#include #include #include #include #include #include "llama.h" #include "main.h" std::vector tokenize(const struct llama_model * model, const std::string & text, bool add_bos, bool special = false) { // upper limit for the number of tokens int n_tokens = text.length() + add_bos; std::vector result(n_tokens); n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return result; } std::string token_to_piece(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return std::string(result.data(), result.size()); } void batch_add( struct llama_batch & batch, llama_token id, llama_pos pos, const std::vector & seq_ids, bool logits) { batch.token [batch.n_tokens] = id; batch.pos [batch.n_tokens] = pos, batch.n_seq_id[batch.n_tokens] = seq_ids.size(); for (size_t i = 0; i < seq_ids.size(); ++i) { batch.seq_id[batch.n_tokens][i] = seq_ids[i]; } batch.logits [batch.n_tokens] = logits; batch.n_tokens++; } void batch_clear(struct llama_batch & batch) { batch.n_tokens = 0; } int generate(const char *model_path, const char *prompt) { // number of parallel batches int n_parallel = 1; // total length of the sequences including the prompt int n_len = 32; // init LLM llama_backend_init(true); // initialize the model llama_model_params model_params = llama_model_default_params(); // model_params.n_gpu_layers = 99; // offload all layers to the GPU llama_model * model = llama_load_model_from_file(model_path, model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } // tokenize the prompt std::vector tokens_list; tokens_list = tokenize(model, std::string(prompt), true); const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel; // initialize the context llama_context_params ctx_params = llama_context_default_params(); ctx_params.seed = 1234; ctx_params.n_ctx = n_kv_req; ctx_params.n_batch = std::max(n_len, n_parallel); ctx_params.n_threads = std::thread::hardware_concurrency(); ctx_params.n_threads_batch = ctx_params.n_threads; llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } const int n_ctx = llama_n_ctx(ctx); printf("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req); // make sure the KV cache is big enough to hold all the prompt and generated tokens if (n_kv_req > n_ctx) { printf("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req); printf("%s: either reduce n_parallel or increase n_ctx\n", __func__); return 1; } // print the prompt token-by-token fprintf(stderr, "\n"); for (auto id : tokens_list) { fprintf(stderr, "%s", token_to_piece(ctx, id).c_str()); } fflush(stderr); // create a llama_batch // we use this object to submit token data for decoding llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0, 1); // evaluate the initial prompt for (size_t i = 0; i < tokens_list.size(); ++i) { batch_add(batch, tokens_list[i], i, { 0 }, false); } GGML_ASSERT(batch.n_tokens == (int) tokens_list.size()); // llama_decode will output logits only for the last token of the prompt batch.logits[batch.n_tokens - 1] = true; if (llama_decode(ctx, batch) != 0) { printf("%s: llama_decode() failed\n", __func__); return 1; } // assign the system KV cache to all parallel sequences // this way, the parallel sequences will "reuse" the prompt tokens without having to copy them for (int32_t i = 1; i < n_parallel; ++i) { llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens); } if (n_parallel > 1) { printf("\n\n%s: generating %d sequences ...\n", __func__, n_parallel); } // main loop // we will store the parallel decoded sequences in this vector std::vector streams(n_parallel); // remember the batch index of the last token for each parallel sequence // we need this to determine which logits to sample from std::vector i_batch(n_parallel, batch.n_tokens - 1); int n_cur = batch.n_tokens; int n_decode = 0; const auto t_main_start = ggml_time_us(); while (n_cur <= n_len) { // prepare the next batch batch_clear(batch); // sample the next token for each parallel sequence / stream for (int32_t i = 0; i < n_parallel; ++i) { if (i_batch[i] < 0) { // the stream has already finished continue; } auto n_vocab = llama_n_vocab(model); auto * logits = llama_get_logits_ith(ctx, i_batch[i]); std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; const int top_k = 40; const float top_p = 0.9f; const float temp = 0.4f; llama_sample_top_k(ctx, &candidates_p, top_k, 1); llama_sample_top_p(ctx, &candidates_p, top_p, 1); llama_sample_temp (ctx, &candidates_p, temp); const llama_token new_token_id = llama_sample_token(ctx, &candidates_p); //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); // is it an end of stream? -> mark the stream as finished if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) { i_batch[i] = -1; printf("\n"); if (n_parallel > 1) { printf("%s: stream %d finished at n_cur = %d", __func__, i, n_cur); } continue; } // if there is only one stream, we print immediately to stdout if (n_parallel == 1) { printf("%s", token_to_piece(ctx, new_token_id).c_str()); fflush(stdout); } streams[i] += token_to_piece(ctx, new_token_id); i_batch[i] = batch.n_tokens; // push this new token for next evaluation batch_add(batch, new_token_id, n_cur, { i }, true); n_decode += 1; } // all streams are finished if (batch.n_tokens == 0) { break; } n_cur += 1; // evaluate the current batch with the transformer model if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); return 1; } } printf("\n"); if (n_parallel > 1) { printf("\n"); for (int32_t i = 0; i < n_parallel; ++i) { printf("sequence %d:\n\n%s%s\n\n", i, prompt, streams[i].c_str()); } } const auto t_main_end = ggml_time_us(); printf("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); llama_print_timings(ctx); fprintf(stderr, "\n"); llama_batch_free(batch); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }