Compare commits

..

5 Commits

Author SHA1 Message Date
ParthSareen 0103a3a89b update tests 2025-11-14 16:00:34 -08:00
ParthSareen 471cbbe95a rm 2025-11-14 11:19:49 -08:00
ParthSareen 00c96eed1f rm cloud test 2025-11-14 11:09:25 -08:00
ParthSareen aff30cdbc1 remove comments 2025-11-14 10:04:33 -08:00
ParthSareen bd834dcbe3 integration: improve tool calling tests for local and cloud models 2025-11-14 10:04:32 -08:00
581 changed files with 33259 additions and 68429 deletions

4
.gitattributes vendored
View File

@ -15,12 +15,8 @@ ml/backend/**/*.cu linguist-vendored
ml/backend/**/*.cuh linguist-vendored ml/backend/**/*.cuh linguist-vendored
ml/backend/**/*.m linguist-vendored ml/backend/**/*.m linguist-vendored
ml/backend/**/*.metal linguist-vendored ml/backend/**/*.metal linguist-vendored
ml/backend/**/*.comp linguist-vendored
ml/backend/**/*.glsl linguist-vendored
ml/backend/**/CMakeLists.txt linguist-vendored ml/backend/**/CMakeLists.txt linguist-vendored
app/webview linguist-vendored
llama/build-info.cpp linguist-generated llama/build-info.cpp linguist-generated
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated

View File

@ -16,15 +16,13 @@ jobs:
outputs: outputs:
GOFLAGS: ${{ steps.goflags.outputs.GOFLAGS }} GOFLAGS: ${{ steps.goflags.outputs.GOFLAGS }}
VERSION: ${{ steps.goflags.outputs.VERSION }} VERSION: ${{ steps.goflags.outputs.VERSION }}
vendorsha: ${{ steps.changes.outputs.vendorsha }}
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- name: Set environment - name: Set environment
id: goflags id: goflags
run: | run: |
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" | tee -a $GITHUB_OUTPUT echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT
echo VERSION="${GITHUB_REF_NAME#v}" | tee -a $GITHUB_OUTPUT echo VERSION="${GITHUB_REF_NAME#v}" >>$GITHUB_OUTPUT
echo vendorsha=$(make -f Makefile.sync print-base) | tee -a $GITHUB_OUTPUT
darwin-build: darwin-build:
runs-on: macos-14-xlarge runs-on: macos-14-xlarge
@ -55,9 +53,6 @@ jobs:
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version-file: go.mod go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- run: | - run: |
./scripts/build_darwin.sh ./scripts/build_darwin.sh
- name: Log build results - name: Log build results
@ -190,7 +185,7 @@ jobs:
- uses: actions/cache@v4 - uses: actions/cache@v4
with: with:
path: ${{ github.workspace }}\.ccache path: ${{ github.workspace }}\.ccache
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}-${{ needs.setup-environment.outputs.vendorsha }} key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
- name: Build target "${{ matrix.preset }}" - name: Build target "${{ matrix.preset }}"
run: | run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll' Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
@ -254,9 +249,6 @@ jobs:
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version-file: go.mod go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- name: Verify gcc is actually clang - name: Verify gcc is actually clang
run: | run: |
$ErrorActionPreference='Continue' $ErrorActionPreference='Continue'
@ -310,9 +302,6 @@ jobs:
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version-file: go.mod go-version-file: go.mod
cache-dependency-path: |
go.sum
Makefile.sync
- uses: actions/download-artifact@v4 - uses: actions/download-artifact@v4
with: with:
pattern: depends-windows* pattern: depends-windows*
@ -377,7 +366,6 @@ jobs:
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;; bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;; lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;; lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/vulkan*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;; lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;; lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;; lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;

View File

@ -22,7 +22,6 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
outputs: outputs:
changed: ${{ steps.changes.outputs.changed }} changed: ${{ steps.changes.outputs.changed }}
vendorsha: ${{ steps.changes.outputs.vendorsha }}
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
@ -38,7 +37,6 @@ jobs:
} }
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
echo vendorsha=$(make -f Makefile.sync print-base) | tee -a $GITHUB_OUTPUT
linux: linux:
needs: [changes] needs: [changes]
@ -85,7 +83,7 @@ jobs:
- uses: actions/cache@v4 - uses: actions/cache@v4
with: with:
path: /github/home/.cache/ccache path: /github/home/.cache/ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}-${{ needs.changes.outputs.vendorsha }} key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: | - run: |
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }} cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
cmake --build --preset ${{ matrix.preset }} --parallel cmake --build --preset ${{ matrix.preset }} --parallel
@ -180,7 +178,7 @@ jobs:
- uses: actions/cache@v4 - uses: actions/cache@v4
with: with:
path: ${{ github.workspace }}\.ccache path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}-${{ needs.changes.outputs.vendorsha }} key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: | - run: |
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll' Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo' Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
@ -208,9 +206,6 @@ jobs:
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version-file: 'go.mod' go-version-file: 'go.mod'
cache-dependency-path: |
go.sum
Makefile.sync
- uses: actions/setup-node@v4 - uses: actions/setup-node@v4
with: with:
node-version: '20' node-version: '20'
@ -231,9 +226,12 @@ jobs:
if: always() if: always()
run: go test -count=1 -benchtime=1x ./... run: go test -count=1 -benchtime=1x ./...
- uses: golangci/golangci-lint-action@v9 # TODO(bmizerany): replace this heavy tool with just the
# tools/checks/binaries we want and then make them all run in parallel
# across jobs, not on a single tiny vm on Github Actions.
- uses: golangci/golangci-lint-action@v6
with: with:
only-new-issues: true args: --timeout 10m0s -v
patches: patches:
runs-on: ubuntu-latest runs-on: ubuntu-latest
@ -242,4 +240,4 @@ jobs:
- name: Verify patches apply cleanly and do not change files - name: Verify patches apply cleanly and do not change files
run: | run: |
make -f Makefile.sync clean checkout apply-patches sync make -f Makefile.sync clean checkout apply-patches sync
git diff --compact-summary --exit-code git diff --compact-summary --exit-code

View File

@ -1,4 +1,5 @@
version: "2" run:
timeout: 5m
linters: linters:
enable: enable:
- asasalint - asasalint
@ -6,46 +7,35 @@ linters:
- bodyclose - bodyclose
- containedctx - containedctx
- gocheckcompilerdirectives - gocheckcompilerdirectives
- gofmt
- gofumpt
- gosimple
- govet
- ineffassign
- intrange - intrange
- makezero - makezero
- misspell - misspell
- nilerr - nilerr
- nolintlint - nolintlint
- nosprintfhostport - nosprintfhostport
- staticcheck
- unconvert - unconvert
- usetesting - usetesting
- wastedassign - wastedassign
- whitespace - whitespace
disable: disable:
- errcheck
- usestdlibvars - usestdlibvars
settings: - errcheck
govet: linters-settings:
disable: staticcheck:
- unusedresult checks:
staticcheck: - all
checks: - -SA1019 # omit Deprecated check
- all
- -QF* # disable quick fix suggestions
- -SA1019
- -ST1000 # package comment format
- -ST1003 # underscores in package names
- -ST1005 # error strings should not be capitalized
- -ST1012 # error var naming (ErrFoo)
- -ST1016 # receiver name consistency
- -ST1020 # comment on exported function format
- -ST1021 # comment on exported type format
- -ST1022 # comment on exported var format
- -ST1023 # omit type from declaration
severity: severity:
default: error default-severity: error
rules: rules:
- linters: - linters:
- gofmt - gofmt
- goimports - goimports
- intrange - intrange
severity: info severity: info
formatters:
enable:
- gofmt
- gofumpt

View File

@ -54,13 +54,6 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cp
add_compile_definitions(NDEBUG GGML_VERSION=0x0 GGML_COMMIT=0x0) add_compile_definitions(NDEBUG GGML_VERSION=0x0 GGML_COMMIT=0x0)
# Define GGML version variables for shared library SOVERSION
# These are required by ggml/src/CMakeLists.txt for proper library versioning
set(GGML_VERSION_MAJOR 0)
set(GGML_VERSION_MINOR 0)
set(GGML_VERSION_PATCH 0)
set(GGML_VERSION "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
set(GGML_CPU ON) set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src) add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE) set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)

View File

@ -16,7 +16,7 @@ See the [development documentation](./docs/development.md) for instructions on h
* New features: new features (e.g. API fields, environment variables) add surface area to Ollama and make it harder to maintain in the long run as they cannot be removed without potentially breaking users in the future. * New features: new features (e.g. API fields, environment variables) add surface area to Ollama and make it harder to maintain in the long run as they cannot be removed without potentially breaking users in the future.
* Refactoring: large code improvements are important, but can be harder or take longer to review and merge. * Refactoring: large code improvements are important, but can be harder or take longer to review and merge.
* Documentation: small updates to fill in or correct missing documentation are helpful, however large documentation additions can be hard to maintain over time. * Documentation: small updates to fill in or correct missing documentation is helpful, however large documentation additions can be hard to maintain over time.
### Issues that may not be accepted ### Issues that may not be accepted
@ -43,7 +43,7 @@ Tips for proposals:
* Explain how the change will be tested. * Explain how the change will be tested.
Additionally, for bonus points: Provide draft documentation you would expect to Additionally, for bonus points: Provide draft documentation you would expect to
see if the changes were accepted. see if the change were accepted.
## Pull requests ## Pull requests
@ -66,6 +66,7 @@ Examples:
llm/backend/mlx: support the llama architecture llm/backend/mlx: support the llama architecture
CONTRIBUTING: provide clarity on good commit messages, and bad CONTRIBUTING: provide clarity on good commit messages, and bad
docs: simplify manual installation with shorter curl commands
Bad Examples: Bad Examples:

View File

@ -39,14 +39,14 @@ ENV CC=clang CXX=clang++
FROM base-${TARGETARCH} AS base FROM base-${TARGETARCH} AS base
ARG CMAKEVERSION ARG CMAKEVERSION
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1 RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ENV LDFLAGS=-s ENV LDFLAGS=-s
FROM base AS cpu FROM base AS cpu
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++ RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
ARG PARALLEL ARG PARALLEL
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \ RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CPU' \ cmake --preset 'CPU' \
&& cmake --build --parallel ${PARALLEL} --preset 'CPU' \ && cmake --build --parallel ${PARALLEL} --preset 'CPU' \
@ -57,8 +57,6 @@ ARG CUDA11VERSION=11.8
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-} RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH ENV PATH=/usr/local/cuda-11/bin:$PATH
ARG PARALLEL ARG PARALLEL
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \ RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' \ cmake --preset 'CUDA 11' \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \ && cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \
@ -69,8 +67,6 @@ ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-} RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH ENV PATH=/usr/local/cuda-12/bin:$PATH
ARG PARALLEL ARG PARALLEL
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \ RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' \ cmake --preset 'CUDA 12' \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \ && cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \
@ -82,8 +78,6 @@ ARG CUDA13VERSION=13.0
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-} RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
ENV PATH=/usr/local/cuda-13/bin:$PATH ENV PATH=/usr/local/cuda-13/bin:$PATH
ARG PARALLEL ARG PARALLEL
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \ RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 13' \ cmake --preset 'CUDA 13' \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \ && cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \
@ -93,8 +87,6 @@ RUN --mount=type=cache,target=/root/.ccache \
FROM base AS rocm-6 FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
ARG PARALLEL ARG PARALLEL
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \ RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \ cmake --preset 'ROCm 6' \
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \ && cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
@ -126,8 +118,6 @@ RUN --mount=type=cache,target=/root/.ccache \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL} && cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS vulkan FROM base AS vulkan
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
RUN --mount=type=cache,target=/root/.ccache \ RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'Vulkan' \ cmake --preset 'Vulkan' \
&& cmake --build --parallel --preset 'Vulkan' \ && cmake --build --parallel --preset 'Vulkan' \

View File

@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggml-org/llama.cpp.git UPSTREAM=https://github.com/ggml-org/llama.cpp.git
WORKDIR=llama/vendor WORKDIR=llama/vendor
FETCH_HEAD=ec98e2002 FETCH_HEAD=3cfa9c3f125763305b4226bc032f1954f08990dc
.PHONY: help .PHONY: help
help: help:
@ -57,7 +57,7 @@ checkout: $(WORKDIR)
$(WORKDIR): $(WORKDIR):
git clone $(UPSTREAM) $(WORKDIR) git clone $(UPSTREAM) $(WORKDIR)
.PHONY: format-patches .PHONE: format-patches
format-patches: llama/patches format-patches: llama/patches
git -C $(WORKDIR) format-patch \ git -C $(WORKDIR) format-patch \
--no-signature \ --no-signature \
@ -66,11 +66,7 @@ format-patches: llama/patches
-o $(realpath $<) \ -o $(realpath $<) \
$(FETCH_HEAD) $(FETCH_HEAD)
.PHONY: clean .PHONE: clean
clean: checkout clean: checkout
@git -C $(WORKDIR) am --abort || true @git -C $(WORKDIR) am --abort || true
$(RM) llama/patches/.*.patched $(RM) llama/patches/.*.patched
.PHONY: print-base
print-base:
@echo $(FETCH_HEAD)

View File

@ -1,38 +0,0 @@
# Instrukcja budowania dla Intel Xeon (bez AVX) + NVIDIA GPU (MX Linux)
Ten build naprawia błąd `Illegal instruction` na starszych procesorach i wymusza użycie CUDA.
## Wymagania
* Zainstalowane `cuda-toolkit` (bez sterowników, jeśli już są w systemie).
* Pobrane repozytorium z `git submodule update --init --recursive`.
## 1. Symlinki (Naprawa ścieżek MX Linux)
MX Linux trzyma CUDA w niestandardowym miejscu. Wykonaj raz:
```bash
sudo mkdir -p /usr/local/cuda
sudo ln -sFn /usr/lib/cuda/include /usr/local/cuda/include
sudo ln -sFn /usr/lib/x86_64-linux-gnu/nvidia/current /usr/local/cuda/lib64
```
```bash
# Wyczyść stare
rm -rf build
# Konfiguracja
cmake -B build \
-DOLLAMA_CUDA=ON \
-DOLLAMA_VULKAN=OFF \
-DGGML_VULKAN=OFF \
-DCMAKE_DISABLE_FIND_PACKAGE_Vulkan=TRUE
# Kompilacja (1 wątek dla stabilności przy OC)
cmake --build build -j1
# Zbudowanie pliku wykonywalnego
go build .
```
```bash
sudo mv ollama /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
```

View File

@ -6,9 +6,6 @@
# Ollama # Ollama
W przypadku xeon 5675 przeczytaj plik NO_AVX_GUIDE.md!!
Możesz zastosować też build_custom.sh dla automatycznego FIX
Get up and running with large language models. Get up and running with large language models.
### macOS ### macOS
@ -370,7 +367,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j - [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models. - [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VS Code extension for multi-file/whole-repo coding - [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VS Code extension for multi-file/whole-repo coding
- [Void](https://github.com/voideditor/void) (Open source AI code editor and Cursor alternative)
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support) - [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption) - [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library) - [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
@ -431,7 +427,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.) - [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.)
- [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.) - [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.)
- [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models) - [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models)
- [KDeps](https://github.com/kdeps/kdeps) (Kdeps is an offline-first AI framework for building Dockerized full-stack AI applications declaratively using Apple PKL and integrates APIs with Ollama on the backend.)
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare) - [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads) - [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
- [Hillnote](https://hillnote.com) (A Markdown-first workspace designed to supercharge your AI workflow. Create documents ready to integrate with Claude, ChatGPT, Gemini, Cursor, and more - all while keeping your work on your device.) - [Hillnote](https://hillnote.com) (A Markdown-first workspace designed to supercharge your AI workflow. Create documents ready to integrate with Claude, ChatGPT, Gemini, Cursor, and more - all while keeping your work on your device.)
@ -558,7 +553,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama. - [Parakeet](https://github.com/parakeet-nest/parakeet) is a GoLang library, made to simplify the development of small generative AI applications with Ollama.
- [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples) - [Haverscript](https://github.com/andygill/haverscript) with [examples](https://github.com/andygill/haverscript/tree/main/examples)
- [Ollama for Swift](https://github.com/mattt/ollama-swift) - [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [Swollama for Swift](https://github.com/guitaripod/Swollama) with [DocC](https://guitaripod.github.io/Swollama/documentation/swollama) - [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
- [GoLamify](https://github.com/prasad89/golamify) - [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell) - [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API) - [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
@ -621,7 +616,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality) - [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator) - [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator) - [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
- [AI Summary Helper plugin](https://github.com/philffm/ai-summary-helper) - [AI Summmary Helper plugin](https://github.com/philffm/ai-summary-helper)
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama) - [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow) - [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language - [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
@ -629,7 +624,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c) - [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs) - [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime) - [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Editor tool to analyze scripts via Ollama) - [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
- [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies) - [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies)
- [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases) - [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases)
- [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network) - [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network)
@ -639,7 +634,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov. - [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov.
### Observability ### Observability
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native integration to Ollama. - [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing. - [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics. - [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production. - [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.

View File

@ -14,7 +14,7 @@ Please include the following details in your report:
## Security best practices ## Security best practices
While the maintainer team does its best to secure Ollama, users are encouraged to implement their own security best practices, such as: While the maintainer team does their best to secure Ollama, users are encouraged to implement their own security best practices, such as:
- Regularly updating to the latest version of Ollama - Regularly updating to the latest version of Ollama
- Securing access to hosted instances of Ollama - Securing access to hosted instances of Ollama

View File

@ -226,14 +226,7 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
bts := scanner.Bytes() bts := scanner.Bytes()
if err := json.Unmarshal(bts, &errorResponse); err != nil { if err := json.Unmarshal(bts, &errorResponse); err != nil {
if response.StatusCode >= http.StatusBadRequest { return fmt.Errorf("unmarshal: %w", err)
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
ErrorMessage: string(bts),
}
}
return errors.New(string(bts))
} }
if response.StatusCode == http.StatusUnauthorized { if response.StatusCode == http.StatusUnauthorized {
@ -347,7 +340,7 @@ type CreateProgressFunc func(ProgressResponse) error
// Create creates a model from a [Modelfile]. fn is a progress function that // Create creates a model from a [Modelfile]. fn is a progress function that
// behaves similarly to other methods (see [Client.Pull]). // behaves similarly to other methods (see [Client.Pull]).
// //
// [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.mdx // [Modelfile]: https://github.com/ollama/ollama/blob/main/docs/modelfile.md
func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error { func (c *Client) Create(ctx context.Context, req *CreateRequest, fn CreateProgressFunc) error {
return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error { return c.stream(ctx, http.MethodPost, "/api/create", req, func(bts []byte) error {
var resp ProgressResponse var resp ProgressResponse

View File

@ -55,7 +55,6 @@ func TestClientFromEnvironment(t *testing.T) {
type testError struct { type testError struct {
message string message string
statusCode int statusCode int
raw bool // if true, write message as-is instead of JSON encoding
} }
func (e testError) Error() string { func (e testError) Error() string {
@ -112,20 +111,6 @@ func TestClientStream(t *testing.T) {
}, },
}, },
}, },
{
name: "plain text error response",
responses: []any{
"internal server error",
},
wantErr: "internal server error",
},
{
name: "HTML error page",
responses: []any{
"<html><body>404 Not Found</body></html>",
},
wantErr: "404 Not Found",
},
} }
for _, tc := range testCases { for _, tc := range testCases {
@ -150,12 +135,6 @@ func TestClientStream(t *testing.T) {
return return
} }
if str, ok := resp.(string); ok {
fmt.Fprintln(w, str)
flusher.Flush()
continue
}
if err := json.NewEncoder(w).Encode(resp); err != nil { if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("failed to encode response: %v", err) t.Fatalf("failed to encode response: %v", err)
} }
@ -194,10 +173,9 @@ func TestClientStream(t *testing.T) {
func TestClientDo(t *testing.T) { func TestClientDo(t *testing.T) {
testCases := []struct { testCases := []struct {
name string name string
response any response any
wantErr string wantErr string
wantStatusCode int
}{ }{
{ {
name: "immediate error response", name: "immediate error response",
@ -205,8 +183,7 @@ func TestClientDo(t *testing.T) {
message: "test error message", message: "test error message",
statusCode: http.StatusBadRequest, statusCode: http.StatusBadRequest,
}, },
wantErr: "test error message", wantErr: "test error message",
wantStatusCode: http.StatusBadRequest,
}, },
{ {
name: "server error response", name: "server error response",
@ -214,8 +191,7 @@ func TestClientDo(t *testing.T) {
message: "internal error", message: "internal error",
statusCode: http.StatusInternalServerError, statusCode: http.StatusInternalServerError,
}, },
wantErr: "internal error", wantErr: "internal error",
wantStatusCode: http.StatusInternalServerError,
}, },
{ {
name: "successful response", name: "successful response",
@ -227,26 +203,6 @@ func TestClientDo(t *testing.T) {
Success: true, Success: true,
}, },
}, },
{
name: "plain text error response",
response: testError{
message: "internal server error",
statusCode: http.StatusInternalServerError,
raw: true,
},
wantErr: "internal server error",
wantStatusCode: http.StatusInternalServerError,
},
{
name: "HTML error page",
response: testError{
message: "<html><body>404 Not Found</body></html>",
statusCode: http.StatusNotFound,
raw: true,
},
wantErr: "<html><body>404 Not Found</body></html>",
wantStatusCode: http.StatusNotFound,
},
} }
for _, tc := range testCases { for _, tc := range testCases {
@ -254,16 +210,11 @@ func TestClientDo(t *testing.T) {
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if errResp, ok := tc.response.(testError); ok { if errResp, ok := tc.response.(testError); ok {
w.WriteHeader(errResp.statusCode) w.WriteHeader(errResp.statusCode)
if !errResp.raw { err := json.NewEncoder(w).Encode(map[string]string{
err := json.NewEncoder(w).Encode(map[string]string{ "error": errResp.message,
"error": errResp.message, })
}) if err != nil {
if err != nil { t.Fatal("failed to encode error response:", err)
t.Fatal("failed to encode error response:", err)
}
} else {
// Write raw message (simulates non-JSON error responses)
fmt.Fprint(w, errResp.message)
} }
return return
} }
@ -290,15 +241,6 @@ func TestClientDo(t *testing.T) {
if err.Error() != tc.wantErr { if err.Error() != tc.wantErr {
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr) t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
} }
if tc.wantStatusCode != 0 {
if statusErr, ok := err.(StatusError); ok {
if statusErr.StatusCode != tc.wantStatusCode {
t.Errorf("status code mismatch: got %d, want %d", statusErr.StatusCode, tc.wantStatusCode)
}
} else {
t.Errorf("expected StatusError, got %T", err)
}
}
return return
} }

View File

@ -15,19 +15,19 @@ func main() {
} }
messages := []api.Message{ messages := []api.Message{
{ api.Message{
Role: "system", Role: "system",
Content: "Provide very brief, concise responses", Content: "Provide very brief, concise responses",
}, },
{ api.Message{
Role: "user", Role: "user",
Content: "Name some unusual animals", Content: "Name some unusual animals",
}, },
{ api.Message{
Role: "assistant", Role: "assistant",
Content: "Monotreme, platypus, echidna", Content: "Monotreme, platypus, echidna",
}, },
{ api.Message{
Role: "user", Role: "user",
Content: "which of these is the most dangerous?", Content: "which of these is the most dangerous?",
}, },

View File

@ -3,7 +3,6 @@ package api
import ( import (
"encoding/json" "encoding/json"
"fmt" "fmt"
"iter"
"log/slog" "log/slog"
"math" "math"
"os" "os"
@ -15,7 +14,6 @@ import (
"github.com/google/uuid" "github.com/google/uuid"
"github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/internal/orderedmap"
"github.com/ollama/ollama/types/model" "github.com/ollama/ollama/types/model"
) )
@ -229,79 +227,13 @@ type ToolCallFunction struct {
Arguments ToolCallFunctionArguments `json:"arguments"` Arguments ToolCallFunctionArguments `json:"arguments"`
} }
// ToolCallFunctionArguments holds tool call arguments in insertion order. type ToolCallFunctionArguments map[string]any
type ToolCallFunctionArguments struct {
om *orderedmap.Map[string, any]
}
// NewToolCallFunctionArguments creates a new empty ToolCallFunctionArguments.
func NewToolCallFunctionArguments() ToolCallFunctionArguments {
return ToolCallFunctionArguments{om: orderedmap.New[string, any]()}
}
// Get retrieves a value by key.
func (t *ToolCallFunctionArguments) Get(key string) (any, bool) {
if t == nil || t.om == nil {
return nil, false
}
return t.om.Get(key)
}
// Set sets a key-value pair, preserving insertion order.
func (t *ToolCallFunctionArguments) Set(key string, value any) {
if t == nil {
return
}
if t.om == nil {
t.om = orderedmap.New[string, any]()
}
t.om.Set(key, value)
}
// Len returns the number of arguments.
func (t *ToolCallFunctionArguments) Len() int {
if t == nil || t.om == nil {
return 0
}
return t.om.Len()
}
// All returns an iterator over all key-value pairs in insertion order.
func (t *ToolCallFunctionArguments) All() iter.Seq2[string, any] {
if t == nil || t.om == nil {
return func(yield func(string, any) bool) {}
}
return t.om.All()
}
// ToMap returns a regular map (order not preserved).
func (t *ToolCallFunctionArguments) ToMap() map[string]any {
if t == nil || t.om == nil {
return nil
}
return t.om.ToMap()
}
func (t *ToolCallFunctionArguments) String() string { func (t *ToolCallFunctionArguments) String() string {
if t == nil || t.om == nil { bts, _ := json.Marshal(t)
return "{}"
}
bts, _ := json.Marshal(t.om)
return string(bts) return string(bts)
} }
func (t *ToolCallFunctionArguments) UnmarshalJSON(data []byte) error {
t.om = orderedmap.New[string, any]()
return json.Unmarshal(data, t.om)
}
func (t ToolCallFunctionArguments) MarshalJSON() ([]byte, error) {
if t.om == nil {
return []byte("{}"), nil
}
return json.Marshal(t.om)
}
type Tool struct { type Tool struct {
Type string `json:"type"` Type string `json:"type"`
Items any `json:"items,omitempty"` Items any `json:"items,omitempty"`
@ -350,78 +282,12 @@ func (pt PropertyType) String() string {
return fmt.Sprintf("%v", []string(pt)) return fmt.Sprintf("%v", []string(pt))
} }
// ToolPropertiesMap holds tool properties in insertion order.
type ToolPropertiesMap struct {
om *orderedmap.Map[string, ToolProperty]
}
// NewToolPropertiesMap creates a new empty ToolPropertiesMap.
func NewToolPropertiesMap() *ToolPropertiesMap {
return &ToolPropertiesMap{om: orderedmap.New[string, ToolProperty]()}
}
// Get retrieves a property by name.
func (t *ToolPropertiesMap) Get(key string) (ToolProperty, bool) {
if t == nil || t.om == nil {
return ToolProperty{}, false
}
return t.om.Get(key)
}
// Set sets a property, preserving insertion order.
func (t *ToolPropertiesMap) Set(key string, value ToolProperty) {
if t == nil {
return
}
if t.om == nil {
t.om = orderedmap.New[string, ToolProperty]()
}
t.om.Set(key, value)
}
// Len returns the number of properties.
func (t *ToolPropertiesMap) Len() int {
if t == nil || t.om == nil {
return 0
}
return t.om.Len()
}
// All returns an iterator over all properties in insertion order.
func (t *ToolPropertiesMap) All() iter.Seq2[string, ToolProperty] {
if t == nil || t.om == nil {
return func(yield func(string, ToolProperty) bool) {}
}
return t.om.All()
}
// ToMap returns a regular map (order not preserved).
func (t *ToolPropertiesMap) ToMap() map[string]ToolProperty {
if t == nil || t.om == nil {
return nil
}
return t.om.ToMap()
}
func (t ToolPropertiesMap) MarshalJSON() ([]byte, error) {
if t.om == nil {
return []byte("null"), nil
}
return json.Marshal(t.om)
}
func (t *ToolPropertiesMap) UnmarshalJSON(data []byte) error {
t.om = orderedmap.New[string, ToolProperty]()
return json.Unmarshal(data, t.om)
}
type ToolProperty struct { type ToolProperty struct {
AnyOf []ToolProperty `json:"anyOf,omitempty"` AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type,omitempty"` Type PropertyType `json:"type,omitempty"`
Items any `json:"items,omitempty"` Items any `json:"items,omitempty"`
Description string `json:"description,omitempty"` Description string `json:"description,omitempty"`
Enum []any `json:"enum,omitempty"` Enum []any `json:"enum,omitempty"`
Properties *ToolPropertiesMap `json:"properties,omitempty"`
} }
// ToTypeScriptType converts a ToolProperty to a TypeScript type string // ToTypeScriptType converts a ToolProperty to a TypeScript type string
@ -470,11 +336,11 @@ func mapToTypeScriptType(jsonType string) string {
} }
type ToolFunctionParameters struct { type ToolFunctionParameters struct {
Type string `json:"type"` Type string `json:"type"`
Defs any `json:"$defs,omitempty"` Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"` Items any `json:"items,omitempty"`
Required []string `json:"required,omitempty"` Required []string `json:"required,omitempty"`
Properties *ToolPropertiesMap `json:"properties"` Properties map[string]ToolProperty `json:"properties"`
} }
func (t *ToolFunctionParameters) String() string { func (t *ToolFunctionParameters) String() string {
@ -687,9 +553,6 @@ type CreateRequest struct {
Renderer string `json:"renderer,omitempty"` Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"` Parser string `json:"parser,omitempty"`
// Requires is the minimum version of Ollama required by the model.
Requires string `json:"requires,omitempty"`
// Info is a map of additional information for the model // Info is a map of additional information for the model
Info map[string]any `json:"info,omitempty"` Info map[string]any `json:"info,omitempty"`
@ -740,7 +603,6 @@ type ShowResponse struct {
Tensors []Tensor `json:"tensors,omitempty"` Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"` Capabilities []model.Capability `json:"capabilities,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"` ModifiedAt time.Time `json:"modified_at,omitempty"`
Requires string `json:"requires,omitempty"`
} }
// CopyRequest is the request passed to [Client.Copy]. // CopyRequest is the request passed to [Client.Copy].

View File

@ -11,24 +11,6 @@ import (
"github.com/stretchr/testify/require" "github.com/stretchr/testify/require"
) )
// testPropsMap creates a ToolPropertiesMap from a map (convenience function for tests, order not preserved)
func testPropsMap(m map[string]ToolProperty) *ToolPropertiesMap {
props := NewToolPropertiesMap()
for k, v := range m {
props.Set(k, v)
}
return props
}
// testArgs creates ToolCallFunctionArguments from a map (convenience function for tests, order not preserved)
func testArgs(m map[string]any) ToolCallFunctionArguments {
args := NewToolCallFunctionArguments()
for k, v := range m {
args.Set(k, v)
}
return args
}
func TestKeepAliveParsingFromJSON(t *testing.T) { func TestKeepAliveParsingFromJSON(t *testing.T) {
tests := []struct { tests := []struct {
name string name string
@ -327,9 +309,9 @@ func TestToolFunctionParameters_MarshalJSON(t *testing.T) {
input: ToolFunctionParameters{ input: ToolFunctionParameters{
Type: "object", Type: "object",
Required: []string{"name"}, Required: []string{"name"},
Properties: testPropsMap(map[string]ToolProperty{ Properties: map[string]ToolProperty{
"name": {Type: PropertyType{"string"}}, "name": {Type: PropertyType{"string"}},
}), },
}, },
expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string"}}}`, expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string"}}}`,
}, },
@ -337,9 +319,9 @@ func TestToolFunctionParameters_MarshalJSON(t *testing.T) {
name: "no required", name: "no required",
input: ToolFunctionParameters{ input: ToolFunctionParameters{
Type: "object", Type: "object",
Properties: testPropsMap(map[string]ToolProperty{ Properties: map[string]ToolProperty{
"name": {Type: PropertyType{"string"}}, "name": {Type: PropertyType{"string"}},
}), },
}, },
expected: `{"type":"object","properties":{"name":{"type":"string"}}}`, expected: `{"type":"object","properties":{"name":{"type":"string"}}}`,
}, },
@ -357,7 +339,7 @@ func TestToolFunctionParameters_MarshalJSON(t *testing.T) {
func TestToolCallFunction_IndexAlwaysMarshals(t *testing.T) { func TestToolCallFunction_IndexAlwaysMarshals(t *testing.T) {
fn := ToolCallFunction{ fn := ToolCallFunction{
Name: "echo", Name: "echo",
Arguments: testArgs(map[string]any{"message": "hi"}), Arguments: ToolCallFunctionArguments{"message": "hi"},
} }
data, err := json.Marshal(fn) data, err := json.Marshal(fn)
@ -522,116 +504,6 @@ func TestThinking_UnmarshalJSON(t *testing.T) {
} }
} }
func TestToolPropertyNestedProperties(t *testing.T) {
tests := []struct {
name string
input string
expected ToolProperty
}{
{
name: "nested object properties",
input: `{
"type": "object",
"description": "Location details",
"properties": {
"address": {
"type": "string",
"description": "Street address"
},
"city": {
"type": "string",
"description": "City name"
}
}
}`,
expected: ToolProperty{
Type: PropertyType{"object"},
Description: "Location details",
Properties: testPropsMap(map[string]ToolProperty{
"address": {
Type: PropertyType{"string"},
Description: "Street address",
},
"city": {
Type: PropertyType{"string"},
Description: "City name",
},
}),
},
},
{
name: "deeply nested properties",
input: `{
"type": "object",
"description": "Event",
"properties": {
"location": {
"type": "object",
"description": "Location",
"properties": {
"coordinates": {
"type": "object",
"description": "GPS coordinates",
"properties": {
"lat": {"type": "number", "description": "Latitude"},
"lng": {"type": "number", "description": "Longitude"}
}
}
}
}
}
}`,
expected: ToolProperty{
Type: PropertyType{"object"},
Description: "Event",
Properties: testPropsMap(map[string]ToolProperty{
"location": {
Type: PropertyType{"object"},
Description: "Location",
Properties: testPropsMap(map[string]ToolProperty{
"coordinates": {
Type: PropertyType{"object"},
Description: "GPS coordinates",
Properties: testPropsMap(map[string]ToolProperty{
"lat": {Type: PropertyType{"number"}, Description: "Latitude"},
"lng": {Type: PropertyType{"number"}, Description: "Longitude"},
}),
},
}),
},
}),
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var prop ToolProperty
err := json.Unmarshal([]byte(tt.input), &prop)
require.NoError(t, err)
// Compare JSON representations since pointer comparison doesn't work
expectedJSON, err := json.Marshal(tt.expected)
require.NoError(t, err)
actualJSON, err := json.Marshal(prop)
require.NoError(t, err)
assert.JSONEq(t, string(expectedJSON), string(actualJSON))
// Round-trip test: marshal and unmarshal again
data, err := json.Marshal(prop)
require.NoError(t, err)
var prop2 ToolProperty
err = json.Unmarshal(data, &prop2)
require.NoError(t, err)
prop2JSON, err := json.Marshal(prop2)
require.NoError(t, err)
assert.JSONEq(t, string(expectedJSON), string(prop2JSON))
})
}
}
func TestToolFunctionParameters_String(t *testing.T) { func TestToolFunctionParameters_String(t *testing.T) {
tests := []struct { tests := []struct {
name string name string
@ -643,12 +515,12 @@ func TestToolFunctionParameters_String(t *testing.T) {
params: ToolFunctionParameters{ params: ToolFunctionParameters{
Type: "object", Type: "object",
Required: []string{"name"}, Required: []string{"name"},
Properties: testPropsMap(map[string]ToolProperty{ Properties: map[string]ToolProperty{
"name": { "name": {
Type: PropertyType{"string"}, Type: PropertyType{"string"},
Description: "The name of the person", Description: "The name of the person",
}, },
}), },
}, },
expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string","description":"The name of the person"}}}`, expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string","description":"The name of the person"}}}`,
}, },
@ -665,7 +537,7 @@ func TestToolFunctionParameters_String(t *testing.T) {
s.Self = s s.Self = s
return s return s
}(), }(),
Properties: testPropsMap(map[string]ToolProperty{}), Properties: map[string]ToolProperty{},
}, },
expected: "", expected: "",
}, },
@ -678,235 +550,3 @@ func TestToolFunctionParameters_String(t *testing.T) {
}) })
} }
} }
func TestToolCallFunctionArguments_OrderPreservation(t *testing.T) {
t.Run("marshal preserves insertion order", func(t *testing.T) {
args := NewToolCallFunctionArguments()
args.Set("zebra", "z")
args.Set("apple", "a")
args.Set("mango", "m")
data, err := json.Marshal(args)
require.NoError(t, err)
// Should preserve insertion order, not alphabetical
assert.Equal(t, `{"zebra":"z","apple":"a","mango":"m"}`, string(data))
})
t.Run("unmarshal preserves JSON order", func(t *testing.T) {
jsonData := `{"zebra":"z","apple":"a","mango":"m"}`
var args ToolCallFunctionArguments
err := json.Unmarshal([]byte(jsonData), &args)
require.NoError(t, err)
// Verify iteration order matches JSON order
var keys []string
for k := range args.All() {
keys = append(keys, k)
}
assert.Equal(t, []string{"zebra", "apple", "mango"}, keys)
})
t.Run("round trip preserves order", func(t *testing.T) {
original := `{"z":1,"a":2,"m":3,"b":4}`
var args ToolCallFunctionArguments
err := json.Unmarshal([]byte(original), &args)
require.NoError(t, err)
data, err := json.Marshal(args)
require.NoError(t, err)
assert.Equal(t, original, string(data))
})
t.Run("String method returns ordered JSON", func(t *testing.T) {
args := NewToolCallFunctionArguments()
args.Set("c", 3)
args.Set("a", 1)
args.Set("b", 2)
assert.Equal(t, `{"c":3,"a":1,"b":2}`, args.String())
})
t.Run("Get retrieves correct values", func(t *testing.T) {
args := NewToolCallFunctionArguments()
args.Set("key1", "value1")
args.Set("key2", 42)
v, ok := args.Get("key1")
assert.True(t, ok)
assert.Equal(t, "value1", v)
v, ok = args.Get("key2")
assert.True(t, ok)
assert.Equal(t, 42, v)
_, ok = args.Get("nonexistent")
assert.False(t, ok)
})
t.Run("Len returns correct count", func(t *testing.T) {
args := NewToolCallFunctionArguments()
assert.Equal(t, 0, args.Len())
args.Set("a", 1)
assert.Equal(t, 1, args.Len())
args.Set("b", 2)
assert.Equal(t, 2, args.Len())
})
t.Run("empty args marshal to empty object", func(t *testing.T) {
args := NewToolCallFunctionArguments()
data, err := json.Marshal(args)
require.NoError(t, err)
assert.Equal(t, `{}`, string(data))
})
t.Run("zero value args marshal to empty object", func(t *testing.T) {
var args ToolCallFunctionArguments
assert.Equal(t, "{}", args.String())
})
}
func TestToolPropertiesMap_OrderPreservation(t *testing.T) {
t.Run("marshal preserves insertion order", func(t *testing.T) {
props := NewToolPropertiesMap()
props.Set("zebra", ToolProperty{Type: PropertyType{"string"}})
props.Set("apple", ToolProperty{Type: PropertyType{"number"}})
props.Set("mango", ToolProperty{Type: PropertyType{"boolean"}})
data, err := json.Marshal(props)
require.NoError(t, err)
// Should preserve insertion order, not alphabetical
expected := `{"zebra":{"type":"string"},"apple":{"type":"number"},"mango":{"type":"boolean"}}`
assert.Equal(t, expected, string(data))
})
t.Run("unmarshal preserves JSON order", func(t *testing.T) {
jsonData := `{"zebra":{"type":"string"},"apple":{"type":"number"},"mango":{"type":"boolean"}}`
var props ToolPropertiesMap
err := json.Unmarshal([]byte(jsonData), &props)
require.NoError(t, err)
// Verify iteration order matches JSON order
var keys []string
for k := range props.All() {
keys = append(keys, k)
}
assert.Equal(t, []string{"zebra", "apple", "mango"}, keys)
})
t.Run("round trip preserves order", func(t *testing.T) {
original := `{"z":{"type":"string"},"a":{"type":"number"},"m":{"type":"boolean"}}`
var props ToolPropertiesMap
err := json.Unmarshal([]byte(original), &props)
require.NoError(t, err)
data, err := json.Marshal(props)
require.NoError(t, err)
assert.Equal(t, original, string(data))
})
t.Run("Get retrieves correct values", func(t *testing.T) {
props := NewToolPropertiesMap()
props.Set("name", ToolProperty{Type: PropertyType{"string"}, Description: "The name"})
props.Set("age", ToolProperty{Type: PropertyType{"integer"}, Description: "The age"})
v, ok := props.Get("name")
assert.True(t, ok)
assert.Equal(t, "The name", v.Description)
v, ok = props.Get("age")
assert.True(t, ok)
assert.Equal(t, "The age", v.Description)
_, ok = props.Get("nonexistent")
assert.False(t, ok)
})
t.Run("Len returns correct count", func(t *testing.T) {
props := NewToolPropertiesMap()
assert.Equal(t, 0, props.Len())
props.Set("a", ToolProperty{})
assert.Equal(t, 1, props.Len())
props.Set("b", ToolProperty{})
assert.Equal(t, 2, props.Len())
})
t.Run("nil props marshal to null", func(t *testing.T) {
var props *ToolPropertiesMap
data, err := json.Marshal(props)
require.NoError(t, err)
assert.Equal(t, `null`, string(data))
})
t.Run("ToMap returns regular map", func(t *testing.T) {
props := NewToolPropertiesMap()
props.Set("a", ToolProperty{Type: PropertyType{"string"}})
props.Set("b", ToolProperty{Type: PropertyType{"number"}})
m := props.ToMap()
assert.Equal(t, 2, len(m))
assert.Equal(t, PropertyType{"string"}, m["a"].Type)
assert.Equal(t, PropertyType{"number"}, m["b"].Type)
})
}
func TestToolCallFunctionArguments_ComplexValues(t *testing.T) {
t.Run("nested objects preserve order", func(t *testing.T) {
jsonData := `{"outer":{"z":1,"a":2},"simple":"value"}`
var args ToolCallFunctionArguments
err := json.Unmarshal([]byte(jsonData), &args)
require.NoError(t, err)
// Outer keys should be in order
var keys []string
for k := range args.All() {
keys = append(keys, k)
}
assert.Equal(t, []string{"outer", "simple"}, keys)
})
t.Run("arrays as values", func(t *testing.T) {
args := NewToolCallFunctionArguments()
args.Set("items", []string{"a", "b", "c"})
args.Set("numbers", []int{1, 2, 3})
data, err := json.Marshal(args)
require.NoError(t, err)
assert.Equal(t, `{"items":["a","b","c"],"numbers":[1,2,3]}`, string(data))
})
}
func TestToolPropertiesMap_NestedProperties(t *testing.T) {
t.Run("nested properties preserve order", func(t *testing.T) {
props := NewToolPropertiesMap()
nestedProps := NewToolPropertiesMap()
nestedProps.Set("z_field", ToolProperty{Type: PropertyType{"string"}})
nestedProps.Set("a_field", ToolProperty{Type: PropertyType{"number"}})
props.Set("outer", ToolProperty{
Type: PropertyType{"object"},
Properties: nestedProps,
})
data, err := json.Marshal(props)
require.NoError(t, err)
// Both outer and inner should preserve order
expected := `{"outer":{"type":"object","properties":{"z_field":{"type":"string"},"a_field":{"type":"number"}}}}`
assert.Equal(t, expected, string(data))
})
}

View File

@ -273,6 +273,10 @@ func main() {
Handler: uiServer.Handler(), Handler: uiServer.Handler(),
} }
if _, err := uiServer.UserData(ctx); err != nil {
slog.Warn("failed to load user data", "error", err)
}
// Start the UI server // Start the UI server
slog.Info("starting ui server", "port", port) slog.Info("starting ui server", "port", port)
go func() { go func() {
@ -316,17 +320,6 @@ func main() {
slog.Debug("no URL scheme request to handle") slog.Debug("no URL scheme request to handle")
} }
go func() {
slog.Debug("waiting for ollama server to be ready")
if err := ui.WaitForServer(ctx, 10*time.Second); err != nil {
slog.Warn("ollama server not ready, continuing anyway", "error", err)
}
if _, err := uiServer.UserData(ctx); err != nil {
slog.Warn("failed to load user data", "error", err)
}
}()
osRun(cancel, hasCompletedFirstRun, startHidden) osRun(cancel, hasCompletedFirstRun, startHidden)
slog.Info("shutting down desktop server") slog.Info("shutting down desktop server")
@ -368,7 +361,7 @@ func checkUserLoggedIn(uiServerPort int) bool {
return false return false
} }
resp, err := http.Post(fmt.Sprintf("http://127.0.0.1:%d/api/me", uiServerPort), "application/json", nil) resp, err := http.Get(fmt.Sprintf("http://127.0.0.1:%d/api/v1/me", uiServerPort))
if err != nil { if err != nil {
slog.Debug("failed to call local auth endpoint", "error", err) slog.Debug("failed to call local auth endpoint", "error", err)
return false return false
@ -404,8 +397,8 @@ func checkUserLoggedIn(uiServerPort int) bool {
// handleConnectURLScheme fetches the connect URL and opens it in the browser // handleConnectURLScheme fetches the connect URL and opens it in the browser
func handleConnectURLScheme() { func handleConnectURLScheme() {
if checkUserLoggedIn(uiServerPort) { if checkUserLoggedIn(uiServerPort) {
slog.Info("user is already logged in, opening app instead") slog.Info("user is already logged in, opening settings instead")
showWindow(wv.webview.Window()) sendUIRequestMessage("/")
return return
} }
@ -441,30 +434,37 @@ func openInBrowser(url string) {
} }
} }
// parseURLScheme parses an ollama:// URL and validates it // parseURLScheme parses an ollama:// URL and returns whether it's a connect URL and the UI path
// Supports: ollama:// (open app) and ollama://connect (OAuth) func parseURLScheme(urlSchemeRequest string) (isConnect bool, uiPath string, err error) {
func parseURLScheme(urlSchemeRequest string) (isConnect bool, err error) {
parsedURL, err := url.Parse(urlSchemeRequest) parsedURL, err := url.Parse(urlSchemeRequest)
if err != nil { if err != nil {
return false, fmt.Errorf("invalid URL: %w", err) return false, "", err
} }
// Check if this is a connect URL // Check if this is a connect URL
if parsedURL.Host == "connect" || strings.TrimPrefix(parsedURL.Path, "/") == "connect" { if parsedURL.Host == "connect" || strings.TrimPrefix(parsedURL.Path, "/") == "connect" {
return true, nil return true, "", nil
} }
// Allow bare ollama:// or ollama:/// to open the app // Extract the UI path
if (parsedURL.Host == "" && parsedURL.Path == "") || parsedURL.Path == "/" { path := "/"
return false, nil if parsedURL.Path != "" && parsedURL.Path != "/" {
// For URLs like ollama:///settings, use the path directly
path = parsedURL.Path
} else if parsedURL.Host != "" {
// For URLs like ollama://settings (without triple slash),
// the "settings" part is parsed as the host, not the path.
// We need to convert it to a path by prepending "/"
// This also handles ollama://settings/ where Windows adds a trailing slash
path = "/" + parsedURL.Host
} }
return false, fmt.Errorf("unsupported ollama:// URL path: %s", urlSchemeRequest) return false, path, nil
} }
// handleURLSchemeInCurrentInstance processes URL scheme requests in the current instance // handleURLSchemeInCurrentInstance processes URL scheme requests in the current instance
func handleURLSchemeInCurrentInstance(urlSchemeRequest string) { func handleURLSchemeInCurrentInstance(urlSchemeRequest string) {
isConnect, err := parseURLScheme(urlSchemeRequest) isConnect, uiPath, err := parseURLScheme(urlSchemeRequest)
if err != nil { if err != nil {
slog.Error("failed to parse URL scheme request", "url", urlSchemeRequest, "error", err) slog.Error("failed to parse URL scheme request", "url", urlSchemeRequest, "error", err)
return return
@ -473,8 +473,6 @@ func handleURLSchemeInCurrentInstance(urlSchemeRequest string) {
if isConnect { if isConnect {
handleConnectURLScheme() handleConnectURLScheme()
} else { } else {
if wv.webview != nil { sendUIRequestMessage(uiPath)
showWindow(wv.webview.Window())
}
} }
} }

View File

@ -191,6 +191,13 @@ func LaunchNewApp() {
C.launchApp(appName) C.launchApp(appName)
} }
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
p := C.CString(path)
defer C.free(unsafe.Pointer(p))
C.uiRequest(p)
}
func registerLaunchAgent(hasCompletedFirstRun bool) { func registerLaunchAgent(hasCompletedFirstRun bool) {
// Remove any stale Login Item registrations // Remove any stale Login Item registrations
C.unregisterSelfFromLoginItem() C.unregisterSelfFromLoginItem()

View File

@ -24,14 +24,27 @@ bool firstTimeRun,startHidden; // Set in run before initialization
for (NSURL *url in urls) { for (NSURL *url in urls) {
if ([url.scheme isEqualToString:@"ollama"]) { if ([url.scheme isEqualToString:@"ollama"]) {
NSString *path = url.path; NSString *path = url.path;
if (!path || [path isEqualToString:@""]) {
if (path && ([path isEqualToString:@"/connect"] || [url.host isEqualToString:@"connect"])) { // For URLs like ollama://settings (without triple slash),
// the "settings" part is parsed as the host, not the path.
// We need to convert it to a path by prepending "/"
if (url.host && ![url.host isEqualToString:@""]) {
path = [@"/" stringByAppendingString:url.host];
} else {
path = @"/";
}
}
if ([path isEqualToString:@"/connect"] || [url.host isEqualToString:@"connect"]) {
// Special case: handle connect by opening browser instead of app // Special case: handle connect by opening browser instead of app
handleConnectURL(); handleConnectURL();
} else { } else {
// Set app to be active and visible // Set app to be active and visible
[NSApp setActivationPolicy:NSApplicationActivationPolicyRegular]; [NSApp setActivationPolicy:NSApplicationActivationPolicyRegular];
[NSApp activateIgnoringOtherApps:YES]; [NSApp activateIgnoringOtherApps:YES];
// Open the path with the UI
[self uiRequest:path];
} }
break; break;
@ -247,7 +260,7 @@ bool firstTimeRun,startHidden; // Set in run before initialization
} }
- (void)openHelp:(id)sender { - (void)openHelp:(id)sender {
NSURL *url = [NSURL URLWithString:@"https://docs.ollama.com/"]; NSURL *url = [NSURL URLWithString:@"https://github.com/ollama/ollama/tree/main/docs"];
[[NSWorkspace sharedWorkspace] openURL:url]; [[NSWorkspace sharedWorkspace] openURL:url];
} }

View File

@ -138,7 +138,7 @@ func (app *appCallbacks) HandleURLScheme(urlScheme string) {
// handleURLSchemeRequest processes URL scheme requests from other instances // handleURLSchemeRequest processes URL scheme requests from other instances
func handleURLSchemeRequest(urlScheme string) { func handleURLSchemeRequest(urlScheme string) {
isConnect, err := parseURLScheme(urlScheme) isConnect, uiPath, err := parseURLScheme(urlScheme)
if err != nil { if err != nil {
slog.Error("failed to parse URL scheme request", "url", urlScheme, "error", err) slog.Error("failed to parse URL scheme request", "url", urlScheme, "error", err)
return return
@ -147,9 +147,7 @@ func handleURLSchemeRequest(urlScheme string) {
if isConnect { if isConnect {
handleConnectURLScheme() handleConnectURLScheme()
} else { } else {
if wv.webview != nil { sendUIRequestMessage(uiPath)
showWindow(wv.webview.Window())
}
} }
} }
@ -263,6 +261,11 @@ func createLoginShortcut() error {
return nil return nil
} }
// Send a request to the main app thread to load a UI page
func sendUIRequestMessage(path string) {
wintray.SendUIRequestMessage(path)
}
func LaunchNewApp() { func LaunchNewApp() {
} }

View File

@ -169,47 +169,37 @@ DlgResult fileDlg(FileDlgParams* params) {
} }
NSArray* urls = [panel URLs]; NSArray* urls = [panel URLs];
if([urls count] == 0) { if(self->params->allowMultiple && [urls count] >= 1) {
return DLG_CANCEL;
}
if(self->params->allowMultiple) {
// For multiple files, we need to return all paths separated by null bytes // For multiple files, we need to return all paths separated by null bytes
char* bufPtr = self->params->buf; char* bufPtr = self->params->buf;
int remainingBuf = self->params->nbuf; int remainingBuf = self->params->nbuf;
// Calculate total required buffer size first // Calculate total required buffer size first
int totalSize = 0; int totalSize = 0;
for(NSURL* url in urls) { for(NSURL* url in urls) {
char tempBuf[PATH_MAX]; char tempBuf[PATH_MAX];
if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) { if(![url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]) {
return DLG_URLFAIL; return DLG_URLFAIL;
} }
totalSize += strlen(tempBuf) + 1; // +1 for null terminator totalSize += strlen(tempBuf) + 1; // +1 for null terminator
} }
totalSize += 1; // Final null terminator totalSize += 1; // Final null terminator
if(totalSize > self->params->nbuf) { if(totalSize > self->params->nbuf) {
// Not enough buffer space // Not enough buffer space
return DLG_URLFAIL; return DLG_URLFAIL;
} }
// Now actually copy the paths (we know we have space) // Now actually copy the paths (we know we have space)
bufPtr = self->params->buf; bufPtr = self->params->buf;
for(NSURL* url in urls) { for(NSURL* url in urls) {
char tempBuf[PATH_MAX]; char tempBuf[PATH_MAX];
[url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX]; [url getFileSystemRepresentation:tempBuf maxLength:PATH_MAX];
int pathLen = strlen(tempBuf); int pathLen = strlen(tempBuf);
strcpy(bufPtr, tempBuf); strcpy(bufPtr, tempBuf);
bufPtr += pathLen + 1; bufPtr += pathLen + 1;
} }
*bufPtr = '\0'; // Final null terminator *bufPtr = '\0'; // Final null terminator
} else {
// Single file/directory selection - write path to buffer
NSURL* url = [urls firstObject];
if(![url getFileSystemRepresentation:self->params->buf maxLength:self->params->nbuf]) {
return DLG_URLFAIL;
}
} }
return DLG_OK; return DLG_OK;

View File

@ -15,7 +15,7 @@ const multiFileBufferSize = w32.MAX_PATH * 10
type WinDlgError int type WinDlgError int
func (e WinDlgError) Error() string { func (e WinDlgError) Error() string {
return fmt.Sprintf("CommDlgExtendedError: %#x", int(e)) return fmt.Sprintf("CommDlgExtendedError: %#x", e)
} }
func err() error { func err() error {

View File

@ -224,7 +224,9 @@ func (s *Server) cmd(ctx context.Context) (*exec.Cmd, error) {
if _, err := os.Stat(settings.Models); err == nil { if _, err := os.Stat(settings.Models); err == nil {
env["OLLAMA_MODELS"] = settings.Models env["OLLAMA_MODELS"] = settings.Models
} else { } else {
slog.Warn("models path not accessible, using default", "path", settings.Models, "err", err) slog.Warn("models path not accessible, clearing models setting", "path", settings.Models, "err", err)
settings.Models = ""
s.store.SetSettings(settings)
} }
} }
if settings.ContextLength > 0 { if settings.ContextLength > 0 {

View File

@ -469,24 +469,26 @@ export class HealthResponse {
} }
export class User { export class User {
id: string; id: string;
email: string;
name: string; name: string;
bio?: string; email: string;
avatarurl?: string; avatarURL: string;
firstname?: string; plan: string;
lastname?: string; bio: string;
plan?: string; firstName: string;
lastName: string;
overThreshold: boolean;
constructor(source: any = {}) { constructor(source: any = {}) {
if ('string' === typeof source) source = JSON.parse(source); if ('string' === typeof source) source = JSON.parse(source);
this.id = source["id"]; this.id = source["id"];
this.email = source["email"];
this.name = source["name"]; this.name = source["name"];
this.bio = source["bio"]; this.email = source["email"];
this.avatarurl = source["avatarurl"]; this.avatarURL = source["avatarURL"];
this.firstname = source["firstname"];
this.lastname = source["lastname"];
this.plan = source["plan"]; this.plan = source["plan"];
this.bio = source["bio"];
this.firstName = source["firstName"];
this.lastName = source["lastName"];
this.overThreshold = source["overThreshold"];
} }
} }
export class Attachment { export class Attachment {

View File

@ -15,7 +15,6 @@ import {
import { parseJsonlFromResponse } from "./util/jsonl-parsing"; import { parseJsonlFromResponse } from "./util/jsonl-parsing";
import { ollamaClient as ollama } from "./lib/ollama-client"; import { ollamaClient as ollama } from "./lib/ollama-client";
import type { ModelResponse } from "ollama/browser"; import type { ModelResponse } from "ollama/browser";
import { API_BASE, OLLAMA_DOT_COM } from "./lib/config";
// Extend Model class with utility methods // Extend Model class with utility methods
declare module "@/gotypes" { declare module "@/gotypes" {
@ -27,6 +26,9 @@ declare module "@/gotypes" {
Model.prototype.isCloud = function (): boolean { Model.prototype.isCloud = function (): boolean {
return this.model.endsWith("cloud"); return this.model.endsWith("cloud");
}; };
const API_BASE = import.meta.env.DEV ? "http://127.0.0.1:3001" : "";
// Helper function to convert Uint8Array to base64 // Helper function to convert Uint8Array to base64
function uint8ArrayToBase64(uint8Array: Uint8Array): string { function uint8ArrayToBase64(uint8Array: Uint8Array): string {
const chunkSize = 0x8000; // 32KB chunks to avoid stack overflow const chunkSize = 0x8000; // 32KB chunks to avoid stack overflow
@ -41,50 +43,44 @@ function uint8ArrayToBase64(uint8Array: Uint8Array): string {
} }
export async function fetchUser(): Promise<User | null> { export async function fetchUser(): Promise<User | null> {
const response = await fetch(`${API_BASE}/api/me`, { try {
method: "POST", const response = await fetch(`${API_BASE}/api/v1/me`, {
headers: { method: "GET",
"Content-Type": "application/json", headers: {
}, "Content-Type": "application/json",
}); },
});
if (response.ok) { if (response.ok) {
const userData: User = await response.json(); const userData: User = await response.json();
return userData;
if (userData.avatarurl && !userData.avatarurl.startsWith("http")) {
userData.avatarurl = `${OLLAMA_DOT_COM}${userData.avatarurl}`;
} }
return userData; return null;
} } catch (error) {
console.error("Error fetching user:", error);
if (response.status === 401 || response.status === 403) {
return null; return null;
} }
throw new Error(`Failed to fetch user: ${response.status}`);
} }
export async function fetchConnectUrl(): Promise<string> { export async function fetchConnectUrl(): Promise<string> {
const response = await fetch(`${API_BASE}/api/me`, { const response = await fetch(`${API_BASE}/api/v1/connect`, {
method: "POST", method: "GET",
headers: { headers: {
"Content-Type": "application/json", "Content-Type": "application/json",
}, },
}); });
if (response.status === 401) { if (!response.ok) {
const data = await response.json(); throw new Error("Failed to fetch connect URL");
if (data.signin_url) {
return data.signin_url;
}
} }
throw new Error("Failed to fetch connect URL"); const data = await response.json();
return data.connect_url;
} }
export async function disconnectUser(): Promise<void> { export async function disconnectUser(): Promise<void> {
const response = await fetch(`${API_BASE}/api/signout`, { const response = await fetch(`${API_BASE}/api/v1/disconnect`, {
method: "POST", method: "POST",
headers: { headers: {
"Content-Type": "application/json", "Content-Type": "application/json",
@ -209,10 +205,12 @@ export async function* sendMessage(
data: uint8ArrayToBase64(att.data), data: uint8ArrayToBase64(att.data),
})); }));
// Send think parameter when it's explicitly set (true, false, or a non-empty string). // Only send think parameter when actually requesting thinking
// Don't send false as it causes issues with some providers
const shouldSendThink = const shouldSendThink =
think !== undefined && think !== undefined &&
(typeof think === "boolean" || (typeof think === "string" && think !== "")); ((typeof think === "boolean" && think) ||
(typeof think === "string" && think !== ""));
const response = await fetch(`${API_BASE}/api/v1/chat/${chatId}`, { const response = await fetch(`${API_BASE}/api/v1/chat/${chatId}`, {
method: "POST", method: "POST",
@ -394,8 +392,7 @@ export async function getInferenceCompute(): Promise<InferenceCompute[]> {
export async function fetchHealth(): Promise<boolean> { export async function fetchHealth(): Promise<boolean> {
try { try {
// Use the /api/version endpoint as a health check const response = await fetch(`${API_BASE}/api/v1/health`, {
const response = await fetch(`${API_BASE}/api/version`, {
method: "GET", method: "GET",
headers: { headers: {
"Content-Type": "application/json", "Content-Type": "application/json",
@ -404,8 +401,7 @@ export async function fetchHealth(): Promise<boolean> {
if (response.ok) { if (response.ok) {
const data = await response.json(); const data = await response.json();
// If we get a version back, the server is healthy return data.healthy || false;
return !!data.version;
} }
return false; return false;

View File

@ -299,9 +299,9 @@ export default function Settings() {
</Button> </Button>
</div> </div>
</div> </div>
{user?.avatarurl && ( {user?.avatarURL && (
<img <img
src={user.avatarurl} src={user.avatarURL}
alt={user?.name} alt={user?.name}
className="h-10 w-10 rounded-full bg-neutral-200 dark:bg-neutral-700 flex-shrink-0" className="h-10 w-10 rounded-full bg-neutral-200 dark:bg-neutral-700 flex-shrink-0"
onError={(e) => { onError={(e) => {

View File

@ -50,33 +50,21 @@ export default function Thinking({
// Position content to show bottom when collapsed // Position content to show bottom when collapsed
useEffect(() => { useEffect(() => {
if (isCollapsed && contentRef.current && wrapperRef.current) { if (isCollapsed && contentRef.current && wrapperRef.current) {
requestAnimationFrame(() => { const contentHeight = contentRef.current.scrollHeight;
if (!contentRef.current || !wrapperRef.current) return; const wrapperHeight = wrapperRef.current.clientHeight;
if (contentHeight > wrapperHeight) {
const contentHeight = contentRef.current.scrollHeight; const translateY = -(contentHeight - wrapperHeight);
const wrapperHeight = wrapperRef.current.clientHeight; contentRef.current.style.transform = `translateY(${translateY}px)`;
if (contentHeight > wrapperHeight) { setHasOverflow(true);
const translateY = -(contentHeight - wrapperHeight); } else {
contentRef.current.style.transform = `translateY(${translateY}px)`; setHasOverflow(false);
setHasOverflow(true); }
} else {
contentRef.current.style.transform = "translateY(0)";
setHasOverflow(false);
}
});
} else if (contentRef.current) { } else if (contentRef.current) {
contentRef.current.style.transform = "translateY(0)"; contentRef.current.style.transform = "translateY(0)";
setHasOverflow(false); setHasOverflow(false);
} }
}, [thinking, isCollapsed]); }, [thinking, isCollapsed]);
useEffect(() => {
if (activelyThinking && wrapperRef.current && !isCollapsed) {
// When expanded and actively thinking, scroll to bottom
wrapperRef.current.scrollTop = wrapperRef.current.scrollHeight;
}
}, [thinking, activelyThinking, isCollapsed]);
const handleToggle = () => { const handleToggle = () => {
setIsCollapsed(!isCollapsed); setIsCollapsed(!isCollapsed);
setHasUserInteracted(true); setHasUserInteracted(true);

View File

@ -7,7 +7,6 @@ import { createQueryBatcher } from "./useQueryBatcher";
import { useRefetchModels } from "./useModels"; import { useRefetchModels } from "./useModels";
import { useStreamingContext } from "@/contexts/StreamingContext"; import { useStreamingContext } from "@/contexts/StreamingContext";
import { useSettings } from "./useSettings"; import { useSettings } from "./useSettings";
import { getModelCapabilities } from "@/api";
export const useChats = () => { export const useChats = () => {
return useQuery({ return useQuery({
@ -607,24 +606,6 @@ export const useSendMessage = (chatId: string) => {
queryClient.setQueryData(["staleModels"], newStaleMap); queryClient.setQueryData(["staleModels"], newStaleMap);
queryClient.invalidateQueries({ queryKey: ["models"] }); queryClient.invalidateQueries({ queryKey: ["models"] });
// Fetch fresh capabilities for the downloaded model
getModelCapabilities(selectedModel.model)
.then((capabilities) => {
queryClient.setQueryData(
["modelCapabilities", selectedModel.model],
capabilities,
);
})
.catch((error) => {
console.error(
"Failed to fetch capabilities after download:",
error,
);
queryClient.invalidateQueries({
queryKey: ["modelCapabilities", selectedModel.model],
});
});
} }
break; break;
} }

View File

@ -0,0 +1,114 @@
import { useMutation, useQueryClient } from "@tanstack/react-query";
import { useState } from "react";
import { pullModel } from "@/api";
import { useSelectedModel } from "./useSelectedModel";
import { useSettings } from "./useSettings";
interface DownloadProgress {
status: string;
digest?: string;
total?: number;
completed?: number;
done?: boolean;
}
export function useDownloadModel(chatId?: string) {
const queryClient = useQueryClient();
const { selectedModel } = useSelectedModel(chatId);
const { setSettings } = useSettings();
const [downloadProgress, setDownloadProgress] =
useState<DownloadProgress | null>(null);
const [abortController, setAbortController] =
useState<AbortController | null>(null);
const [downloadingChatIds, setDownloadingChatIds] = useState<Set<string>>(
new Set(),
);
const mutation = useMutation({
mutationFn: async (modelName: string) => {
const controller = new AbortController();
setAbortController(controller);
setDownloadProgress({ status: "Starting download..." });
if (chatId) {
setDownloadingChatIds((prev) => new Set(prev).add(chatId));
}
try {
for await (const progress of pullModel(modelName, controller.signal)) {
setDownloadProgress(progress);
if (progress.status === "success") {
// Update selected model to indicate it's now available locally
if (selectedModel && selectedModel.model === modelName) {
setSettings({ SelectedModel: modelName });
}
// Invalidate models query to refresh the list
await queryClient.invalidateQueries({ queryKey: ["models"] });
break;
}
}
} finally {
setAbortController(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}
},
onSuccess: () => {
setDownloadProgress(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
},
onError: (error: Error) => {
const status =
error.name === "AbortError" ? "Download cancelled" : "Download failed";
setDownloadProgress({ status, done: true });
// Clear error message after delay
const delay = error.name === "AbortError" ? 1500 : 3000;
setTimeout(() => {
setDownloadProgress(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}, delay);
},
});
const cancelDownload = () => {
if (abortController) {
abortController.abort();
setAbortController(null);
if (chatId) {
setDownloadingChatIds((prev) => {
const newSet = new Set(prev);
newSet.delete(chatId);
return newSet;
});
}
}
};
return {
downloadModel: mutation.mutate,
isDownloading:
mutation.isPending && chatId ? downloadingChatIds.has(chatId) : false,
downloadProgress:
chatId && downloadingChatIds.has(chatId) ? downloadProgress : null,
error: mutation.error,
cancelDownload,
};
}

View File

@ -1,20 +1,29 @@
import { useQuery, useMutation, useQueryClient } from "@tanstack/react-query"; import { useQuery, useMutation, useQueryClient } from "@tanstack/react-query";
import { useEffect, useState } from "react";
import { fetchUser, fetchConnectUrl, disconnectUser } from "@/api"; import { fetchUser, fetchConnectUrl, disconnectUser } from "@/api";
export function useUser() { export function useUser() {
const queryClient = useQueryClient(); const queryClient = useQueryClient();
const [initialDataLoaded, setInitialDataLoaded] = useState(false);
// Wait for initial data to be loaded
useEffect(() => {
const initialPromise = window.__initialUserDataPromise;
if (initialPromise) {
initialPromise.finally(() => {
setInitialDataLoaded(true);
});
} else {
setInitialDataLoaded(true);
}
}, []);
const userQuery = useQuery({ const userQuery = useQuery({
queryKey: ["user"], queryKey: ["user"],
queryFn: async () => { queryFn: () => fetchUser(),
const result = await fetchUser();
return result;
},
staleTime: 5 * 60 * 1000, // Consider data stale after 5 minutes staleTime: 5 * 60 * 1000, // Consider data stale after 5 minutes
gcTime: 10 * 60 * 1000, // Keep in cache for 10 minutes gcTime: 10 * 60 * 1000, // Keep in cache for 10 minutes
retry: 10, initialData: null, // Start with null to prevent flashing
retryDelay: (attemptIndex) => Math.min(500 * attemptIndex, 2000),
refetchOnMount: true, // Always fetch when component mounts
}); });
// Mutation to refresh user data // Mutation to refresh user data
@ -40,15 +49,14 @@ export function useUser() {
}, },
}); });
const isLoading = userQuery.isLoading || userQuery.isFetching;
const isAuthenticated = Boolean(userQuery.data?.name);
return { return {
user: userQuery.data, user: userQuery.data,
isLoading, isLoading:
!initialDataLoaded ||
(userQuery.isLoading && userQuery.data === undefined), // Show loading until initial data is loaded
isError: userQuery.isError, isError: userQuery.isError,
error: userQuery.error, error: userQuery.error,
isAuthenticated, isAuthenticated: Boolean(userQuery.data?.name),
refreshUser: refreshUser.mutate, refreshUser: refreshUser.mutate,
isRefreshing: refreshUser.isPending, isRefreshing: refreshUser.isPending,
refetchUser: userQuery.refetch, refetchUser: userQuery.refetch,

View File

@ -1,13 +0,0 @@
// API configuration
const DEV_API_URL = "http://127.0.0.1:3001";
// Base URL for fetch API calls (can be relative in production)
export const API_BASE = import.meta.env.DEV ? DEV_API_URL : "";
// Full host URL for Ollama client (needs full origin in production)
export const OLLAMA_HOST = import.meta.env.DEV
? DEV_API_URL
: window.location.origin;
export const OLLAMA_DOT_COM =
import.meta.env.VITE_OLLAMA_DOT_COM_URL || "https://ollama.com";

View File

@ -147,7 +147,6 @@ export const highlighterPromise = createHighlighter({
"c", "c",
"cpp", "cpp",
"sql", "sql",
"swift",
"yaml", "yaml",
"markdown", "markdown",
], ],

View File

@ -1,5 +1,4 @@
import { Ollama } from "ollama/browser"; import { Ollama } from "ollama/browser";
import { OLLAMA_HOST } from "./config";
let _ollamaClient: Ollama | null = null; let _ollamaClient: Ollama | null = null;
@ -7,7 +6,7 @@ export const ollamaClient = new Proxy({} as Ollama, {
get(_target, prop) { get(_target, prop) {
if (!_ollamaClient) { if (!_ollamaClient) {
_ollamaClient = new Ollama({ _ollamaClient = new Ollama({
host: OLLAMA_HOST, host: window.location.origin,
}); });
} }
const value = _ollamaClient[prop as keyof Ollama]; const value = _ollamaClient[prop as keyof Ollama];

View File

@ -5,6 +5,13 @@ import { QueryClient, QueryClientProvider } from "@tanstack/react-query";
import { routeTree } from "./routeTree.gen"; import { routeTree } from "./routeTree.gen";
import { fetchUser } from "./api"; import { fetchUser } from "./api";
import { StreamingProvider } from "./contexts/StreamingContext"; import { StreamingProvider } from "./contexts/StreamingContext";
import { User } from "@/gotypes";
declare global {
interface Window {
__initialUserDataPromise?: Promise<User | null>;
}
}
const queryClient = new QueryClient({ const queryClient = new QueryClient({
defaultOptions: { defaultOptions: {
@ -17,11 +24,27 @@ const queryClient = new QueryClient({
}, },
}); });
fetchUser().then((userData) => { // Track initial user data fetch
if (userData) { let initialUserDataPromise: Promise<User | null> | null = null;
// Initialize user data on app startup
const initializeUserData = async () => {
try {
const userData = await fetchUser();
queryClient.setQueryData(["user"], userData); queryClient.setQueryData(["user"], userData);
return userData;
} catch (error) {
console.error("Error initializing user data:", error);
queryClient.setQueryData(["user"], null);
return null;
} }
}); };
// Start initialization immediately and track the promise
initialUserDataPromise = initializeUserData();
// Export the promise so hooks can await it
window.__initialUserDataPromise = initialUserDataPromise;
const router = createRouter({ const router = createRouter({
routeTree, routeTree,

View File

@ -101,14 +101,15 @@ type HealthResponse struct {
} }
type User struct { type User struct {
ID string `json:"id"` ID string `json:"id"`
Email string `json:"email"` Name string `json:"name"`
Name string `json:"name"` Email string `json:"email"`
Bio string `json:"bio,omitempty"` AvatarURL string `json:"avatarURL"`
AvatarURL string `json:"avatarurl,omitempty"` Plan string `json:"plan"`
FirstName string `json:"firstname,omitempty"` Bio string `json:"bio"`
LastName string `json:"lastname,omitempty"` FirstName string `json:"firstName"`
Plan string `json:"plan,omitempty"` LastName string `json:"lastName"`
OverThreshold bool `json:"overThreshold"`
} }
type Attachment struct { type Attachment struct {

View File

@ -12,17 +12,18 @@ import (
"log/slog" "log/slog"
"net/http" "net/http"
"net/http/httputil" "net/http/httputil"
"net/url"
"os" "os"
"runtime" "runtime"
"runtime/debug" "runtime/debug"
"slices" "slices"
"strconv" "strconv"
"strings" "strings"
"sync"
"time" "time"
"github.com/google/uuid" "github.com/google/uuid"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/app/auth"
"github.com/ollama/ollama/app/server" "github.com/ollama/ollama/app/server"
"github.com/ollama/ollama/app/store" "github.com/ollama/ollama/app/store"
"github.com/ollama/ollama/app/tools" "github.com/ollama/ollama/app/tools"
@ -117,66 +118,40 @@ func (s *Server) log() *slog.Logger {
// ollamaProxy creates a reverse proxy handler to the Ollama server // ollamaProxy creates a reverse proxy handler to the Ollama server
func (s *Server) ollamaProxy() http.Handler { func (s *Server) ollamaProxy() http.Handler {
var ( ollamaHost := os.Getenv("OLLAMA_HOST")
proxy http.Handler if ollamaHost == "" {
proxyMu sync.Mutex ollamaHost = "http://127.0.0.1:11434"
) }
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { if !strings.HasPrefix(ollamaHost, "http://") && !strings.HasPrefix(ollamaHost, "https://") {
proxyMu.Lock() ollamaHost = "http://" + ollamaHost
p := proxy }
proxyMu.Unlock()
if p == nil { target, err := url.Parse(ollamaHost)
proxyMu.Lock() if err != nil {
if proxy == nil { s.log().Error("failed to parse OLLAMA_HOST", "error", err, "host", ollamaHost)
var err error return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
for i := range 2 { http.Error(w, "failed to configure proxy", http.StatusInternalServerError)
if i > 0 { })
s.log().Warn("ollama server not ready, retrying", "attempt", i+1) }
time.Sleep(1 * time.Second)
}
err = WaitForServer(context.Background(), 10*time.Second) s.log().Info("configuring ollama proxy", "target", target.String())
if err == nil {
break
}
}
if err != nil { proxy := httputil.NewSingleHostReverseProxy(target)
proxyMu.Unlock()
s.log().Error("ollama server not ready after retries", "error", err)
http.Error(w, "Ollama server is not ready", http.StatusServiceUnavailable)
return
}
target := envconfig.Host() originalDirector := proxy.Director
s.log().Info("configuring ollama proxy", "target", target.String()) proxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
newProxy := httputil.NewSingleHostReverseProxy(target) proxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
originalDirector := newProxy.Director return proxy
newProxy.Director = func(req *http.Request) {
originalDirector(req)
req.Host = target.Host
s.log().Debug("proxying request", "method", req.Method, "path", req.URL.Path, "target", target.Host)
}
newProxy.ErrorHandler = func(w http.ResponseWriter, r *http.Request, err error) {
s.log().Error("proxy error", "error", err, "path", r.URL.Path, "target", target.String())
http.Error(w, "proxy error: "+err.Error(), http.StatusBadGateway)
}
proxy = newProxy
p = newProxy
} else {
p = proxy
}
proxyMu.Unlock()
}
p.ServeHTTP(w, r)
})
} }
type errHandlerFunc func(http.ResponseWriter, *http.Request) error type errHandlerFunc func(http.ResponseWriter, *http.Request) error
@ -289,10 +264,11 @@ func (s *Server) Handler() http.Handler {
ollamaProxy := s.ollamaProxy() ollamaProxy := s.ollamaProxy()
mux.Handle("GET /api/tags", ollamaProxy) mux.Handle("GET /api/tags", ollamaProxy)
mux.Handle("POST /api/show", ollamaProxy) mux.Handle("POST /api/show", ollamaProxy)
mux.Handle("GET /api/version", ollamaProxy)
mux.Handle("HEAD /api/version", ollamaProxy) mux.Handle("GET /api/v1/me", handle(s.me))
mux.Handle("POST /api/me", ollamaProxy) mux.Handle("POST /api/v1/disconnect", handle(s.disconnect))
mux.Handle("POST /api/signout", ollamaProxy) mux.Handle("GET /api/v1/connect", handle(s.connectURL))
mux.Handle("GET /api/v1/health", handle(s.health))
// React app - catch all non-API routes and serve the React app // React app - catch all non-API routes and serve the React app
mux.Handle("GET /", s.appHandler()) mux.Handle("GET /", s.appHandler())
@ -362,7 +338,7 @@ func (s *Server) doSelfSigned(ctx context.Context, method, path string) (*http.R
} }
// UserData fetches user data from ollama.com API for the current ollama key // UserData fetches user data from ollama.com API for the current ollama key
func (s *Server) UserData(ctx context.Context) (*api.UserResponse, error) { func (s *Server) UserData(ctx context.Context) (*responses.User, error) {
resp, err := s.doSelfSigned(ctx, http.MethodPost, "/api/me") resp, err := s.doSelfSigned(ctx, http.MethodPost, "/api/me")
if err != nil { if err != nil {
return nil, fmt.Errorf("failed to call ollama.com/api/me: %w", err) return nil, fmt.Errorf("failed to call ollama.com/api/me: %w", err)
@ -373,7 +349,7 @@ func (s *Server) UserData(ctx context.Context) (*api.UserResponse, error) {
return nil, fmt.Errorf("unexpected status code: %d", resp.StatusCode) return nil, fmt.Errorf("unexpected status code: %d", resp.StatusCode)
} }
var user api.UserResponse var user responses.User
if err := json.NewDecoder(resp.Body).Decode(&user); err != nil { if err := json.NewDecoder(resp.Body).Decode(&user); err != nil {
return nil, fmt.Errorf("failed to parse user response: %w", err) return nil, fmt.Errorf("failed to parse user response: %w", err)
} }
@ -392,27 +368,29 @@ func (s *Server) UserData(ctx context.Context) (*api.UserResponse, error) {
return &user, nil return &user, nil
} }
// WaitForServer waits for the Ollama server to be ready func waitForServer(ctx context.Context) error {
func WaitForServer(ctx context.Context, timeout time.Duration) error { timeout := time.Now().Add(10 * time.Second)
deadline := time.Now().Add(timeout) // TODO: this avoids an error on first load of the app
for time.Now().Before(deadline) { // however we should either show a loading state or
// wait for the Ollama server to be ready before redirecting
for {
c, err := api.ClientFromEnvironment() c, err := api.ClientFromEnvironment()
if err != nil { if err != nil {
return err return err
} }
if _, err := c.Version(ctx); err == nil { if _, err := c.Version(ctx); err == nil {
slog.Debug("ollama server is ready") break
return nil }
if time.Now().After(timeout) {
return fmt.Errorf("timeout waiting for Ollama server to be ready")
} }
time.Sleep(10 * time.Millisecond) time.Sleep(10 * time.Millisecond)
} }
return errors.New("timeout waiting for Ollama server to be ready") return nil
} }
func (s *Server) createChat(w http.ResponseWriter, r *http.Request) error { func (s *Server) createChat(w http.ResponseWriter, r *http.Request) error {
if err := WaitForServer(r.Context(), 10*time.Second); err != nil { waitForServer(r.Context())
return err
}
id, err := uuid.NewV7() id, err := uuid.NewV7()
if err != nil { if err != nil {
@ -997,7 +975,7 @@ func (s *Server) chat(w http.ResponseWriter, r *http.Request) error {
for _, toolCall := range res.Message.ToolCalls { for _, toolCall := range res.Message.ToolCalls {
// continues loop as tools were executed // continues loop as tools were executed
toolsExecuted = true toolsExecuted = true
result, content, err := registry.Execute(ctx, toolCall.Function.Name, toolCall.Function.Arguments.ToMap()) result, content, err := registry.Execute(ctx, toolCall.Function.Name, toolCall.Function.Arguments)
if err != nil { if err != nil {
errContent := fmt.Sprintf("Error: %v", err) errContent := fmt.Sprintf("Error: %v", err)
toolErrMsg := store.NewMessage("tool", errContent, nil) toolErrMsg := store.NewMessage("tool", errContent, nil)
@ -1460,6 +1438,129 @@ func (s *Server) settings(w http.ResponseWriter, r *http.Request) error {
}) })
} }
func (s *Server) me(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
user, err := s.UserData(r.Context())
if err != nil {
// If fetching from API fails, try to return cached user data if available
if cachedUser, cacheErr := s.Store.User(); cacheErr == nil && cachedUser != nil {
s.log().Info("API request failed, returning cached user data", "error", err)
responseUser := &responses.User{
Name: cachedUser.Name,
Email: cachedUser.Email,
Plan: cachedUser.Plan,
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(responseUser)
}
s.log().Error("failed to get user data", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to get user data",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(user)
}
func (s *Server) disconnect(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodPost {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
if err := s.Store.ClearUser(); err != nil {
s.log().Warn("failed to clear cached user data", "error", err)
}
// Get the SSH public key to encode for the delete request
pubKey, err := ollamaAuth.GetPublicKey()
if err != nil {
s.log().Error("failed to get public key", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to get public key",
})
}
// Encode the key using base64 URL encoding
encodedKey := base64.RawURLEncoding.EncodeToString([]byte(pubKey))
// Call the /api/user/keys/{encodedKey} endpoint with DELETE
resp, err := s.doSelfSigned(r.Context(), http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey))
if err != nil {
s.log().Error("failed to call ollama.com/api/user/keys", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to disconnect from ollama.com",
})
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
s.log().Error("disconnect request failed", "status", resp.StatusCode)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to disconnect from ollama.com",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(map[string]string{"status": "disconnected"})
}
func (s *Server) connectURL(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
connectURL, err := auth.BuildConnectURL(OllamaDotCom)
if err != nil {
s.log().Error("failed to build connect URL", "error", err)
w.WriteHeader(http.StatusInternalServerError)
return json.NewEncoder(w).Encode(responses.Error{
Error: "failed to build connect URL",
})
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(map[string]string{
"connect_url": connectURL,
})
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) error {
if r.Method != http.MethodGet {
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
return nil
}
healthy := false
c, err := api.ClientFromEnvironment()
if err == nil {
if _, err := c.Version(r.Context()); err == nil {
healthy = true
}
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
return json.NewEncoder(w).Encode(responses.HealthResponse{
Healthy: healthy,
})
}
func (s *Server) getInferenceCompute(w http.ResponseWriter, r *http.Request) error { func (s *Server) getInferenceCompute(w http.ResponseWriter, r *http.Request) error {
ctx, cancel := context.WithTimeout(r.Context(), 500*time.Millisecond) ctx, cancel := context.WithTimeout(r.Context(), 500*time.Millisecond)
defer cancel() defer cancel()
@ -1558,13 +1659,13 @@ func convertToOllamaTool(toolSchema map[string]any) api.Tool {
tool.Function.Parameters.Type = "object" tool.Function.Parameters.Type = "object"
tool.Function.Parameters.Required = []string{} tool.Function.Parameters.Required = []string{}
tool.Function.Parameters.Properties = api.NewToolPropertiesMap() tool.Function.Parameters.Properties = make(map[string]api.ToolProperty)
if schemaProps, ok := toolSchema["schema"].(map[string]any); ok { if schemaProps, ok := toolSchema["schema"].(map[string]any); ok {
tool.Function.Parameters.Type = getStringFromMap(schemaProps, "type", "object") tool.Function.Parameters.Type = getStringFromMap(schemaProps, "type", "object")
if props, ok := schemaProps["properties"].(map[string]any); ok { if props, ok := schemaProps["properties"].(map[string]any); ok {
tool.Function.Parameters.Properties = api.NewToolPropertiesMap() tool.Function.Parameters.Properties = make(map[string]api.ToolProperty)
for propName, propDef := range props { for propName, propDef := range props {
if propMap, ok := propDef.(map[string]any); ok { if propMap, ok := propDef.(map[string]any); ok {
@ -1572,7 +1673,7 @@ func convertToOllamaTool(toolSchema map[string]any) api.Tool {
Type: api.PropertyType{getStringFromMap(propMap, "type", "string")}, Type: api.PropertyType{getStringFromMap(propMap, "type", "string")},
Description: getStringFromMap(propMap, "description", ""), Description: getStringFromMap(propMap, "description", ""),
} }
tool.Function.Parameters.Properties.Set(propName, prop) tool.Function.Parameters.Properties[propName] = prop
} }
} }
} }

View File

@ -158,16 +158,16 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui
case uint32(UI_REQUEST_MSG_ID): case uint32(UI_REQUEST_MSG_ID):
// Requests for the UI must always come from the main event thread // Requests for the UI must always come from the main event thread
l := int(wParam) l := int(wParam)
path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l) //nolint:govet,gosec path := unsafe.String((*byte)(unsafe.Pointer(lParam)), l)
t.app.UIRun(path) t.app.UIRun(path)
case WM_COPYDATA: case WM_COPYDATA:
// Handle URL scheme requests from other instances // Handle URL scheme requests from other instances
if lParam != 0 { if lParam != 0 {
cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam)) //nolint:govet,gosec cds := (*COPYDATASTRUCT)(unsafe.Pointer(lParam))
if cds.DwData == 1 { // Our identifier for URL scheme messages if cds.DwData == 1 { // Our identifier for URL scheme messages
// Convert the data back to string // Convert the data back to string
data := make([]byte, cds.CbData) data := make([]byte, cds.CbData)
copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData]) //nolint:govet,gosec copy(data, (*[1 << 30]byte)(unsafe.Pointer(cds.LpData))[:cds.CbData:cds.CbData])
urlScheme := string(data) urlScheme := string(data)
handleURLSchemeRequest(urlScheme) handleURLSchemeRequest(urlScheme)
lResult = 1 // Return non-zero to indicate success lResult = 1 // Return non-zero to indicate success

View File

@ -1,44 +0,0 @@
---
### 2. `build_custom.sh` (Skrypt automatyzujący)
To jest opcja "Pro". Zamiast wklepywać te komendy ręcznie, tworzysz skrypt bashowy. Jak będziesz chciał zaktualizować Ollamę za pół roku, po prostu odpalisz `./build_custom.sh` i pójdziesz na kawę.
**Zawartość pliku:**
```bash
#!/bin/bash
# Skrypt budowania Ollama dla Xeon X5675 (No AVX) + GTX 1070
# Uruchom to w głównym katalogu repozytorium
echo "--- [1/4] Czyszczenie poprzedniego builda ---"
rm -rf build
go clean -cache
echo "--- [2/4] Konfiguracja CMake (CUDA ON, Vulkan OFF) ---"
# Flagi kluczowe dla Twojego systemu
cmake -B build \
-DOLLAMA_CUDA=ON \
-DOLLAMA_VULKAN=OFF \
-DGGML_VULKAN=OFF \
-DCMAKE_DISABLE_FIND_PACKAGE_Vulkan=TRUE
if [ $? -ne 0 ]; then
echo "Błąd konfiguracji CMake!"
exit 1
fi
echo "--- [3/4] Kompilacja silnika (Tryb bezpieczny -j1) ---"
# Używamy -j1 bo przy OC Twój Xeon może być niestabilny przy kompilacji
cmake --build build -j1
if [ $? -ne 0 ]; then
echo "Błąd kompilacji!"
exit 1
fi
echo "--- [4/4] Budowanie pliku binarnego Go ---"
go build .
echo "--- GOTOWE! ---"
echo "Twój plik 'ollama' jest gotowy."
echo "Aby zainstalować wpisz: sudo mv ollama /usr/bin/ollama"

View File

@ -1,115 +0,0 @@
Ollama Benchmark Tool
---------------------
A Go-based command-line tool for benchmarking Ollama models with configurable parameters and multiple output formats.
## Features
* Benchmark multiple models in a single run
* Support for both text and image prompts
* Configurable generation parameters (temperature, max tokens, seed, etc.)
* Supports benchstat and CSV output formats
* Detailed performance metrics (prefill, generate, load, total durations)
## Building from Source
```
go build -o ollama-bench bench.go
./ollama-bench -model gpt-oss:20b -epochs 6 -format csv
```
Using Go Run (without building)
```
go run bench.go -model gpt-oss:20b -epochs 3
```
## Usage
### Basic Example
```
./ollama-bench -model gemma3 -epochs 6
```
### Benchmark Multiple Models
```
./ollama-bench -model gemma3,gemma3n -epochs 6 -max-tokens 100 -p "Write me a short story" | tee gemma.bench
benchstat -col /name gemma.bench
```
### With Image Prompt
```
./ollama-bench -model qwen3-vl -image photo.jpg -epochs 6 -max-tokens 100 -p "Describe this image"
```
### Advanced Example
```
./ollama-bench -model llama3 -epochs 10 -temperature 0.7 -max-tokens 500 -seed 42 -format csv -output results.csv
```
## Command Line Options
| Option | Description | Default |
|----------|-------------|---------|
| -model | Comma-separated list of models to benchmark | (required) |
| -epochs | Number of iterations per model | 1 |
| -max-tokens | Maximum tokens for model response | 0 (unlimited) |
| -temperature | Temperature parameter | 0.0 |
| -seed | Random seed | 0 (random) |
| -timeout | Timeout in seconds | 300 |
| -p | Prompt text | "Write a long story." |
| -image | Image file to include in prompt | |
| -k | Keep-alive duration in seconds | 0 |
| -format | Output format (benchstat, csv) | benchstat |
| -output | Output file for results | "" (stdout) |
| -v | Verbose mode | false |
| -debug | Show debug information | false |
## Output Formats
### Markdown Format
The default markdown format is suitable for copying and pasting into a GitHub issue and will look like:
```
Model | Step | Count | Duration | nsPerToken | tokensPerSec |
|-------|------|-------|----------|------------|--------------|
| gpt-oss:20b | prefill | 124 | 30.006458ms | 241987.56 | 4132.44 |
| gpt-oss:20b | generate | 200 | 2.646843954s | 13234219.77 | 75.56 |
| gpt-oss:20b | load | 1 | 121.674208ms | - | - |
| gpt-oss:20b | total | 1 | 2.861047625s | - | - |
```
### Benchstat Format
Compatible with Go's benchstat tool for statistical analysis:
```
BenchmarkModel/name=gpt-oss:20b/step=prefill 128 78125.00 ns/token 12800.00 token/sec
BenchmarkModel/name=gpt-oss:20b/step=generate 512 19531.25 ns/token 51200.00 token/sec
BenchmarkModel/name=gpt-oss:20b/step=load 1 1500000000 ns/request
```
### CSV Format
Machine-readable comma-separated values:
```
NAME,STEP,COUNT,NS_PER_COUNT,TOKEN_PER_SEC
gpt-oss:20b,prefill,128,78125.00,12800.00
gpt-oss:20b,generate,512,19531.25,51200.00
gpt-oss:20b,load,1,1500000000,0
```
## Metrics Explained
The tool reports four types of metrics for each model:
* prefill: Time spent processing the prompt
* generate: Time spent generating the response
* load: Model loading time (one-time cost)
* total: Total request duration

View File

@ -1,321 +0,0 @@
package main
import (
"cmp"
"context"
"flag"
"fmt"
"io"
"os"
"runtime"
"slices"
"strings"
"sync"
"time"
"github.com/ollama/ollama/api"
)
type flagOptions struct {
models *string
epochs *int
maxTokens *int
temperature *float64
seed *int
timeout *int
prompt *string
imageFile *string
keepAlive *float64
format *string
outputFile *string
debug *bool
verbose *bool
}
type Metrics struct {
Model string
Step string
Count int
Duration time.Duration
}
var once sync.Once
const DefaultPrompt = `Please write a descriptive story about a llama named Alonso who grows up to be President of the Land of Llamas. Include details about Alonso's childhood, adolescent years, and how he grew up to be a political mover and shaker. Write the story with a sense of whimsy.`
func OutputMetrics(w io.Writer, format string, metrics []Metrics, verbose bool) {
switch format {
case "benchstat":
if verbose {
printHeader := func() {
fmt.Fprintf(w, "sysname: %s\n", runtime.GOOS)
fmt.Fprintf(w, "machine: %s\n", runtime.GOARCH)
}
once.Do(printHeader)
}
for _, m := range metrics {
if m.Step == "generate" || m.Step == "prefill" {
if m.Count > 0 {
nsPerToken := float64(m.Duration.Nanoseconds()) / float64(m.Count)
tokensPerSec := float64(m.Count) / (float64(m.Duration.Nanoseconds()) + 1e-12) * 1e9
fmt.Fprintf(w, "BenchmarkModel/name=%s/step=%s %d %.2f ns/token %.2f token/sec\n",
m.Model, m.Step, m.Count, nsPerToken, tokensPerSec)
} else {
fmt.Fprintf(w, "BenchmarkModel/name=%s/step=%s %d 0 ns/token 0 token/sec\n",
m.Model, m.Step, m.Count)
}
} else {
var suffix string
if m.Step == "load" {
suffix = "/step=load"
}
fmt.Fprintf(w, "BenchmarkModel/name=%s%s 1 %d ns/request\n",
m.Model, suffix, m.Duration.Nanoseconds())
}
}
case "csv":
printHeader := func() {
headings := []string{"NAME", "STEP", "COUNT", "NS_PER_COUNT", "TOKEN_PER_SEC"}
fmt.Fprintln(w, strings.Join(headings, ","))
}
once.Do(printHeader)
for _, m := range metrics {
if m.Step == "generate" || m.Step == "prefill" {
var nsPerToken float64
var tokensPerSec float64
if m.Count > 0 {
nsPerToken = float64(m.Duration.Nanoseconds()) / float64(m.Count)
tokensPerSec = float64(m.Count) / (float64(m.Duration.Nanoseconds()) + 1e-12) * 1e9
}
fmt.Fprintf(w, "%s,%s,%d,%.2f,%.2f\n", m.Model, m.Step, m.Count, nsPerToken, tokensPerSec)
} else {
fmt.Fprintf(w, "%s,%s,1,%d,0\n", m.Model, m.Step, m.Duration.Nanoseconds())
}
}
case "markdown":
printHeader := func() {
fmt.Fprintln(w, "| Model | Step | Count | Duration | nsPerToken | tokensPerSec |")
fmt.Fprintln(w, "|-------|------|-------|----------|------------|--------------|")
}
once.Do(printHeader)
for _, m := range metrics {
var nsPerToken, tokensPerSec float64
var nsPerTokenStr, tokensPerSecStr string
if m.Step == "generate" || m.Step == "prefill" {
nsPerToken = float64(m.Duration.Nanoseconds()) / float64(m.Count)
tokensPerSec = float64(m.Count) / (float64(m.Duration.Nanoseconds()) + 1e-12) * 1e9
nsPerTokenStr = fmt.Sprintf("%.2f", nsPerToken)
tokensPerSecStr = fmt.Sprintf("%.2f", tokensPerSec)
} else {
nsPerTokenStr = "-"
tokensPerSecStr = "-"
}
fmt.Fprintf(w, "| %s | %s | %d | %v | %s | %s |\n",
m.Model, m.Step, m.Count, m.Duration, nsPerTokenStr, tokensPerSecStr)
}
default:
fmt.Fprintf(os.Stderr, "Unknown output format '%s'\n", format)
}
}
func BenchmarkChat(fOpt flagOptions) error {
models := strings.Split(*fOpt.models, ",")
// todo - add multi-image support
var imgData api.ImageData
var err error
if *fOpt.imageFile != "" {
imgData, err = readImage(*fOpt.imageFile)
if err != nil {
fmt.Fprintf(os.Stderr, "ERROR: Couldn't read image '%s': %v\n", *fOpt.imageFile, err)
return err
}
}
if *fOpt.debug && imgData != nil {
fmt.Fprintf(os.Stderr, "Read file '%s'\n", *fOpt.imageFile)
}
client, err := api.ClientFromEnvironment()
if err != nil {
fmt.Fprintf(os.Stderr, "ERROR: Couldn't create ollama client: %v\n", err)
return err
}
var out io.Writer = os.Stdout
if fOpt.outputFile != nil && *fOpt.outputFile != "" {
f, err := os.OpenFile(*fOpt.outputFile, os.O_CREATE|os.O_WRONLY, 0o644)
if err != nil {
fmt.Fprintf(os.Stderr, "ERROR: cannot open output file %s: %v\n", *fOpt.outputFile, err)
return err
}
defer f.Close()
out = f
}
for _, model := range models {
for range *fOpt.epochs {
options := make(map[string]interface{})
if *fOpt.maxTokens > 0 {
options["num_predict"] = *fOpt.maxTokens
}
options["temperature"] = *fOpt.temperature
if fOpt.seed != nil && *fOpt.seed > 0 {
options["seed"] = *fOpt.seed
}
var keepAliveDuration *api.Duration
if *fOpt.keepAlive > 0 {
duration := api.Duration{Duration: time.Duration(*fOpt.keepAlive * float64(time.Second))}
keepAliveDuration = &duration
}
req := &api.ChatRequest{
Model: model,
Messages: []api.Message{
{
Role: "user",
Content: *fOpt.prompt,
},
},
Options: options,
KeepAlive: keepAliveDuration,
}
if imgData != nil {
req.Messages[0].Images = []api.ImageData{imgData}
}
var responseMetrics *api.Metrics
ctx, cancel := context.WithTimeout(context.Background(), time.Duration(*fOpt.timeout)*time.Second)
defer cancel()
err = client.Chat(ctx, req, func(resp api.ChatResponse) error {
if *fOpt.debug {
fmt.Fprintf(os.Stderr, "%s", cmp.Or(resp.Message.Thinking, resp.Message.Content))
}
if resp.Done {
responseMetrics = &resp.Metrics
}
return nil
})
if *fOpt.debug {
fmt.Fprintln(os.Stderr)
}
if err != nil {
if ctx.Err() == context.DeadlineExceeded {
fmt.Fprintf(os.Stderr, "ERROR: Chat request timed out with model '%s' after %vs\n", model, 1)
continue
}
fmt.Fprintf(os.Stderr, "ERROR: Couldn't chat with model '%s': %v\n", model, err)
continue
}
if responseMetrics == nil {
fmt.Fprintf(os.Stderr, "ERROR: No metrics received for model '%s'\n", model)
continue
}
metrics := []Metrics{
{
Model: model,
Step: "prefill",
Count: responseMetrics.PromptEvalCount,
Duration: responseMetrics.PromptEvalDuration,
},
{
Model: model,
Step: "generate",
Count: responseMetrics.EvalCount,
Duration: responseMetrics.EvalDuration,
},
{
Model: model,
Step: "load",
Count: 1,
Duration: responseMetrics.LoadDuration,
},
{
Model: model,
Step: "total",
Count: 1,
Duration: responseMetrics.TotalDuration,
},
}
OutputMetrics(out, *fOpt.format, metrics, *fOpt.verbose)
if *fOpt.keepAlive > 0 {
time.Sleep(time.Duration(*fOpt.keepAlive*float64(time.Second)) + 200*time.Millisecond)
}
}
}
return nil
}
func readImage(filePath string) (api.ImageData, error) {
file, err := os.Open(filePath)
if err != nil {
return nil, err
}
defer file.Close()
data, err := io.ReadAll(file)
if err != nil {
return nil, err
}
return api.ImageData(data), nil
}
func main() {
fOpt := flagOptions{
models: flag.String("model", "", "Model to benchmark"),
epochs: flag.Int("epochs", 6, "Number of epochs (iterations) per model"),
maxTokens: flag.Int("max-tokens", 200, "Maximum tokens for model response"),
temperature: flag.Float64("temperature", 0, "Temperature parameter"),
seed: flag.Int("seed", 0, "Random seed"),
timeout: flag.Int("timeout", 60*5, "Timeout in seconds (default 300s)"),
prompt: flag.String("p", DefaultPrompt, "Prompt to use"),
imageFile: flag.String("image", "", "Filename for an image to include"),
keepAlive: flag.Float64("k", 0, "Keep alive duration in seconds"),
format: flag.String("format", "markdown", "Output format [benchstat|csv] (default benchstat)"),
outputFile: flag.String("output", "", "Output file for results (stdout if empty)"),
verbose: flag.Bool("v", false, "Show system information"),
debug: flag.Bool("debug", false, "Show debug information"),
}
flag.Usage = func() {
fmt.Fprintf(os.Stderr, "Usage: %s [OPTIONS]\n\n", os.Args[0])
fmt.Fprintf(os.Stderr, "Description:\n")
fmt.Fprintf(os.Stderr, " Model benchmarking tool with configurable parameters\n\n")
fmt.Fprintf(os.Stderr, "Options:\n")
flag.PrintDefaults()
fmt.Fprintf(os.Stderr, "\nExamples:\n")
fmt.Fprintf(os.Stderr, " bench -model gpt-oss:20b -epochs 3 -temperature 0.7\n")
}
flag.Parse()
if !slices.Contains([]string{"markdown", "benchstat", "csv"}, *fOpt.format) {
fmt.Fprintf(os.Stderr, "ERROR: Unknown format '%s'\n", *fOpt.format)
os.Exit(1)
}
if len(*fOpt.models) == 0 {
fmt.Fprintf(os.Stderr, "ERROR: No model(s) specified to benchmark.\n")
flag.Usage()
return
}
BenchmarkChat(fOpt)
}

View File

@ -1,463 +0,0 @@
package main
import (
"bytes"
"crypto/rand"
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"os"
"strings"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func createTestFlagOptions() flagOptions {
models := "test-model"
format := "benchstat"
epochs := 1
maxTokens := 100
temperature := 0.7
seed := 42
timeout := 30
prompt := "test prompt"
imageFile := ""
keepAlive := 5.0
verbose := false
debug := false
return flagOptions{
models: &models,
format: &format,
epochs: &epochs,
maxTokens: &maxTokens,
temperature: &temperature,
seed: &seed,
timeout: &timeout,
prompt: &prompt,
imageFile: &imageFile,
keepAlive: &keepAlive,
verbose: &verbose,
debug: &debug,
}
}
func captureOutput(f func()) string {
oldStdout := os.Stdout
oldStderr := os.Stderr
defer func() {
os.Stdout = oldStdout
os.Stderr = oldStderr
}()
r, w, _ := os.Pipe()
os.Stdout = w
os.Stderr = w
f()
w.Close()
var buf bytes.Buffer
io.Copy(&buf, r)
return buf.String()
}
func createMockOllamaServer(t *testing.T, responses []api.ChatResponse) *httptest.Server {
return httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/api/chat" {
t.Errorf("Expected path /api/chat, got %s", r.URL.Path)
http.Error(w, "Not found", http.StatusNotFound)
return
}
if r.Method != "POST" {
t.Errorf("Expected POST method, got %s", r.Method)
http.Error(w, "Method not allowed", http.StatusMethodNotAllowed)
return
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusOK)
for _, resp := range responses {
jsonData, err := json.Marshal(resp)
if err != nil {
t.Errorf("Failed to marshal response: %v", err)
return
}
w.Write(jsonData)
w.Write([]byte("\n"))
if f, ok := w.(http.Flusher); ok {
f.Flush()
}
time.Sleep(10 * time.Millisecond) // Simulate some delay
}
}))
}
func TestBenchmarkChat_Success(t *testing.T) {
fOpt := createTestFlagOptions()
mockResponses := []api.ChatResponse{
{
Model: "test-model",
Message: api.Message{
Role: "assistant",
Content: "test response part 1",
},
Done: false,
},
{
Model: "test-model",
Message: api.Message{
Role: "assistant",
Content: "test response part 2",
},
Done: true,
Metrics: api.Metrics{
PromptEvalCount: 10,
PromptEvalDuration: 100 * time.Millisecond,
EvalCount: 50,
EvalDuration: 500 * time.Millisecond,
TotalDuration: 600 * time.Millisecond,
LoadDuration: 50 * time.Millisecond,
},
},
}
server := createMockOllamaServer(t, mockResponses)
defer server.Close()
t.Setenv("OLLAMA_HOST", server.URL)
output := captureOutput(func() {
err := BenchmarkChat(fOpt)
if err != nil {
t.Errorf("Expected no error, got %v", err)
}
})
if !strings.Contains(output, "BenchmarkModel/name=test-model/step=prefill") {
t.Errorf("Expected output to contain prefill metrics, got: %s", output)
}
if !strings.Contains(output, "BenchmarkModel/name=test-model/step=generate") {
t.Errorf("Expected output to contain generate metrics, got: %s", output)
}
if !strings.Contains(output, "ns/token") {
t.Errorf("Expected output to contain ns/token metric, got: %s", output)
}
}
func TestBenchmarkChat_ServerError(t *testing.T) {
fOpt := createTestFlagOptions()
server := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
http.Error(w, "Internal server error", http.StatusInternalServerError)
}))
defer server.Close()
t.Setenv("OLLAMA_HOST", server.URL)
output := captureOutput(func() {
err := BenchmarkChat(fOpt)
if err != nil {
t.Errorf("Expected error to be handled internally, got returned error: %v", err)
}
})
if !strings.Contains(output, "ERROR: Couldn't chat with model") {
t.Errorf("Expected error message about chat failure, got: %s", output)
}
}
func TestBenchmarkChat_Timeout(t *testing.T) {
fOpt := createTestFlagOptions()
shortTimeout := 1 // Very short timeout
fOpt.timeout = &shortTimeout
server := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
// Simulate a long delay that will cause timeout
time.Sleep(2 * time.Second)
w.Header().Set("Content-Type", "application/json")
response := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
Content: "test response",
},
Done: true,
Metrics: api.Metrics{
PromptEvalCount: 10,
PromptEvalDuration: 100 * time.Millisecond,
EvalCount: 50,
EvalDuration: 500 * time.Millisecond,
TotalDuration: 600 * time.Millisecond,
LoadDuration: 50 * time.Millisecond,
},
}
jsonData, _ := json.Marshal(response)
w.Write(jsonData)
}))
defer server.Close()
t.Setenv("OLLAMA_HOST", server.URL)
output := captureOutput(func() {
err := BenchmarkChat(fOpt)
if err != nil {
t.Errorf("Expected timeout to be handled internally, got returned error: %v", err)
}
})
if !strings.Contains(output, "ERROR: Chat request timed out") {
t.Errorf("Expected timeout error message, got: %s", output)
}
}
func TestBenchmarkChat_NoMetrics(t *testing.T) {
fOpt := createTestFlagOptions()
mockResponses := []api.ChatResponse{
{
Model: "test-model",
Message: api.Message{
Role: "assistant",
Content: "test response",
},
Done: false, // Never sends Done=true
},
}
server := createMockOllamaServer(t, mockResponses)
defer server.Close()
t.Setenv("OLLAMA_HOST", server.URL)
output := captureOutput(func() {
err := BenchmarkChat(fOpt)
if err != nil {
t.Errorf("Expected no error, got %v", err)
}
})
if !strings.Contains(output, "ERROR: No metrics received") {
t.Errorf("Expected no metrics error message, got: %s", output)
}
}
func TestBenchmarkChat_MultipleModels(t *testing.T) {
fOpt := createTestFlagOptions()
models := "model1,model2"
epochs := 2
fOpt.models = &models
fOpt.epochs = &epochs
callCount := 0
server := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
callCount++
w.Header().Set("Content-Type", "application/json")
var req api.ChatRequest
body, _ := io.ReadAll(r.Body)
json.Unmarshal(body, &req)
response := api.ChatResponse{
Model: req.Model,
Message: api.Message{
Role: "assistant",
Content: "test response for " + req.Model,
},
Done: true,
Metrics: api.Metrics{
PromptEvalCount: 10,
PromptEvalDuration: 100 * time.Millisecond,
EvalCount: 50,
EvalDuration: 500 * time.Millisecond,
TotalDuration: 600 * time.Millisecond,
LoadDuration: 50 * time.Millisecond,
},
}
jsonData, _ := json.Marshal(response)
w.Write(jsonData)
}))
defer server.Close()
t.Setenv("OLLAMA_HOST", server.URL)
output := captureOutput(func() {
err := BenchmarkChat(fOpt)
if err != nil {
t.Errorf("Expected no error, got %v", err)
}
})
// Should be called 4 times (2 models × 2 epochs)
if callCount != 4 {
t.Errorf("Expected 4 API calls, got %d", callCount)
}
if !strings.Contains(output, "BenchmarkModel/name=model1") || !strings.Contains(output, "BenchmarkModel/name=model2") {
t.Errorf("Expected output for both models, got: %s", output)
}
}
func TestBenchmarkChat_WithImage(t *testing.T) {
fOpt := createTestFlagOptions()
tmpfile, err := os.CreateTemp(t.TempDir(), "testimage")
if err != nil {
t.Fatalf("Failed to create temp file: %v", err)
}
defer os.Remove(tmpfile.Name())
content := []byte("fake image data")
if _, err := tmpfile.Write(content); err != nil {
t.Fatalf("Failed to write to temp file: %v", err)
}
tmpfile.Close()
tmpfileName := tmpfile.Name()
fOpt.imageFile = &tmpfileName
server := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
// Verify the request contains image data
var req api.ChatRequest
body, _ := io.ReadAll(r.Body)
json.Unmarshal(body, &req)
if len(req.Messages) == 0 || len(req.Messages[0].Images) == 0 {
t.Error("Expected request to contain images")
}
w.Header().Set("Content-Type", "application/json")
response := api.ChatResponse{
Model: "test-model",
Message: api.Message{
Role: "assistant",
Content: "test response with image",
},
Done: true,
Metrics: api.Metrics{
PromptEvalCount: 10,
PromptEvalDuration: 100 * time.Millisecond,
EvalCount: 50,
EvalDuration: 500 * time.Millisecond,
TotalDuration: 600 * time.Millisecond,
LoadDuration: 50 * time.Millisecond,
},
}
jsonData, _ := json.Marshal(response)
w.Write(jsonData)
}))
defer server.Close()
t.Setenv("OLLAMA_HOST", server.URL)
output := captureOutput(func() {
err := BenchmarkChat(fOpt)
if err != nil {
t.Errorf("Expected no error, got %v", err)
}
})
if !strings.Contains(output, "BenchmarkModel/name=test-model") {
t.Errorf("Expected benchmark output, got: %s", output)
}
}
func TestBenchmarkChat_ImageError(t *testing.T) {
randFileName := func() string {
const charset = "abcdefghijklmnopqrstuvwxyz0123456789"
const length = 8
result := make([]byte, length)
rand.Read(result) // Fill with random bytes
for i := range result {
result[i] = charset[result[i]%byte(len(charset))]
}
return string(result) + ".txt"
}
fOpt := createTestFlagOptions()
imageFile := randFileName()
fOpt.imageFile = &imageFile
output := captureOutput(func() {
err := BenchmarkChat(fOpt)
if err == nil {
t.Error("Expected error from image reading, got nil")
}
})
if !strings.Contains(output, "ERROR: Couldn't read image") {
t.Errorf("Expected image read error message, got: %s", output)
}
}
func TestReadImage_Success(t *testing.T) {
tmpfile, err := os.CreateTemp(t.TempDir(), "testimage")
if err != nil {
t.Fatalf("Failed to create temp file: %v", err)
}
defer os.Remove(tmpfile.Name())
content := []byte("fake image data")
if _, err := tmpfile.Write(content); err != nil {
t.Fatalf("Failed to write to temp file: %v", err)
}
tmpfile.Close()
imgData, err := readImage(tmpfile.Name())
if err != nil {
t.Errorf("Expected no error, got %v", err)
}
if imgData == nil {
t.Error("Expected image data, got nil")
}
expected := api.ImageData(content)
if string(imgData) != string(expected) {
t.Errorf("Expected image data %v, got %v", expected, imgData)
}
}
func TestReadImage_FileNotFound(t *testing.T) {
imgData, err := readImage("nonexistentfile.jpg")
if err == nil {
t.Error("Expected error for non-existent file, got nil")
}
if imgData != nil {
t.Error("Expected nil image data for non-existent file")
}
}
func TestOptionsMapCreation(t *testing.T) {
fOpt := createTestFlagOptions()
options := make(map[string]interface{})
if *fOpt.maxTokens > 0 {
options["num_predict"] = *fOpt.maxTokens
}
options["temperature"] = *fOpt.temperature
if fOpt.seed != nil && *fOpt.seed > 0 {
options["seed"] = *fOpt.seed
}
if options["num_predict"] != *fOpt.maxTokens {
t.Errorf("Expected num_predict %d, got %v", *fOpt.maxTokens, options["num_predict"])
}
if options["temperature"] != *fOpt.temperature {
t.Errorf("Expected temperature %f, got %v", *fOpt.temperature, options["temperature"])
}
if options["seed"] != *fOpt.seed {
t.Errorf("Expected seed %d, got %v", *fOpt.seed, options["seed"])
}
}

View File

@ -45,7 +45,6 @@ import (
"github.com/ollama/ollama/types/model" "github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/types/syncmap" "github.com/ollama/ollama/types/syncmap"
"github.com/ollama/ollama/version" "github.com/ollama/ollama/version"
xcmd "github.com/ollama/ollama/x/cmd"
) )
const ConnectInstructions = "To sign in, navigate to:\n %s\n\n" const ConnectInstructions = "To sign in, navigate to:\n %s\n\n"
@ -518,9 +517,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
return generateEmbedding(cmd, name, opts.Prompt, opts.KeepAlive, truncate, dimensions) return generateEmbedding(cmd, name, opts.Prompt, opts.KeepAlive, truncate, dimensions)
} }
// Check for experimental flag
isExperimental, _ := cmd.Flags().GetBool("experimental")
if interactive { if interactive {
if err := loadOrUnloadModel(cmd, &opts); err != nil { if err := loadOrUnloadModel(cmd, &opts); err != nil {
var sErr api.AuthorizationError var sErr api.AuthorizationError
@ -547,11 +543,6 @@ func RunHandler(cmd *cobra.Command, args []string) error {
} }
} }
// Use experimental agent loop with
if isExperimental {
return xcmd.GenerateInteractive(cmd, opts.Model, opts.WordWrap, opts.Options, opts.Think, opts.HideThinking, opts.KeepAlive)
}
return generateInteractive(cmd, opts) return generateInteractive(cmd, opts)
} }
return generate(cmd, opts) return generate(cmd, opts)
@ -952,9 +943,6 @@ func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize}) rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize})
} }
rows = append(rows, []string{"", "quantization", resp.Details.QuantizationLevel}) rows = append(rows, []string{"", "quantization", resp.Details.QuantizationLevel})
if resp.Requires != "" {
rows = append(rows, []string{"", "requires", resp.Requires})
}
return return
}) })
@ -1442,7 +1430,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
latest.Summary() latest.Summary()
} }
return &api.Message{Role: role, Thinking: thinkingContent.String(), Content: fullResponse.String()}, nil return &api.Message{Role: role, Content: fullResponse.String()}, nil
} }
func generate(cmd *cobra.Command, opts runOptions) error { func generate(cmd *cobra.Command, opts runOptions) error {
@ -1763,7 +1751,6 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)") runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)")
runCmd.Flags().Bool("truncate", false, "For embedding models: truncate inputs exceeding context length (default: true). Set --truncate=false to error instead") runCmd.Flags().Bool("truncate", false, "For embedding models: truncate inputs exceeding context length (default: true). Set --truncate=false to error instead")
runCmd.Flags().Int("dimensions", 0, "Truncate output embeddings to specified dimension (embedding models only)") runCmd.Flags().Int("dimensions", 0, "Truncate output embeddings to specified dimension (embedding models only)")
runCmd.Flags().Bool("experimental", false, "Enable experimental agent loop with tools")
stopCmd := &cobra.Command{ stopCmd := &cobra.Command{
Use: "stop MODEL", Use: "stop MODEL",

View File

@ -291,31 +291,6 @@ Weigh anchor!
t.Errorf("unexpected output (-want +got):\n%s", diff) t.Errorf("unexpected output (-want +got):\n%s", diff)
} }
}) })
t.Run("min version", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
Requires: "0.14.0",
}, false, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
requires 0.14.0
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
} }
func TestDeleteHandler(t *testing.T) { func TestDeleteHandler(t *testing.T) {

View File

@ -40,7 +40,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /bye Exit") fmt.Fprintln(os.Stderr, " /bye Exit")
fmt.Fprintln(os.Stderr, " /?, /help Help for a command") fmt.Fprintln(os.Stderr, " /?, /help Help for a command")
fmt.Fprintln(os.Stderr, " /? shortcuts Help for keyboard shortcuts") fmt.Fprintln(os.Stderr, " /? shortcuts Help for keyboard shortcuts")
fmt.Fprintln(os.Stderr, "") fmt.Fprintln(os.Stderr, "")
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.") fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")

View File

@ -182,8 +182,6 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &llama4Model{} conv = &llama4Model{}
case "Mistral3ForConditionalGeneration": case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{} conv = &mistral3Model{}
case "Ministral3ForCausalLM":
conv = &mistral3CausalModel{}
case "MixtralForCausalLM": case "MixtralForCausalLM":
conv = &mixtralModel{} conv = &mixtralModel{}
case "GemmaForCausalLM": case "GemmaForCausalLM":
@ -202,20 +200,12 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &qwen25VLModel{} conv = &qwen25VLModel{}
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration": case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
conv = &qwen3VLModel{} conv = &qwen3VLModel{}
case "Olmo3ForCausalLM":
conv = &olmoModel{}
case "BertModel": case "BertModel":
conv = &bertModel{} conv = &bertModel{}
case "NomicBertModel", "NomicBertMoEModel":
conv = &nomicbertModel{}
case "CohereForCausalLM": case "CohereForCausalLM":
conv = &commandrModel{} conv = &commandrModel{}
case "GptOssForCausalLM": case "GptOssForCausalLM":
conv = &gptossModel{} conv = &gptossModel{}
case "DeepseekOCRForCausalLM":
conv = &deepseekocr{}
case "DeepseekV3ForCausalLM":
conv = &deepseek2Model{}
default: default:
return fmt.Errorf("unsupported architecture %q", p.Architectures[0]) return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
} }

View File

@ -1,173 +0,0 @@
package convert
import (
"cmp"
"fmt"
"log/slog"
"regexp"
"strconv"
"github.com/ollama/ollama/fs/ggml"
)
type deepseek2Model struct {
ModelParameters // architectures, vocab_size
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
QKNopeHeadDim uint32 `json:"qk_nope_head_dim"`
QKRopeHeadDim uint32 `json:"qk_rope_head_dim"`
KVLoraRank uint32 `json:"kv_lora_rank"`
QLoraRank uint32 `json:"q_lora_rank"`
VHeadDim uint32 `json:"v_head_dim"`
ExpertCount uint32 `json:"n_routed_experts"`
ExpertSharedCount uint32 `json:"n_shared_experts"`
ExpertIntermediateSize uint32 `json:"moe_intermediate_size"`
ExpertUsedCount uint32 `json:"num_experts_per_tok"`
ExpertWeightsNorm bool `json:"norm_topk_prob"`
ExpertWeightsScale float32 `json:"routed_scaling_factor"`
ScoringFunc string `json:"scoring_func"`
LeadingDenseBlockCount uint32 `json:"first_k_dense_replace"`
RopeScaling struct {
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
Type string `json:"type"`
MScaleAllDim float32 `json:"mscale_all_dim"`
} `json:"rope_scaling"`
Architecture string
}
func (p *deepseek2Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "deepseek2"
kv["general.type"] = "model"
kv["deepseek2.block_count"] = p.HiddenLayers
numHeads := p.NumAttentionHeads
numKVHeads := p.NumKeyValueHeads
kv["deepseek2.attention.head_count"] = numHeads
kv["deepseek2.attention.head_count_kv"] = numKVHeads
kv["deepseek2.attention.key_length"] = p.QKNopeHeadDim + p.QKRopeHeadDim
kv["deepseek2.attention.kv_lora_rank"] = p.KVLoraRank
kv["deepseek2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["deepseek2.attention.q_lora_rank"] = p.QLoraRank
kv["deepseek2.attention.value_length"] = p.VHeadDim
kv["deepseek2.context_length"] = p.MaxPositionEmbeddings
kv["deepseek2.embedding_length"] = p.HiddenSize
kv["deepseek2.expert_count"] = p.ExpertCount
kv["deepseek2.expert_feed_forward_length"] = p.ExpertIntermediateSize
kv["deepseek2.expert_shared_count"] = p.ExpertSharedCount
var scoringFunc uint32
switch p.ScoringFunc {
case "softmax":
// not currently supported in the model, but needed for Deepseek-OCR
scoringFunc = 1
case "sigmoid":
scoringFunc = 2
}
kv["deepseek2.expert_gating_func"] = scoringFunc
kv["deepseek2.expert_used_count"] = p.ExpertUsedCount
kv["deepseek2.expert_weights_norm"] = p.ExpertWeightsNorm
kv["deepseek2.expert_weights_scale"] = p.ExpertWeightsScale
kv["deepseek2.feed_forward_length"] = p.IntermediateSize
kv["deepseek2.leading_dense_block_count"] = p.LeadingDenseBlockCount
kv["deepseek2.rope.dimension_count"] = p.QKRopeHeadDim
kv["deepseek2.rope.freq_base"] = cmp.Or(p.RopeTheta, 10000.0)
kv["deepseek2.rope.scaling.factor"] = p.RopeScaling.Factor
kv["deepseek2.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeddings
kv["deepseek2.rope.scaling.type"] = p.RopeScaling.Type
kv["deepseek2.rope.scaling.yarn_log_multiplier"] = 0.1 * p.RopeScaling.MScaleAllDim
kv["tokenizer.ggml.pre"] = "deepseek-v3"
return kv
}
func (p *deepseek2Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"language_model.", "",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.kv_a_proj_with_mqa", "attn_kv_a_mqa",
"self_attn.kv_a_layernorm", "attn_kv_a_norm",
"self_attn.kv_b_proj", "attn_kv_b",
"self_attn.q_a_proj", "attn_q_a",
"self_attn.q_a_layernorm", "attn_q_a_norm",
"self_attn.q_b_proj", "attn_q_b",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "ffn_norm",
"mlp.shared_experts.down_proj", "ffn_down_shexp",
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
"mlp.shared_experts.up_proj", "ffn_up_shexp",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"mlp.gate.e_score_correction_bias", "exp_probs_b.bias",
"mlp.gate", "ffn_gate_inp",
}
}
func (p *deepseek2Model) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, p.HiddenLayers*3)
for i := range p.HiddenLayers {
merges[i*3+0] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}
merges[i*3+1] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}
merges[i*3+2] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}
}
skipLayer := func(n string, minValue uint32) bool {
re := regexp.MustCompile(`^blk\.(\d+)`)
matches := re.FindStringSubmatch(n)
if matches == nil {
return false
}
blkNum, err := strconv.Atoi(matches[1])
if err != nil {
return false
}
return uint32(blkNum) >= minValue
}
out, s = mergeTensors(s, merges...)
for _, t := range s {
// skip any additional layers (such as the Multi-Token Prediction layer)
if skipLayer(t.Name(), p.HiddenLayers) {
slog.Debug("skipping layer", "name", t.Name())
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}

View File

@ -1,136 +0,0 @@
package convert
import (
"fmt"
"github.com/ollama/ollama/fs/ggml"
)
type deepseekocr struct {
ModelParameters
LanguageConfig struct {
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
NumRoutedExperts uint32 `json:"n_routed_experts"`
NumSharedExperts uint32 `json:"n_shared_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
FirstKDenseReplace uint32 `json:"first_k_dense_replace"`
} `json:"language_config"`
VisionConfig struct {
ImageSize uint32 `json:"image_size"`
Width struct {
Vision struct {
Heads uint32 `json:"heads"`
ImageSize uint32 `json:"image_size"`
Layers uint32 `json:"layers"`
PatchSize uint32 `json:"patch_size"`
Width uint32 `json:"width"`
} `json:"clip-l-14-224"`
Sam struct {
GlobalAttentionIndexes []int32 `json:"global_attn_indexes"`
Heads uint32 `json:"heads"`
Layers uint32 `json:"layers"`
Width uint32 `json:"width"`
} `json:"sam_vit_b"`
}
} `json:"vision_config"`
}
func (m *deepseekocr) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "deepseekocr"
kv["block_count"] = m.LanguageConfig.HiddenLayers
kv["context_length"] = m.LanguageConfig.MaxPositionEmbeddings
kv["embedding_length"] = m.LanguageConfig.HiddenSize
kv["feed_forward_length"] = m.LanguageConfig.IntermediateSize
kv["attention.head_count"] = m.LanguageConfig.NumAttentionHeads
kv["attention.head_count_kv"] = m.LanguageConfig.NumKeyValueHeads
kv["expert_count"] = m.LanguageConfig.NumRoutedExperts
kv["expert_used_count"] = m.LanguageConfig.NumExpertsPerToken
kv["leading_dense_block_count"] = m.LanguageConfig.FirstKDenseReplace
kv["vision.block_count"] = m.VisionConfig.Width.Vision.Layers
kv["vision.embedding_length"] = m.VisionConfig.Width.Vision.Width
kv["vision.head_count"] = m.VisionConfig.Width.Vision.Heads
kv["vision.image_size"] = m.VisionConfig.Width.Vision.ImageSize
kv["vision.patch_size"] = m.VisionConfig.Width.Vision.PatchSize
kv["sam.block_count"] = m.VisionConfig.Width.Sam.Layers
kv["sam.embedding_length"] = m.VisionConfig.Width.Sam.Width
kv["sam.head_count"] = m.VisionConfig.Width.Sam.Heads
kv["sam.global_attention_indexes"] = m.VisionConfig.Width.Sam.GlobalAttentionIndexes
return kv
}
func (m *deepseekocr) Tensors(s []Tensor) (out []*ggml.Tensor) {
merges := make([]merge, m.LanguageConfig.HiddenLayers*3)
for i := range m.LanguageConfig.HiddenLayers {
merges[i*3+0] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}
merges[i*3+1] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}
merges[i*3+2] = merge{
fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}
}
out, s = mergeTensors(s, merges...)
for _, t := range s {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (m *deepseekocr) Replacements() []string {
return []string{
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "ffn_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"mlp.down_proj", "ffn_down",
"mlp.gate", "ffn_gate_inp",
"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
"mlp.shared_experts.up_proj", "ffn_up_shexp",
"mlp.shared_experts.down_proj", "ffn_down_shexp",
"model.norm", "output_norm",
"lm_head", "output",
"model.vision_model", "v",
"embeddings.patch_embedding", "patch_embd",
"embeddings.class_embedding", "class_embd",
"embeddings.position_embedding", "position_embd",
"transformer.layers", "blk",
"model.projector", "mm",
"model.image_newline", "mm.image_newline",
//nolint:misspell // this misspelling is upstream. fixing it breaks the model
"model.view_seperator", "mm.view_seperator",
"model.sam_model.patch_embed.proj", "s.patch_embd",
"model.sam_model.pos_embed", "s.position_embd",
"model.sam_model.blocks", "s.blk",
"model.sam_model.neck", "s.neck",
"model.sam_model.net_", "s.net_",
}
}

View File

@ -2,7 +2,6 @@ package convert
import ( import (
"cmp" "cmp"
"slices"
"github.com/ollama/ollama/fs/ggml" "github.com/ollama/ollama/fs/ggml"
) )
@ -27,26 +26,16 @@ type gemma3Model struct {
NumChannels uint32 `json:"num_channels"` // num_channels 3 NumChannels uint32 `json:"num_channels"` // num_channels 3
PatchSize uint32 `json:"patch_size"` // patch_size 14 PatchSize uint32 `json:"patch_size"` // patch_size 14
} `json:"vision_config"` } `json:"vision_config"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"` NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"` NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"` RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"` HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"` FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"` RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeTheta float32 `json:"rope_theta"` RopeGlobalTheta float32 `json:"rope_global_base_freq"`
SlidingWindow uint32 `json:"sliding_window"` SlidingWindow uint32 `json:"sliding_window"`
SlidingWindowPattern *uint32 `json:"sliding_window_pattern"` MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
LayerTypes []string `json:"layer_types"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
RopeScaling *struct {
Type string `json:"rope_type"`
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
ExtrapolationFactor float32 `json:"extrapolation_factor"`
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
} `json:"rope_scaling"`
} }
const ( const (
@ -92,38 +81,9 @@ func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
kv["gemma3.attention.key_length"] = p.HeadDim kv["gemma3.attention.key_length"] = p.HeadDim
kv["gemma3.attention.value_length"] = p.HeadDim kv["gemma3.attention.value_length"] = p.HeadDim
kv["gemma3.attention.sliding_window"] = p.SlidingWindow kv["gemma3.attention.sliding_window"] = p.SlidingWindow
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
// The sliding window pattern is either provided as the sliding_window_pattern
// key (an int) or as the layer_types key (a list of strings).
if p.SlidingWindowPattern != nil || len(p.LayerTypes) > 0 {
kv["gemma3.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
for i := range numBlocks {
var isLocal bool
if len(p.LayerTypes) > 0 && int(i) < len(p.LayerTypes) {
isLocal = p.LayerTypes[i] == "sliding_attention"
} else if p.SlidingWindowPattern != nil && *p.SlidingWindowPattern > 0 {
isLocal = (i+1)%*p.SlidingWindowPattern != 0
}
if !yield(isLocal) {
break
}
}
})
}
if p.FinalLogitSoftcap > 0 {
kv["gemma3.final_logit_softcapping"] = p.FinalLogitSoftcap
}
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0) kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
kv["gemma3.rope.freq_base"] = cmp.Or(p.RopeTheta, 1000000.0) kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
if p.RopeScaling != nil && p.RopeScaling.Type == "yarn" && p.RopeScaling.Factor > 0 {
kv["gemma3.rope.scaling.type"] = "yarn"
kv["gemma3.rope.scaling.factor"] = p.RopeScaling.Factor
kv["gemma3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeddings
kv["gemma3.rope.scaling.extrapolation_factor"] = cmp.Or(p.RopeScaling.ExtrapolationFactor, float32(1.0))
kv["gemma3.rope.scaling.beta_fast"] = cmp.Or(p.RopeScaling.BetaFast, float32(64.0))
kv["gemma3.rope.scaling.beta_slow"] = cmp.Or(p.RopeScaling.BetaSlow, float32(1.0))
}
kv["gemma3.embedding_length"] = p.HiddenSize kv["gemma3.embedding_length"] = p.HiddenSize
kv["gemma3.feed_forward_length"] = p.IntermediateSize kv["gemma3.feed_forward_length"] = p.IntermediateSize
default: default:

View File

@ -29,17 +29,6 @@ type mistral3Model struct {
SlidingWindow *uint32 `json:"sliding_window"` SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"` HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"` VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
} `json:"text_config"` } `json:"text_config"`
VisionModel struct { VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"` NumAttentionHeads uint32 `json:"num_attention_heads"`
@ -52,9 +41,6 @@ type mistral3Model struct {
HeadDim uint32 `json:"head_dim"` HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"` HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"` RopeTheta float32 `json:"rope_theta"`
RopeParameters struct {
RopeTheta float32 `json:"rope_theta"`
} `json:"rope_parameters"`
} `json:"vision_config"` } `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"` MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"` ProjectorHiddenAct string `json:"projector_hidden_act"`
@ -75,25 +61,8 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = cmp.Or(p.TextModel.HeadDim, p.TextModel.HiddenSize/p.TextModel.NumAttentionHeads) kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
kv["mistral3.rope.freq_base"] = cmp.Or(p.TextModel.RopeTheta, p.TextModel.RopeParameters.RopeTheta) kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
kv["mistral3.rope.scaling.factor"] = p.TextModel.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.TextModel.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.TextModel.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.TextModel.RopeParameters.BetaSlow
if p.TextModel.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.TextModel.RopeParameters.Mscale
}
if p.TextModel.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.TextModel.RopeParameters.MscaleAllDim
}
if p.TextModel.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.TextModel.RopeParameters.OrigMaxPositionEmbeddings
}
if p.TextModel.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.TextModel.RopeParameters.Llama4ScalingBeta
}
// Vision configuration // Vision configuration
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
@ -105,7 +74,7 @@ func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value // kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = cmp.Or(p.VisionModel.RopeTheta, p.VisionModel.RopeParameters.RopeTheta) kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
// Multimodal configuration // Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex kv["mistral3.image_token_index"] = p.ImageTokenIndex

View File

@ -1,181 +0,0 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3CausalModel struct {
ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
RopeParameters struct {
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
Factor float32 `json:"factor"`
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
RopeType string `json:"rope_type"`
RopeTheta float32 `json:"rope_theta"`
Mscale *float32 `json:"mscale"`
MscaleAllDim *float32 `json:"mscale_all_dim"`
} `json:"rope_parameters"`
}
func (p *mistral3CausalModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.NumHiddenLayers
kv["mistral3.context_length"] = p.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.HiddenSize
kv["mistral3.feed_forward_length"] = p.IntermediateSize
kv["mistral3.attention.head_count"] = p.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["mistral3.attention.key_length"] = p.HeadDim
kv["mistral3.attention.value_length"] = p.HeadDim
kv["mistral3.rope.dimension_count"] = cmp.Or(p.HeadDim, p.HiddenSize/p.NumAttentionHeads)
kv["mistral3.rope.freq_base"] = cmp.Or(p.RopeTheta, p.RopeParameters.RopeTheta)
kv["mistral3.rope.scaling.factor"] = p.RopeParameters.Factor
kv["mistral3.rope.scaling.type"] = p.RopeParameters.RopeType
kv["mistral3.rope.scaling.beta_fast"] = p.RopeParameters.BetaFast
kv["mistral3.rope.scaling.beta_slow"] = p.RopeParameters.BetaSlow
if p.RopeParameters.Mscale != nil {
kv["mistral3.rope.scaling.mscale"] = *p.RopeParameters.Mscale
}
if p.RopeParameters.MscaleAllDim != nil {
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.RopeParameters.MscaleAllDim
}
if p.RopeParameters.OrigMaxPositionEmbeddings > 0 {
kv["mistral3.rope.scaling.original_context_length"] = p.RopeParameters.OrigMaxPositionEmbeddings
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
if p.RopeParameters.Llama4ScalingBeta != nil {
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
}
return kv
}
func (p *mistral3CausalModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
t.SetRepacker(p.repack)
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3CausalModel) Replacements() []string {
return []string{
"model.norm", "output_norm",
"model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3CausalModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, ".attn_q.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, ".attn_k.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@ -1,213 +0,0 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type nomicbertModel struct {
ModelParameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
RopeFreqBase float32 `json:"rope_theta"`
normalizeEmbeddings bool
PoolingType uint32
// MoE parameters (only present in v2 models)
NumExperts uint32 `json:"num_local_experts"`
NumExpertsUsed uint32 `json:"num_experts_per_tok"`
MoEEveryNLayers uint32 `json:"moe_every_n_layers"`
}
var (
_ ModelConverter = (*nomicbertModel)(nil)
_ moreParser = (*nomicbertModel)(nil)
)
func (p *nomicbertModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "modules.json")
if err != nil {
return err
}
var modules []struct {
Type string `json:"type"`
Path string `json:"path"`
}
if err := json.Unmarshal(bts, &modules); err != nil {
return err
}
var pooling string
for _, m := range modules {
switch m.Type {
case "sentence_transformers.models.Pooling":
pooling = m.Path
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
}
}
if pooling != "" {
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
if err != nil {
return err
}
var pc struct {
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
}
if err := json.Unmarshal(bts, &pc); err != nil {
return err
}
if pc.PoolingModeMeanTokens {
p.PoolingType = 1
} else if pc.PoolingModeCLSToken {
p.PoolingType = 2
}
}
return nil
}
func (p *nomicbertModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
// Determine architecture based on MoE parameters (following qwen3 pattern)
arch := "nomic-bert"
if p.MoEEveryNLayers > 0 {
arch += "-moe"
}
kv["general.architecture"] = arch
kv["attention.causal"] = false
kv["pooling_type"] = p.PoolingType
kv["normalize_embeddings"] = p.normalizeEmbeddings
kv["block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers)
if contextLength := p.MaxPositionEmbeddings; contextLength > 0 {
kv["context_length"] = contextLength
}
if embeddingLength := p.HiddenSize; embeddingLength > 0 {
kv["embedding_length"] = p.HiddenSize
}
if feedForwardLength := p.IntermediateSize; feedForwardLength > 0 {
kv["feed_forward_length"] = p.IntermediateSize
}
if headCount := p.NumAttentionHeads; headCount > 0 {
kv["attention.head_count"] = p.NumAttentionHeads
}
if kvHeadCount := p.NumKeyValueHeads; kvHeadCount > 0 {
kv["attention.head_count_kv"] = p.NumKeyValueHeads
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon); layerNormEpsilon > 0 {
kv["attention.layer_norm_epsilon"] = layerNormEpsilon
}
if p.RopeFreqBase > 0 {
kv["rope.freq_base"] = p.RopeFreqBase
}
// MoE specific parameters (only if MoE is enabled)
if p.NumExperts > 0 {
kv["expert_count"] = p.NumExperts
}
if p.NumExpertsUsed > 0 {
kv["expert_used_count"] = p.NumExpertsUsed
}
if p.MoEEveryNLayers > 0 {
kv["moe_every_n_layers"] = p.MoEEveryNLayers
}
kv["tokenizer.ggml.model"] = "bert"
kv["tokenizer.ggml.token_type_count"] = uint32(2)
// convert to phantom space tokens
for i, e := range t.Tokens {
switch {
case strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]"):
// noop - keep special tokens as-is
case strings.HasPrefix(e, "##"):
t.Tokens[i] = e[2:]
default:
t.Tokens[i] = "\u2581" + e
}
}
kv["tokenizer.ggml.tokens"] = t.Tokens
return kv
}
func (p *nomicbertModel) Tensors(ts []Tensor) []*ggml.Tensor {
out := make([]*ggml.Tensor, 0, len(ts))
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
"pooler.dense.weight",
"pooler.dense.bias",
}, t.Name()) {
continue
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (nomicbertModel) Replacements() []string {
return []string{
"encoder.layer", "blk",
"encoder.layers", "blk",
"embeddings.word_embeddings", "token_embd",
"embeddings.token_type_embeddings", "token_types",
"embeddings.LayerNorm", "token_embd_norm",
"attention.self.qkv", "attn_qkv",
"attention.output.dense", "attn_output",
"attention.output.LayerNorm", "attn_output_norm",
"mlp.up", "ffn_up",
"mlp.down", "ffn_down",
"mlp.router", "ffn_gate_inp",
"mlp.experts.up", "ffn_up_exps",
"mlp.experts.down", "ffn_down_exps",
"intermediate.dense", "ffn_up",
"output.dense", "ffn_down",
"output.LayerNorm", "layer_output_norm",
}
}

View File

@ -1,117 +0,0 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type ropeScaling struct {
Factor float32 `json:"factor"`
OriginalMaxPositionEmbeds uint32 `json:"original_max_position_embeddings"`
AttentionFactor float32 `json:"attention_factor"`
BetaFast float32 `json:"beta_fast"`
BetaSlow float32 `json:"beta_slow"`
RopeType string `json:"rope_type"`
ExtrapolationFactor float32 `json:"extrapolation_factor"`
}
type olmoModel struct {
ModelParameters
HiddenSize uint32 `json:"hidden_size"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling *ropeScaling `json:"rope_scaling"`
SlidingWindow uint32 `json:"sliding_window"`
LayerTypes []string `json:"layer_types"`
}
var _ ModelConverter = (*olmoModel)(nil)
func (p *olmoModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "olmo3"
kv["olmo3.block_count"] = p.NumHiddenLayers
kv["olmo3.context_length"] = p.MaxPositionEmbeddings
kv["olmo3.embedding_length"] = p.HiddenSize
kv["olmo3.feed_forward_length"] = p.IntermediateSize
kv["olmo3.attention.head_count"] = p.NumAttentionHeads
kv["olmo3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
if p.RopeTheta > 0 {
kv["olmo3.rope.freq_base"] = p.RopeTheta
}
if p.RopeScaling != nil {
if p.RopeScaling.Factor > 0 {
kv["olmo3.rope.scaling.factor"] = p.RopeScaling.Factor
}
if p.RopeScaling.OriginalMaxPositionEmbeds > 0 {
kv["olmo3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeds
}
if p.RopeScaling.AttentionFactor > 0 {
kv["olmo3.rope.scaling.attn_factor"] = p.RopeScaling.AttentionFactor
}
if p.RopeScaling.RopeType != "" {
kv["olmo3.rope.scaling.type"] = p.RopeScaling.RopeType
}
}
if p.RMSNormEPS > 0 {
kv["olmo3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
}
if p.SlidingWindow > 0 {
kv["olmo3.attention.sliding_window"] = p.SlidingWindow
}
if len(p.LayerTypes) > 0 {
slidingPattern := make([]bool, len(p.LayerTypes))
for i, layerType := range p.LayerTypes {
slidingPattern[i] = (layerType == "sliding_attention")
}
kv["olmo3.attention.sliding_window_pattern"] = slidingPattern
}
return kv
}
func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor {
out := make([]*ggml.Tensor, 0, len(ts))
for _, t := range ts {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *olmoModel) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"model.norm", "output_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_norm", "attn_k_norm",
"post_attention_layernorm", "post_attention_norm",
"post_feedforward_layernorm", "post_ffw_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
}
}

View File

@ -44,10 +44,7 @@ func (t tensorBase) Kind() uint32 {
t.name == "v.positional_embedding_vlm" || t.name == "v.positional_embedding_vlm" ||
t.name == "v.tile_position_embd.weight" || t.name == "v.tile_position_embd.weight" ||
t.name == "v.pre_tile_position_embd.weight" || t.name == "v.pre_tile_position_embd.weight" ||
t.name == "v.post_tile_position_embd.weight" || t.name == "v.post_tile_position_embd.weight" {
t.name == "s.position_embd" ||
strings.HasSuffix(t.name, "rel_pos_h") ||
strings.HasSuffix(t.name, "rel_pos_w") {
// these tensors are always F32 // these tensors are always F32
return tensorKindFP32 return tensorKindFP32
} }

View File

@ -96,10 +96,7 @@ type safetensor struct {
func (st safetensor) Kind() uint32 { func (st safetensor) Kind() uint32 {
kind := st.tensorBase.Kind() kind := st.tensorBase.Kind()
if st.dtype == "BF16" && if !strings.HasPrefix(st.name, "v.") && st.dtype == "BF16" && kind != tensorKindFP32 {
!strings.HasPrefix(st.name, "v.") &&
!strings.HasPrefix(st.name, "s.") &&
kind != tensorKindFP32 {
kind = tensorKindBF16 kind = tensorKindBF16
} }

View File

@ -49,8 +49,7 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL) tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
// temporary fix to handle gemma3 broken configs // temporary fix to handle gemma3 broken configs
// TODO(parthsareen): allow reading of tokenizer.json to allow managing special tokens when using spm if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>", "<start_function_declaration>", "<end_function_declaration>", "<start_function_call>", "<end_function_call>", "<start_function_response>", "<end_function_response>", "<escape>"}, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL) tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
} }

View File

@ -2,7 +2,6 @@ package discover
import ( import (
"bufio" "bufio"
"errors"
"fmt" "fmt"
"io" "io"
"log/slog" "log/slog"
@ -11,21 +10,12 @@ import (
"reflect" "reflect"
"regexp" "regexp"
"sort" "sort"
"strconv"
"strings" "strings"
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
) )
func GetCPUMem() (memInfo, error) { func GetCPUMem() (memInfo, error) {
mem, err := getCPUMem()
if err != nil {
return memInfo{}, err
}
return getCPUMemByCgroups(mem), nil
}
func getCPUMem() (memInfo, error) {
var mem memInfo var mem memInfo
var total, available, free, buffers, cached, freeSwap uint64 var total, available, free, buffers, cached, freeSwap uint64
f, err := os.Open("/proc/meminfo") f, err := os.Open("/proc/meminfo")
@ -66,32 +56,6 @@ func getCPUMem() (memInfo, error) {
return mem, nil return mem, nil
} }
func getCPUMemByCgroups(mem memInfo) memInfo {
total, err := getUint64ValueFromFile("/sys/fs/cgroup/memory.max")
if err == nil {
mem.TotalMemory = total
}
used, err := getUint64ValueFromFile("/sys/fs/cgroup/memory.current")
if err == nil {
mem.FreeMemory = mem.TotalMemory - used
}
return mem
}
func getUint64ValueFromFile(path string) (uint64, error) {
f, err := os.Open(path)
if err != nil {
return 0, err
}
defer f.Close()
s := bufio.NewScanner(f)
for s.Scan() {
line := s.Text()
return strconv.ParseUint(line, 10, 64)
}
return 0, errors.New("empty file content")
}
const CpuInfoFilename = "/proc/cpuinfo" const CpuInfoFilename = "/proc/cpuinfo"
type linuxCpuInfo struct { type linuxCpuInfo struct {
@ -110,41 +74,7 @@ func GetCPUDetails() []CPU {
return nil return nil
} }
defer file.Close() defer file.Close()
cpus := linuxCPUDetails(file) return linuxCPUDetails(file)
return overwriteThreadCountByLinuxCgroups(cpus)
}
func overwriteThreadCountByLinuxCgroups(cpus []CPU) []CPU {
file, err := os.Open("/sys/fs/cgroup/cpu.max")
if err != nil {
return cpus
}
defer file.Close()
scanner := bufio.NewScanner(file)
for scanner.Scan() {
line := scanner.Text()
if sl := strings.Split(line, " "); len(sl) == 2 {
allowdUs, err := strconv.ParseInt(sl[0], 10, 64)
if err != nil {
slog.Warn("failed to parse CPU allowed micro secs", "error", err)
return cpus
}
unitUs, err := strconv.ParseInt(sl[1], 10, 64)
if err != nil {
slog.Warn("failed to parse CPU unit micro secs", "error", err)
return cpus
}
threads := int(max(allowdUs/unitUs, 1))
cpu := cpus[0]
cpu.CoreCount = threads
cpu.ThreadCount = threads
return []CPU{cpu}
}
}
return cpus
} }
func linuxCPUDetails(file io.Reader) []CPU { func linuxCPUDetails(file io.Reader) []CPU {

View File

@ -65,11 +65,6 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
} }
slog.Info("discovering available GPUs...") slog.Info("discovering available GPUs...")
detectIncompatibleLibraries()
// Warn if any user-overrides are set which could lead to incorrect GPU discovery
overrideWarnings()
requested := envconfig.LLMLibrary() requested := envconfig.LLMLibrary()
jetpack := cudaJetpack() jetpack := cudaJetpack()
@ -95,13 +90,10 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
var dirs []string var dirs []string
if dir != "" { if dir != "" {
if requested != "" && filepath.Base(dir) != requested { if requested != "" && filepath.Base(dir) != requested {
slog.Debug("skipping available library at user's request", "requested", requested, "libDir", dir) slog.Debug("skipping available library at users request", "requested", requested, "libDir", dir)
continue continue
} else if jetpack != "" && filepath.Base(dir) != "cuda_"+jetpack { } else if jetpack != "" && filepath.Base(dir) != "cuda_"+jetpack {
continue continue
} else if jetpack == "" && strings.Contains(filepath.Base(dir), "cuda_jetpack") {
slog.Debug("jetpack not detected (set JETSON_JETPACK or OLLAMA_LLM_LIBRARY to override), skipping", "libDir", dir)
continue
} else if !envconfig.EnableVulkan() && strings.Contains(filepath.Base(dir), "vulkan") { } else if !envconfig.EnableVulkan() && strings.Contains(filepath.Base(dir), "vulkan") {
slog.Info("experimental Vulkan support disabled. To enable, set OLLAMA_VULKAN=1") slog.Info("experimental Vulkan support disabled. To enable, set OLLAMA_VULKAN=1")
continue continue
@ -121,7 +113,7 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
// In the second pass, we more deeply initialize the GPUs to weed out devices that // In the second pass, we more deeply initialize the GPUs to weed out devices that
// aren't supported by a given library. We run this phase in parallel to speed up discovery. // aren't supported by a given library. We run this phase in parallel to speed up discovery.
// Only devices that need verification are included in this pass // Only devices that need verification are included in this pass
slog.Debug("evaluating which, if any, devices to filter out", "initial_count", len(devices)) slog.Debug("evluating which if any devices to filter out", "initial_count", len(devices))
ctx2ndPass, cancel := context.WithTimeout(ctx, 30*time.Second) ctx2ndPass, cancel := context.WithTimeout(ctx, 30*time.Second)
defer cancel() defer cancel()
var wg sync.WaitGroup var wg sync.WaitGroup
@ -129,25 +121,15 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
supportedMu := sync.Mutex{} supportedMu := sync.Mutex{}
supported := make(map[string]map[string]map[string]int) // [Library][libDir][ID] = pre-deletion devices index supported := make(map[string]map[string]map[string]int) // [Library][libDir][ID] = pre-deletion devices index
for i := range devices { for i := range devices {
libDir := devices[i].LibraryPath[len(devices[i].LibraryPath)-1]
if !devices[i].NeedsInitValidation() { if !devices[i].NeedsInitValidation() {
// No need to validate, add to the supported map
supportedMu.Lock()
if _, ok := supported[devices[i].Library]; !ok {
supported[devices[i].Library] = make(map[string]map[string]int)
}
if _, ok := supported[devices[i].Library][libDir]; !ok {
supported[devices[i].Library][libDir] = make(map[string]int)
}
supported[devices[i].Library][libDir][devices[i].ID] = i
supportedMu.Unlock()
continue continue
} }
slog.Debug("verifying if device is supported", "library", libDir, "description", devices[i].Description, "compute", devices[i].Compute(), "id", devices[i].ID, "pci_id", devices[i].PCIID) libDir := devices[i].LibraryPath[len(devices[i].LibraryPath)-1]
slog.Debug("verifying device is supported", "library", libDir, "description", devices[i].Description, "compute", devices[i].Compute(), "id", devices[i].ID, "pci_id", devices[i].PCIID)
wg.Add(1) wg.Add(1)
go func(i int) { go func(i int) {
defer wg.Done() defer wg.Done()
extraEnvs := ml.GetVisibleDevicesEnv(devices[i:i+1], true) extraEnvs := ml.GetVisibleDevicesEnv(devices[i : i+1])
devices[i].AddInitValidation(extraEnvs) devices[i].AddInitValidation(extraEnvs)
if len(bootstrapDevices(ctx2ndPass, devices[i].LibraryPath, extraEnvs)) == 0 { if len(bootstrapDevices(ctx2ndPass, devices[i].LibraryPath, extraEnvs)) == 0 {
slog.Debug("filtering device which didn't fully initialize", slog.Debug("filtering device which didn't fully initialize",
@ -333,8 +315,7 @@ func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.
defer cancel() defer cancel()
// Apply any dev filters to avoid re-discovering unsupported devices, and get IDs correct // Apply any dev filters to avoid re-discovering unsupported devices, and get IDs correct
// We avoid CUDA filters here to keep ROCm from failing to discover GPUs in a mixed environment devFilter := ml.GetVisibleDevicesEnv(devices)
devFilter := ml.GetVisibleDevicesEnv(devices, false)
for dir := range libDirs { for dir := range libDirs {
updatedDevices := bootstrapDevices(ctx, []string{ml.LibOllamaPath, dir}, devFilter) updatedDevices := bootstrapDevices(ctx, []string{ml.LibOllamaPath, dir}, devFilter)
@ -468,37 +449,3 @@ func bootstrapDevices(ctx context.Context, ollamaLibDirs []string, extraEnvs map
return devices return devices
} }
func overrideWarnings() {
anyFound := false
m := envconfig.AsMap()
for _, k := range []string{
"CUDA_VISIBLE_DEVICES",
"HIP_VISIBLE_DEVICES",
"ROCR_VISIBLE_DEVICES",
"GGML_VK_VISIBLE_DEVICES",
"GPU_DEVICE_ORDINAL",
"HSA_OVERRIDE_GFX_VERSION",
} {
if e, found := m[k]; found && e.Value != "" {
anyFound = true
slog.Warn("user overrode visible devices", k, e.Value)
}
}
if anyFound {
slog.Warn("if GPUs are not correctly discovered, unset and try again")
}
}
func detectIncompatibleLibraries() {
if runtime.GOOS != "windows" {
return
}
basePath, err := exec.LookPath("ggml-base.dll")
if err != nil || basePath == "" {
return
}
if !strings.HasPrefix(basePath, ml.LibOllamaPath) {
slog.Warn("potentially incompatible library detected in PATH", "location", basePath)
}
}

View File

@ -50,7 +50,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
Advanced parameters (optional): Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema - `format`: the format to return a response in. Format can be `json` or a JSON schema
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature` - `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `system`: system message to (overrides what is defined in the `Modelfile`) - `system`: system message to (overrides what is defined in the `Modelfile`)
- `template`: the prompt template to use (overrides what is defined in the `Modelfile`) - `template`: the prompt template to use (overrides what is defined in the `Modelfile`)
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects - `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
@ -507,7 +507,7 @@ The `message` object has the following fields:
Advanced parameters (optional): Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema. - `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature` - `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects - `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`) - `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
@ -895,11 +895,11 @@ curl http://localhost:11434/api/chat -d '{
"tool_calls": [ "tool_calls": [
{ {
"function": { "function": {
"name": "get_weather", "name": "get_temperature",
"arguments": { "arguments": {
"city": "Toronto" "city": "Toronto"
} }
} },
} }
] ]
}, },
@ -907,7 +907,7 @@ curl http://localhost:11434/api/chat -d '{
{ {
"role": "tool", "role": "tool",
"content": "11 degrees celsius", "content": "11 degrees celsius",
"tool_name": "get_weather" "tool_name": "get_temperature",
} }
], ],
"stream": false, "stream": false,
@ -1189,7 +1189,7 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
- `template`: (optional) the prompt template for the model - `template`: (optional) the prompt template for the model
- `license`: (optional) a string or list of strings containing the license or licenses for the model - `license`: (optional) a string or list of strings containing the license or licenses for the model
- `system`: (optional) a string containing the system prompt for the model - `system`: (optional) a string containing the system prompt for the model
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.mdx#valid-parameters-and-values) for a list of parameters) - `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
- `messages`: (optional) a list of message objects used to create a conversation - `messages`: (optional) a list of message objects used to create a conversation
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects - `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
- `quantize` (optional): quantize a non-quantized (e.g. float16) model - `quantize` (optional): quantize a non-quantized (e.g. float16) model
@ -1698,7 +1698,7 @@ Generate embeddings from a model
Advanced parameters: Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true` - `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature` - `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`) - `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding - `dimensions`: number of dimensions for the embedding
@ -1817,7 +1817,7 @@ Generate embeddings from a model
Advanced parameters: Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.mdx#valid-parameters-and-values) such as `temperature` - `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`) - `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples ### Examples

File diff suppressed because one or more lines are too long

View File

@ -15,7 +15,7 @@ Also known as "single-shot" tool calling.
```shell ```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{ curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3", "model": "qwen3",
"messages": [{"role": "user", "content": "What is the temperature in New York?"}], "messages": [{"role": "user", "content": "What's the temperature in New York?"}],
"stream": false, "stream": false,
"tools": [ "tools": [
{ {
@ -41,7 +41,7 @@ Also known as "single-shot" tool calling.
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{ curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3", "model": "qwen3",
"messages": [ "messages": [
{"role": "user", "content": "What is the temperature in New York?"}, {"role": "user", "content": "What's the temperature in New York?"},
{ {
"role": "assistant", "role": "assistant",
"tool_calls": [ "tool_calls": [
@ -90,7 +90,7 @@ Also known as "single-shot" tool calling.
} }
return temperatures.get(city, "Unknown") return temperatures.get(city, "Unknown")
messages = [{"role": "user", "content": "What is the temperature in New York?"}] messages = [{"role": "user", "content": "What's the temperature in New York?"}]
# pass functions directly as tools in the tools list or as a JSON schema # pass functions directly as tools in the tools list or as a JSON schema
response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True) response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
@ -146,7 +146,7 @@ Also known as "single-shot" tool calling.
}, },
] ]
const messages = [{ role: 'user', content: "What is the temperature in New York?" }] const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
const response = await ollama.chat({ const response = await ollama.chat({
model: 'qwen3', model: 'qwen3',
@ -609,7 +609,7 @@ def get_temperature(city: str) -> str:
return temperatures.get(city, 'Unknown') return temperatures.get(city, 'Unknown')
messages = [{'role': 'user', 'content': "What is the temperature in New York?"}] messages = [{'role': 'user', 'content': "What's the temperature in New York?"}]
while True: while True:
stream = chat( stream = chat(
@ -684,7 +684,7 @@ const getTemperatureTool = {
} }
async function agentLoop() { async function agentLoop() {
const messages = [{ role: 'user', content: "What is the temperature in New York?" }] const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
while (true) { while (true) {
const stream = await ollama.chat({ const stream = await ollama.chat({

