }; // this enum is only used in llama_params_fit_impl but needs to be defined outside of it to fix a Windows compilation issue static void llama_params_fit_impl( const char * path_model, struct llama_model_params * mparams, struct llama_context_params * cparams, float * tensor_split, struct llama_model_tensor_buft_override * tensor_buft_overrides, size_t margin_s, uint32_t n_ctx_min, enum ggml_log_level log_level) { constexpr int64_t MiB = 1024*1024; const int64_t margin = margin_s; // this function uses int64_t rather than size_t for memory sizes to more conveniently handle deficits typedef std::vector dmds_t; const llama_model_params default_mparams = llama_model_default_params(); std::vector devs; uint32_t hp_ngl = 0; // hparams.n_gpu_layers uint32_t hp_nct = 0; // hparams.n_ctx_train uint32_t hp_nex = 0; // hparams.n_expert // step 1: get data for default parameters and check whether any changes are necessary in the first place LLAMA_LOG_DEBUG("%s: getting device memory data for initial parameters:\n", __func__); const dmds_t dmds_full = llama_get_device_memory_data(path_model, mparams, cparams, devs, hp_ngl, hp_nct, hp_nex, log_level); const size_t nd = devs.size(); // number of devices if (nd == 0) { LLAMA_LOG_INFO("%s: no devices with dedicated memory found\n", __func__); return; } std::vector dev_names; { dev_names.reserve(nd); size_t max_length = 0; for (ggml_backend_dev_t dev : devs) { std::string name = ggml_backend_dev_name(dev); name += " ("; name += ggml_backend_dev_description(dev); name += ")"; dev_names.push_back(name); max_length = std::max(max_length, name.length()); } for (std::string & dn : dev_names) { dn.insert(dn.end(), max_length - dn.length(), ' '); } } int64_t sum_total = 0; int64_t sum_projected_free = 0; int64_t min_projected_free = INT64_MAX; int64_t sum_projected_used = 0; int64_t sum_projected_model = 0; int64_t sum_projected_ctx = 0; if (nd > 1) { LLAMA_LOG_INFO("%s: projected memory use with initial parameters [MiB]:\n", __func__); } for (size_t id = 0; id < nd; id++) { const llama_device_memory_data & dmd = dmds_full[id]; const int64_t projected_used = dmd.mb.total(); const int64_t projected_free = dmd.free - projected_used; sum_total += dmd.total; sum_projected_used += projected_used; sum_projected_free += projected_free; min_projected_free = std::min(min_projected_free, projected_free); sum_projected_model += dmd.mb.model; sum_projected_ctx += dmd.mb.context; if (nd > 1) { LLAMA_LOG_INFO("%s: - %s: %6" PRId64 " total, %6" PRId64 " used, %6" PRId64 " %s\n", __func__, dev_names[id].c_str(), dmd.total/MiB, projected_used/MiB, std::abs(projected_free)/MiB, projected_free >= 0 ? "surplus" : "deficit"); } } assert(sum_total >= 0 && sum_projected_used >= 0 && sum_projected_ctx >= 0); assert(sum_projected_used >= sum_projected_ctx); LLAMA_LOG_INFO("%s: projected to use %" PRId64 " MiB of device memory vs. %" PRId64 " MiB of free device memory\n", __func__, sum_projected_used/MiB, sum_total/MiB); if (min_projected_free >= margin) { if (nd == 1) { LLAMA_LOG_INFO("%s: will leave %" PRId64 " >= %" PRId64 " MiB of free device memory, no changes needed\n", __func__, min_projected_free/MiB, margin/MiB); return; } LLAMA_LOG_INFO("%s: will leave at least %" PRId64 " >= %" PRId64 " MiB of free memory on all devices, no changes needed\n", __func__, min_projected_free/MiB, margin/MiB); return; } // step 2: try reducing memory use by reducing the context size { int64_t global_surplus = sum_projected_free - int64_t(nd)*margin; if (global_surplus < 0) { LLAMA_LOG_INFO(nd == 1 ? "%s: cannot fulfill margin of %" PRId64 " MiB, need to reduce device memory by %" PRId64 " MiB\n" : "%s: cannot fulfill margin of %" PRId64 " MiB on all devices, need to use %" PRId64 " MiB less in total\n", __func__, margin/MiB, -global_surplus/MiB); if (cparams->n_ctx == 0) { if (hp_nct > n_ctx_min) { const int64_t bytes_per_ctx = sum_projected_ctx / hp_nct; int64_t memory_reduction = -global_surplus; if (nd > 1) { // for multiple devices we need to be more conservative in terms of how much context we think can fit: // - for dense models only whole layers can be assigned to devices // - for MoE models only whole tensors can be assigned to devices, which we estimate to be <= 1/3 of a layer // - on average we expect a waste of 0.5 layers/tensors per device // - use slightly more than the expected average for nd devices to be safe const int64_t model_per_layer = sum_projected_model / std::min(uint32_t(mparams->n_gpu_layers), hp_ngl); memory_reduction += (nd + 1) * model_per_layer / (hp_nex == 0 ? 2 : 6); } uint32_t ctx_reduction = std::min(uint32_t((memory_reduction + bytes_per_ctx - 1) / bytes_per_ctx), hp_nct - n_ctx_min); cparams->n_ctx = hp_nct - ctx_reduction; cparams->n_ctx = std::max(cparams->n_ctx - cparams->n_ctx % 256, n_ctx_min); // round down context for CUDA backend ctx_reduction = hp_nct - cparams->n_ctx; memory_reduction = ctx_reduction * bytes_per_ctx; global_surplus += memory_reduction; LLAMA_LOG_INFO("%s: context size reduced from %" PRIu32 " to %" PRIu32 " -> need %" PRId64 " MiB less memory in total\n", __func__, hp_nct, cparams->n_ctx, memory_reduction/MiB); if (global_surplus >= 0) { if (nd == 1) { LLAMA_LOG_INFO("%s: entire model can be fit by reducing context\n", __func__); return; } LLAMA_LOG_INFO("%s: entire model should be fit across devices by reducing context\n", __func__); } } else { LLAMA_LOG_INFO("%s: default model context size is %" PRIu32 " which is <= the min. context size of %" PRIu32 " -> no change\n", __func__, hp_nct, n_ctx_min); } } else { LLAMA_LOG_INFO("%s: context size set by user to %" PRIu32 " -> no change\n", __func__, cparams->n_ctx); } } } if (mparams->n_gpu_layers != default_mparams.n_gpu_layers) { throw std::runtime_error("n_gpu_layers already set by user to " + std::to_string(mparams->n_gpu_layers) + ", abort"); } if (nd > 1) { if (!tensor_split) { throw std::runtime_error("did not provide a buffer to write the tensor_split to, abort"); } if (mparams->tensor_split) { for (size_t id = 0; id < nd; id++) { if (mparams->tensor_split[id] != 0.0f) { throw std::runtime_error("model_params::tensor_split already set by user, abort"); } } } if (mparams->split_mode == LLAMA_SPLIT_MODE_ROW) { throw std::runtime_error("changing weight allocation for LLAMA_SPLIT_MODE_ROW not implemented, abort"); } } if (!tensor_buft_overrides) { throw std::runtime_error("did not provide buffer to set tensor_buft_overrides, abort"); } if (mparams->tensor_buft_overrides && (mparams->tensor_buft_overrides->pattern || mparams->tensor_buft_overrides->buft)) { throw std::runtime_error("model_params::tensor_buft_overrides already set by user, abort"); } // step 3: iteratively fill the back to front with "dense" layers // - for a dense model simply fill full layers, giving each device a contiguous slice of the model // - for a MoE model, same as dense model but with all MoE tensors in system memory // utility function that returns a static C string matching the tensors for a specific layer index and layer fraction: auto get_overflow_pattern = [&](const size_t il, const layer_fraction_t lf) -> const char * { constexpr size_t n_strings = 1000; if (il >= n_strings) { throw std::runtime_error("at most " + std::to_string(n_strings) + " model layers are supported"); } switch (lf) { case LAYER_FRACTION_ATTN: { static std::array patterns; if (patterns[il].empty()) { patterns[il] = "blk\\." + std::to_string(il) + "\\.ffn_(up|gate|down).*"; } return patterns[il].c_str(); } case LAYER_FRACTION_UP: { static std::array patterns; if (patterns[il].empty()) { patterns[il] = "blk\\." + std::to_string(il) + "\\.ffn_(gate|down).*"; } return patterns[il].c_str(); } case LAYER_FRACTION_GATE: { static std::array patterns; if (patterns[il].empty()) { patterns[il] = "blk\\." + std::to_string(il) + "\\.ffn_down.*"; } return patterns[il].c_str(); } case LAYER_FRACTION_MOE: { static std::array patterns; if (patterns[il].empty()) { patterns[il] = "blk\\." + std::to_string(il) + "\\.ffn_(up|down|gate)_(ch|)exps"; } return patterns[il].c_str(); } default: GGML_ABORT("fatal error"); } }; struct ngl_t { uint32_t n_layer = 0; // number of total layers uint32_t n_part = 0; // number of partial layers, <= n_layer // for the first partial layer varying parts can overflow, all further layers use LAYER_FRACTION_MOE: layer_fraction_t overflow_type = LAYER_FRACTION_MOE; }; const size_t ntbo = llama_max_tensor_buft_overrides(); // utility function to set n_gpu_layers and tensor_split auto set_ngl_tensor_split_tbo = [&]( const std::vector & ngl_per_device, const std::vector & overflow_bufts, llama_model_params & mparams) { mparams.n_gpu_layers = 0; for (size_t id = 0; id < nd; id++) { mparams.n_gpu_layers += ngl_per_device[id].n_layer; if (nd > 1) { tensor_split[id] = ngl_per_device[id].n_layer; } } assert(uint32_t(mparams.n_gpu_layers) <= hp_ngl + 1); uint32_t il0 = hp_ngl + 1 - mparams.n_gpu_layers; // start index for tensor buft overrides mparams.tensor_split = tensor_split; size_t itbo = 0; for (size_t id = 0; id < nd; id++) { il0 += ngl_per_device[id].n_layer - ngl_per_device[id].n_part; for (uint32_t il = il0; il < il0 + ngl_per_device[id].n_part; il++) { if (itbo + 1 >= ntbo) { tensor_buft_overrides[itbo].pattern = nullptr; tensor_buft_overrides[itbo].buft = nullptr; itbo++; mparams.tensor_buft_overrides = tensor_buft_overrides; throw std::runtime_error("llama_params_fit_n_tensor_buft_overrides() == " + std::to_string(ntbo) + " is insufficient for model\n"); } tensor_buft_overrides[itbo].pattern = get_overflow_pattern(il, il == il0 ? ngl_per_device[id].overflow_type : LAYER_FRACTION_MOE); tensor_buft_overrides[itbo].buft = overflow_bufts[id]; itbo++; } il0 += ngl_per_device[id].n_part; } tensor_buft_overrides[itbo].pattern = nullptr; tensor_buft_overrides[itbo].buft = nullptr; itbo++; mparams.tensor_buft_overrides = tensor_buft_overrides; }; // utility function that returns the memory use per device for given numbers of layers per device auto get_memory_for_layers = [&]( const char * func_name, const std::vector & ngl_per_device, const std::vector & overflow_bufts) -> std::vector { llama_model_params mparams_copy = *mparams; set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, mparams_copy); const dmds_t dmd_nl = llama_get_device_memory_data( path_model, &mparams_copy, cparams, devs, hp_ngl, hp_nct, hp_nex, log_level); LLAMA_LOG_DEBUG("%s: memory for test allocation by device:\n", func_name); for (size_t id = 0; id < nd; id++) { const ngl_t & n = ngl_per_device[id]; LLAMA_LOG_DEBUG( "%s: id=%zu, n_layer=%2" PRIu32 ", n_part=%2" PRIu32 ", overflow_type=%d, mem=%6" PRId64 " MiB\n", func_name, id, n.n_layer, n.n_part, int(n.overflow_type), dmd_nl[id].mb.total()/MiB); } std::vector ret; ret.reserve(nd); for (const llama_device_memory_data & dmd : dmd_nl) { ret.push_back(dmd.mb.total()); } return ret; }; int64_t global_surplus_cpu_moe = 0; if (hp_nex > 0) { const static std::string pattern_moe_all = "blk\\.\\d+\\.ffn_(up|down|gate)_(ch|)exps"; // matches all MoE tensors ggml_backend_buffer_type_t cpu_buft = ggml_backend_cpu_buffer_type(); tensor_buft_overrides[0] = {pattern_moe_all.c_str(), cpu_buft}; tensor_buft_overrides[1] = {nullptr, nullptr}; mparams->tensor_buft_overrides = tensor_buft_overrides; LLAMA_LOG_DEBUG("%s: getting device memory data with all MoE tensors moved to system memory:\n", __func__); const dmds_t dmds_cpu_moe = llama_get_device_memory_data( path_model, mparams, cparams, devs, hp_ngl, hp_nct, hp_nex, log_level); for (const llama_device_memory_data & dmd : dmds_cpu_moe) { global_surplus_cpu_moe += dmd.free; global_surplus_cpu_moe -= int64_t(dmd.mb.total()) + margin; } if (global_surplus_cpu_moe > 0) { LLAMA_LOG_INFO("%s: with only dense weights in device memory there is a total surplus of %" PRId64 " MiB\n", __func__, global_surplus_cpu_moe/MiB); } else { LLAMA_LOG_INFO("%s: with only dense weights in device memory there is still a total deficit of %" PRId64 " MiB\n", __func__, -global_surplus_cpu_moe/MiB); } // reset tensor_buft_overrides[0] = {nullptr, nullptr}; mparams->tensor_buft_overrides = tensor_buft_overrides; } std::vector targets; // maximum acceptable memory use per device targets.reserve(nd); for (size_t id = 0; id < nd; id++) { targets.push_back(dmds_full[id].free - margin); LLAMA_LOG_DEBUG("%s: id=%zu, target=%" PRId64 " MiB\n", __func__, id, targets[id]/MiB); } std::vector overflow_bufts; // which bufts the partial layers of a device overflow to: overflow_bufts.reserve(nd); for (size_t id = 0; id < nd - 1; ++id) { overflow_bufts.push_back(ggml_backend_dev_buffer_type(devs[id + 1])); } overflow_bufts.push_back(ggml_backend_cpu_buffer_type()); std::vector ngl_per_device(nd); std::vector mem = get_memory_for_layers(__func__, ngl_per_device, overflow_bufts); if (hp_nex > 0) { for (size_t id = 0; id < nd; id++) { ngl_per_device[id].overflow_type = LAYER_FRACTION_MOE; } } // optimize the number of layers per device using the method of false position: // - ngl_per_device has 0 layers for each device, lower bound // - try a "high" configuration where a device is given all unassigned layers // - interpolate the memory use / layer between low and high linearly to get a guess where it meets our target // - check memory use of our guess, replace either the low or high bound // - once we only have a difference of a single layer, stop and return the lower bound that just barely still fits // - the last device has the output layer, which cannot be a partial layer if (hp_nex == 0) { LLAMA_LOG_INFO("%s: filling dense layers back-to-front:\n", __func__); } else { LLAMA_LOG_INFO("%s: filling dense-only layers back-to-front:\n", __func__); } for (int id = nd - 1; id >= 0; id--) { uint32_t n_unassigned = hp_ngl + 1; for (size_t jd = id + 1; jd < nd; ++jd) { assert(n_unassigned >= ngl_per_device[jd].n_layer); n_unassigned -= ngl_per_device[jd].n_layer; } std::vector ngl_per_device_high = ngl_per_device; ngl_per_device_high[id].n_layer = n_unassigned; if (hp_nex > 0) { ngl_per_device_high[id].n_part = size_t(id) < nd - 1 ? ngl_per_device_high[id].n_layer : ngl_per_device_high[id].n_layer - 1; } if (ngl_per_device_high[id].n_layer > 0) { std::vector mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts); if (mem_high[id] > targets[id]) { assert(ngl_per_device_high[id].n_layer > ngl_per_device[id].n_layer); uint32_t delta = ngl_per_device_high[id].n_layer - ngl_per_device[id].n_layer; LLAMA_LOG_DEBUG("%s: start filling device %" PRIu32 ", delta=%" PRIu32 "\n", __func__, id, delta); while (delta > 1) { uint32_t step_size = int64_t(delta) * (targets[id] - mem[id]) / (mem_high[id] - mem[id]); step_size = std::max(step_size, uint32_t(1)); step_size = std::min(step_size, delta - 1); std::vector ngl_per_device_test = ngl_per_device; ngl_per_device_test[id].n_layer += step_size; if (hp_nex) { ngl_per_device_test[id].n_part += step_size; } const std::vector mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts); if (mem_test[id] <= targets[id]) { ngl_per_device = ngl_per_device_test; mem = mem_test; LLAMA_LOG_DEBUG("%s: set ngl_per_device[%d].n_layer=%" PRIu32 "\n", __func__, id, ngl_per_device[id].n_layer); } else { ngl_per_device_high = ngl_per_device_test; mem_high = mem_test; LLAMA_LOG_DEBUG("%s: set ngl_per_device_high[%d].n_layer=%" PRIu32 "\n", __func__, id, ngl_per_device_high[id].n_layer); } delta = ngl_per_device_high[id].n_layer - ngl_per_device[id].n_layer; } } else { assert(ngl_per_device_high[id].n_layer == n_unassigned); ngl_per_device = ngl_per_device_high; mem = mem_high; LLAMA_LOG_DEBUG("%s: set ngl_per_device[%d].n_layer=%" PRIu32 "\n", __func__, id, ngl_per_device[id].n_layer); } } const int64_t projected_margin = dmds_full[id].free - mem[id]; LLAMA_LOG_INFO( "%s: - %s: %2" PRIu32 " layers, %6" PRId64 " MiB used, %6" PRId64 " MiB free\n", __func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, mem[id]/MiB, projected_margin/MiB); } if (hp_nex == 0 || global_surplus_cpu_moe <= 0) { set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams); return; } // step 4: for a MoE model where all dense tensors fit, // convert the dense-only layers in the back to full layers in the front until all devices are full // essentially the same procedure as for the dense-only layers except front-to-back // also, try fitting at least part of one more layer to reduce waste for "small" GPUs with e.g. 24 GiB VRAM size_t id_dense_start = nd; for (int id = nd - 1; id >= 0; id--) { if (ngl_per_device[id].n_layer > 0) { id_dense_start = id; continue; } break; } assert(id_dense_start < nd); LLAMA_LOG_INFO("%s: converting dense-only layers to full layers and filling them front-to-back with overflow to next device/system memory:\n", __func__); for (size_t id = 0; id <= id_dense_start; id++) { std::vector ngl_per_device_high = ngl_per_device; for (size_t jd = id_dense_start; jd < nd; jd++) { const uint32_t n_layer_move = jd < nd - 1 ? ngl_per_device_high[jd].n_layer : ngl_per_device_high[jd].n_layer - 1; ngl_per_device_high[id].n_layer += n_layer_move; ngl_per_device_high[jd].n_layer -= n_layer_move; ngl_per_device_high[jd].n_part = 0; } size_t id_dense_start_high = nd - 1; std::vector mem_high = get_memory_for_layers(__func__, ngl_per_device_high, overflow_bufts); if (mem_high[id] > targets[id]) { assert(ngl_per_device_high[id].n_layer >= ngl_per_device_high[id].n_part); assert(ngl_per_device[id].n_layer >= ngl_per_device[id].n_part); assert((ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part) >= ngl_per_device[id].n_layer - ngl_per_device[id].n_part); uint32_t delta = (ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part) - (ngl_per_device[id].n_layer - ngl_per_device[id].n_part); while (delta > 1) { uint32_t step_size = int64_t(delta) * (targets[id] - mem[id]) / (mem_high[id] - mem[id]); step_size = std::max(step_size, uint32_t(1)); step_size = std::min(step_size, delta - 1); std::vector ngl_per_device_test = ngl_per_device; size_t id_dense_start_test = id_dense_start; uint32_t n_converted_test = 0; for (;id_dense_start_test < nd; id_dense_start_test++) { const uint32_t n_convert_jd = std::min(step_size - n_converted_test, ngl_per_device_test[id_dense_start_test].n_part); ngl_per_device_test[id_dense_start_test].n_layer -= n_convert_jd; ngl_per_device_test[id_dense_start_test].n_part -= n_convert_jd; ngl_per_device_test[id].n_layer += n_convert_jd; n_converted_test += n_convert_jd; if (ngl_per_device_test[id_dense_start_test].n_layer > 0) { break; } } const std::vector mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts); if (mem_test[id] <= targets[id]) { ngl_per_device = ngl_per_device_test; mem = mem_test; id_dense_start = id_dense_start_test; LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part)=(%" PRIu32 ", %" PRIu32 "), id_dense_start=%zu\n", __func__, id, ngl_per_device[id].n_layer, ngl_per_device[id].n_part, id_dense_start); } else { ngl_per_device_high = ngl_per_device_test; mem_high = mem_test; id_dense_start_high = id_dense_start_test; LLAMA_LOG_DEBUG("%s: set ngl_per_device_high[%zu].(n_layer, n_part)=(%" PRIu32 ", %" PRIu32 "), id_dense_start_high=%zu\n", __func__, id, ngl_per_device_high[id].n_layer, ngl_per_device_high[id].n_part, id_dense_start_high); } delta = (ngl_per_device_high[id].n_layer - ngl_per_device_high[id].n_part) - (ngl_per_device[id].n_layer - ngl_per_device[id].n_part); } } else { ngl_per_device = ngl_per_device_high; mem = mem_high; id_dense_start = id_dense_start_high; LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part)=(%" PRIu32 ", %" PRIu32 "), id_dense_start=%zu\n", __func__, id, ngl_per_device[id].n_layer, ngl_per_device[id].n_part, id_dense_start); } // try to fit at least part of one more layer if (ngl_per_device[id_dense_start].n_layer > (id < nd - 1 ? 0 : 1)) { std::vector ngl_per_device_test = ngl_per_device; size_t id_dense_start_test = id_dense_start; ngl_per_device_test[id_dense_start_test].n_layer--; ngl_per_device_test[id_dense_start_test].n_part--; ngl_per_device_test[id].n_layer++; ngl_per_device_test[id].n_part++; if (ngl_per_device_test[id_dense_start_test].n_layer == 0) { id_dense_start_test++; } ngl_per_device_test[id].overflow_type = LAYER_FRACTION_UP; LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_UP\n", __func__); std::vector mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts); if (mem_test[id] < targets[id]) { ngl_per_device = ngl_per_device_test; mem = mem_test; id_dense_start = id_dense_start_test; LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", UP), id_dense_start=%zu\n", __func__, id, ngl_per_device[id].n_layer, ngl_per_device[id].n_part, id_dense_start); ngl_per_device_test[id].overflow_type = LAYER_FRACTION_GATE; LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_GATE\n", __func__); mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts); if (mem_test[id] < targets[id]) { ngl_per_device = ngl_per_device_test; mem = mem_test; id_dense_start = id_dense_start_test; LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", GATE), id_dense_start=%zu\n", __func__, id, ngl_per_device[id].n_layer, ngl_per_device[id].n_part, id_dense_start); } } else { ngl_per_device_test[id].overflow_type = LAYER_FRACTION_ATTN; LLAMA_LOG_DEBUG("%s: trying to fit one extra layer with overflow_type=LAYER_FRACTION_ATTN\n", __func__); mem_test = get_memory_for_layers(__func__, ngl_per_device_test, overflow_bufts); if (mem_test[id] < targets[id]) { ngl_per_device = ngl_per_device_test; mem = mem_test; id_dense_start = id_dense_start_test; LLAMA_LOG_DEBUG("%s: set ngl_per_device[%zu].(n_layer, n_part, overflow_type)=(%" PRIu32 ", %" PRIu32 ", ATTN), id_dense_start=%zu\n", __func__, id, ngl_per_device[id].n_layer, ngl_per_device[id].n_part, id_dense_start); } } } const int64_t projected_margin = dmds_full[id].free - mem[id]; LLAMA_LOG_INFO( "%s: - %s: %2" PRIu32 " layers (%2" PRIu32 " overflowing), %6" PRId64 " MiB used, %6" PRId64 " MiB free\n", __func__, dev_names[id].c_str(), ngl_per_device[id].n_layer, ngl_per_device[id].n_part, mem[id]/MiB, projected_margin/MiB); } set_ngl_tensor_split_tbo(ngl_per_device, overflow_bufts, *mparams); } bool llama_params_fit( const char * path_model, struct llama_model_params * mparams, struct llama_context_params * cparams, float * tensor_split, struct llama_model_tensor_buft_override * tensor_buft_overrides, size_t margin_s, uint32_t n_ctx_min, enum ggml_log_level log_level) { const int64_t t0_us = llama_time_us(); bool ok = true; try { llama_params_fit_impl(path_model, mparams, cparams, tensor_split, tensor_buft_overrides, margin_s, n_ctx_min, log_level); LLAMA_LOG_INFO("%s: successfully fit params to free device memory\n", __func__); } catch (const std::runtime_error & e) { LLAMA_LOG_WARN("%s: failed to fit params to free device memory: %s\n", __func__, e.what()); ok = false; } const int64_t t1_us = llama_time_us(); LLAMA_LOG_INFO("%s: fitting params to free memory took %.2f seconds\n", __func__, (t1_us - t0_us) * 1e-6); return ok; } struct llama_sampler_chain_params llama_sampler_chain_default_params() { struct llama_sampler_chain_params result = { /*.no_perf =*/ true, }; return result; } size_t llama_max_devices(void) { return 16; } size_t llama_max_tensor_buft_overrides() { return 4096; } bool llama_supports_mmap(void) { return llama_mmap::SUPPORTED; } bool llama_supports_mlock(void) { return llama_mlock::SUPPORTED; } bool llama_supports_gpu_offload(void) { return ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU) != nullptr || ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU) != nullptr || llama_supports_rpc(); } bool llama_supports_rpc(void) { return ggml_backend_reg_by_name("RPC") != nullptr; } void llama_backend_init(void) { ggml_time_init(); // needed to initialize f16 tables { struct ggml_init_params params = { 0, NULL, false }; struct ggml_context * ctx = ggml_init(params); ggml_free(ctx); } } void llama_numa_init(enum ggml_numa_strategy numa) { if (numa != GGML_NUMA_STRATEGY_DISABLED) { auto * dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); GGML_ASSERT(dev && "CPU backend is not loaded"); auto * reg = ggml_backend_dev_backend_reg(dev); auto * numa_init_fn = (decltype(ggml_numa_init) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_numa_init"); if (numa_init_fn) { numa_init_fn(numa); } } } void llama_backend_free(void) { ggml_quantize_free(); } int64_t llama_time_us(void) { return ggml_time_us(); } // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback static int llama_model_load(const std::string & fname, std::vector & splits, llama_model & model, llama_model_params & params) { // loading time will be recalculated after the first eval, so // we take page faults deferred by mmap() into consideration model.t_load_us = 0; time_meas tm(model.t_load_us); model.t_start_us = tm.t_start_us; try { llama_model_loader ml(fname, splits, params.use_mmap, params.check_tensors, params.no_alloc, params.kv_overrides, params.tensor_buft_overrides); ml.print_info(); model.hparams.vocab_only = params.vocab_only; model.hparams.no_alloc = params.no_alloc; try { model.load_arch(ml); } catch(const std::exception & e) { throw std::runtime_error("error loading model architecture: " + std::string(e.what())); } try { model.load_hparams(ml); } catch(const std::exception & e) { throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what())); } if (model.arch == LLM_ARCH_CLIP) { throw std::runtime_error("CLIP cannot be used as main model, use it with --mmproj instead"); } try { model.load_vocab(ml); } catch(const std::exception & e) { throw std::runtime_error("error loading model vocabulary: " + std::string(e.what())); } model.load_stats(ml); model.print_info(); if (params.vocab_only) { LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__); return 0; } if (!model.load_tensors(ml)) { return -2; } } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what()); return -1; } return 0; } static struct llama_model * llama_model_load_from_file_impl( const std::string & path_model, std::vector & splits, struct llama_model_params params) { ggml_time_init(); if (!params.vocab_only && ggml_backend_reg_count() == 0) { LLAMA_LOG_ERROR("%s: no backends are loaded. hint: use ggml_backend_load() or ggml_backend_load_all() to load a backend before calling this function\n", __func__); return nullptr; } unsigned cur_percentage = 0; if (params.progress_callback == NULL) { params.progress_callback_user_data = &cur_percentage; params.progress_callback = [](float progress, void * ctx) { unsigned * cur_percentage_p = (unsigned *) ctx; unsigned percentage = (unsigned) (100 * progress); while (percentage > *cur_percentage_p) { *cur_percentage_p = percentage; LLAMA_LOG_CONT("."); if (percentage >= 100) { LLAMA_LOG_CONT("\n"); } } return true; }; } llama_model * model = new llama_model(params); // create list of devices to use with this model if (params.devices) { for (ggml_backend_dev_t * dev = params.devices; *dev; ++dev) { model->devices.push_back(*dev); } } else { // default device selection // build list of available devices std::vector gpus; std::vector igpus; std::vector rpc_servers; for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { ggml_backend_dev_t dev = ggml_backend_dev_get(i); switch (ggml_backend_dev_type(dev)) { case GGML_BACKEND_DEVICE_TYPE_CPU: case GGML_BACKEND_DEVICE_TYPE_ACCEL: // skip CPU backends since they are handled separately break; case GGML_BACKEND_DEVICE_TYPE_GPU: { ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev); if (ggml_backend_reg_name(reg) == std::string("RPC")) { rpc_servers.push_back(dev); } else { // check if there is already a GPU with the same device id ggml_backend_dev_props props; ggml_backend_dev_get_props(dev, &props); auto it = std::find_if(gpus.begin(), gpus.end(), [&props](ggml_backend_dev_t d) { ggml_backend_dev_props d_props; ggml_backend_dev_get_props(d, &d_props); if (props.device_id && d_props.device_id) { return strcmp(props.device_id, d_props.device_id) == 0; } return false; }); if (it != gpus.end()) { LLAMA_LOG_INFO("%s: skipping device %s (%s) with id %s - already using device %s (%s) with the same id\n", __func__, ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), props.device_id ? props.device_id : "unknown id", ggml_backend_dev_name(*it), ggml_backend_dev_description(*it)); } else { gpus.push_back(dev); } } break; } case GGML_BACKEND_DEVICE_TYPE_IGPU: igpus.push_back(dev); break; } } // add RPC servers at the front of the list to minimize network transfers model->devices.insert(model->devices.begin(), rpc_servers.begin(), rpc_servers.end()); // add GPUs model->devices.insert(model->devices.end(), gpus.begin(), gpus.end()); // add integrated GPUs only if no other devices were found if (model->devices.empty()) { model->devices.insert(model->devices.end(), igpus.begin(), igpus.end()); } } // if using single GPU mode, remove all except the main GPU if (params.split_mode == LLAMA_SPLIT_MODE_NONE) { if (params.main_gpu < 0) { model->devices.clear(); } else { if (params.main_gpu >= (int)model->devices.size()) { LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %zu)\n", __func__, params.main_gpu, model->devices.size()); llama_model_free(model); return nullptr; } ggml_backend_dev_t main_gpu = model->devices[params.main_gpu]; model->devices.clear(); model->devices.push_back(main_gpu); } } for (auto * dev : model->devices) { ggml_backend_dev_props props; ggml_backend_dev_get_props(dev, &props); size_t memory_free, memory_total; ggml_backend_dev_memory(dev, &memory_free, &memory_total); LLAMA_LOG_INFO("%s: using device %s (%s) (%s) - %zu MiB free\n", __func__, ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), props.device_id ? props.device_id : "unknown id", memory_free/1024/1024); } const int status = llama_model_load(path_model, splits, *model, params); GGML_ASSERT(status <= 0); if (status < 0) { if (status == -1) { LLAMA_LOG_ERROR("%s: failed to load model\n", __func__); } else if (status == -2) { LLAMA_LOG_INFO("%s: cancelled model load\n", __func__); } llama_model_free(model); return nullptr; } return model; } // deprecated struct llama_model * llama_load_model_from_file( const char * path_model, struct llama_model_params params) { return llama_model_load_from_file(path_model, params); } struct llama_model * llama_model_load_from_file( const char * path_model, struct llama_model_params params) { std::vector splits = {}; return llama_model_load_from_file_impl(path_model, splits, params); } struct llama_model * llama_model_load_from_splits( const char ** paths, size_t n_paths, struct llama_model_params params) { std::vector splits; if (n_paths == 0) { LLAMA_LOG_ERROR("%s: list of splits is empty\n", __func__); return nullptr; } splits.reserve(n_paths); for (size_t i = 0; i < n_paths; ++i) { splits.push_back(paths[i]); } return llama_model_load_from_file_impl(splits.front(), splits, params); } void llama_model_save_to_file(const struct llama_model * model, const char * path_model) { llama_model_saver ms(*model); ms.add_kv_from_model(); ms.add_tensors_from_model(); ms.save(path_model); } // // chat templates // int32_t llama_chat_apply_template( const char * tmpl, const struct llama_chat_message * chat, size_t n_msg, bool add_ass, char * buf, int32_t length) { const std::string curr_tmpl(tmpl == nullptr ? "chatml" : tmpl); // format the chat to string std::vector chat_vec; chat_vec.resize(n_msg); for (size_t i = 0; i < n_msg; i++) { chat_vec[i] = &chat[i]; } std::string formatted_chat; llm_chat_template detected_tmpl = llm_chat_detect_template(curr_tmpl); if (detected_tmpl == LLM_CHAT_TEMPLATE_UNKNOWN) { return -1; } int32_t res = llm_chat_apply_template(detected_tmpl, chat_vec, formatted_chat, add_ass); if (res < 0) { return res; } if (buf && length > 0) { strncpy(buf, formatted_chat.c_str(), length); } return res; } // // model split // int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) { static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf"; if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) { return strlen(split_path); } return 0; } int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count) { std::string str_split_path(split_path); char postfix[32]; snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count); std::string str_postfix(postfix); // check if split_prefix ends with postfix int size_prefix = str_split_path.size() - str_postfix.size(); if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) { snprintf(split_prefix, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path); return size_prefix; } return 0; } const char * llama_print_system_info(void) { static std::string s; s.clear(); // Clear the string, since it's static, otherwise it will accumulate data from previous calls. for (size_t i = 0; i < ggml_backend_reg_count(); i++) { auto * reg = ggml_backend_reg_get(i); auto * get_features_fn = (ggml_backend_get_features_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_get_features"); if (get_features_fn) { ggml_backend_feature * features = get_features_fn(reg); s += ggml_backend_reg_name(reg); s += " : "; for (; features->name; features++) { s += features->name; s += " = "; s += features->value; s += " | "; } } } return s.c_str(); }