View File

@ -36,6 +36,7 @@ Provide an `images` array. SDKs accept file paths, URLs or raw bytes while the R
}], }],
"stream": false "stream": false
}' }'
"
``` ```
</Tab> </Tab>
<Tab title="Python"> <Tab title="Python">

View File

@ -9,9 +9,15 @@ sidebarTitle: Cloud
Ollama's cloud models are a new kind of model in Ollama that can run without a powerful GPU. Instead, cloud models are automatically offloaded to Ollama's cloud service while offering the same capabilities as local models, making it possible to keep using your local tools while running larger models that wouldn't fit on a personal computer. Ollama's cloud models are a new kind of model in Ollama that can run without a powerful GPU. Instead, cloud models are automatically offloaded to Ollama's cloud service while offering the same capabilities as local models, making it possible to keep using your local tools while running larger models that wouldn't fit on a personal computer.
### Supported models Ollama currently supports the following cloud models, with more coming soon:
For a list of supported models, see Ollama's [model library](https://ollama.com/search?c=cloud). - `deepseek-v3.1:671b-cloud`
- `gpt-oss:20b-cloud`
- `gpt-oss:120b-cloud`
- `kimi-k2:1t-cloud`
- `qwen3-coder:480b-cloud`
- `glm-4.6:cloud`
- `minimax-m2:cloud`
### Running Cloud models ### Running Cloud models

View File

@ -49,8 +49,6 @@ Install prerequisites:
- [Ninja](https://github.com/ninja-build/ninja/releases) - [Ninja](https://github.com/ninja-build/ninja/releases)
- (Optional) NVIDIA GPU support - (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network) - [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
- (Optional) VULKAN GPU support
- [VULKAN SDK](https://vulkan.lunarg.com/sdk/home) - useful for AMD/Intel GPUs
Then, configure and build the project: Then, configure and build the project:
@ -59,17 +57,6 @@ cmake -B build
cmake --build build --config Release cmake --build build --config Release
``` ```
> Building for Vulkan requires VULKAN_SDK environment variable:
>
> PowerShell
> ```powershell
> $env:VULKAN_SDK="C:\VulkanSDK\<version>"
> ```
> CMD
> ```cmd
> set VULKAN_SDK=C:\VulkanSDK\<version>
> ```
> [!IMPORTANT] > [!IMPORTANT]
> Building for ROCm requires additional flags: > Building for ROCm requires additional flags:
> ``` > ```
@ -78,7 +65,6 @@ cmake --build build --config Release
> ``` > ```
Lastly, run Ollama: Lastly, run Ollama:
```shell ```shell
@ -98,9 +84,7 @@ Install prerequisites:
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html) - [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
- (Optional) NVIDIA GPU support - (Optional) NVIDIA GPU support
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads) - [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
- (Optional) VULKAN GPU support
- [VULKAN SDK](https://vulkan.lunarg.com/sdk/home) - useful for AMD/Intel GPUs
- Or install via package manager: `sudo apt install vulkan-sdk` (Ubuntu/Debian) or `sudo dnf install vulkan-sdk` (Fedora/CentOS)
> [!IMPORTANT] > [!IMPORTANT]
> Ensure prerequisites are in `PATH` before running CMake. > Ensure prerequisites are in `PATH` before running CMake.

View File

@ -14,11 +14,11 @@ curl -fsSL https://ollama.com/install.sh | sh
## How can I view the logs? ## How can I view the logs?
Review the [Troubleshooting](./troubleshooting) docs for more about using logs. Review the [Troubleshooting](./troubleshooting.md) docs for more about using logs.
## Is my GPU compatible with Ollama? ## Is my GPU compatible with Ollama?
Please refer to the [GPU docs](./gpu). Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size? ## How can I specify the context window size?
@ -57,13 +57,8 @@ ollama ps
``` ```
<Info> <Info>
**Output**: ``` NAME ID SIZE PROCESSOR UNTIL llama3:70b bcfb190ca3a7 42 GB
**Output**: 100% GPU 4 minutes from now ```
```
NAME ID SIZE PROCESSOR UNTIL
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
```
</Info> </Info>
The `Processor` column will show which memory the model was loaded in to: The `Processor` column will show which memory the model was loaded in to:
@ -390,4 +385,4 @@ Ollama for Windows and macOS register as a login item during installation. You
- In `Task Manager` go to the `Startup apps` tab, search for `ollama` then click `Disable` - In `Task Manager` go to the `Startup apps` tab, search for `ollama` then click `Disable`
**MacOS** **MacOS**
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable. - Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.

View File

@ -33,7 +33,7 @@ Check your compute compatibility to see if your card is supported:
| 5.0 | GeForce GTX | `GTX 750 Ti` `GTX 750` `NVS 810` | | 5.0 | GeForce GTX | `GTX 750 Ti` `GTX 750` `NVS 810` |
| | Quadro | `K2200` `K1200` `K620` `M1200` `M520` `M5000M` `M4000M` `M3000M` `M2000M` `M1000M` `K620M` `M600M` `M500M` | | | Quadro | `K2200` `K1200` `K620` `M1200` `M520` `M5000M` `M4000M` `M3000M` `M2000M` `M1000M` `K620M` `M600M` `M500M` |
For building locally to support older GPUs, see [developer](./development#linux-cuda-nvidia) For building locally to support older GPUs, see [developer.md](./development.md#linux-cuda-nvidia)
### GPU Selection ### GPU Selection
@ -54,7 +54,7 @@ sudo modprobe nvidia_uvm`
Ollama supports the following AMD GPUs via the ROCm library: Ollama supports the following AMD GPUs via the ROCm library:
> **NOTE:** > [!NOTE]
> Additional AMD GPU support is provided by the Vulkan Library - see below. > Additional AMD GPU support is provided by the Vulkan Library - see below.
@ -132,9 +132,9 @@ Ollama supports GPU acceleration on Apple devices via the Metal API.
## Vulkan GPU Support ## Vulkan GPU Support
> **NOTE:** > [!NOTE]
> Vulkan is currently an Experimental feature. To enable, you must set OLLAMA_VULKAN=1 for the Ollama server as > Vulkan is currently an Experimental feature. To enable, you must set OLLAMA_VULKAN=1 for the Ollama server as
described in the [FAQ](faq#how-do-i-configure-ollama-server) described in the [FAQ](faq.md#how-do-i-configure-ollama-server)
Additional GPU support on Windows and Linux is provided via Additional GPU support on Windows and Linux is provided via
[Vulkan](https://www.vulkan.org/). On Windows most GPU vendors drivers come [Vulkan](https://www.vulkan.org/). On Windows most GPU vendors drivers come
@ -161,6 +161,6 @@ sudo setcap cap_perfmon+ep /usr/local/bin/ollama
To select specific Vulkan GPU(s), you can set the environment variable To select specific Vulkan GPU(s), you can set the environment variable
`GGML_VK_VISIBLE_DEVICES` to one or more numeric IDs on the Ollama server as `GGML_VK_VISIBLE_DEVICES` to one or more numeric IDs on the Ollama server as
described in the [FAQ](faq#how-do-i-configure-ollama-server). If you described in the [FAQ](faq.md#how-do-i-configure-ollama-server). If you
encounter any problems with Vulkan based GPUs, you can disable all Vulkan GPUs encounter any problems with Vulkan based GPUs, you can disable all Vulkan GPUs
by setting `GGML_VK_VISIBLE_DEVICES=-1` by setting `GGML_VK_VISIBLE_DEVICES=-1`

View File

@ -1,34 +1,34 @@
--- ---
title: VS Code title: VS Code
--- ---
## Install ## Install
Install [VS Code](https://code.visualstudio.com/download). Install [VS Code](https://code.visualstudio.com/download).
## Usage with Ollama ## Usage with Ollama
1. Open Copilot side bar found in top right window 1. Open Copilot side bar found in top right window
<div style={{ display: "flex", justifyContent: "center" }}> <div style={{ display: 'flex', justifyContent: 'center' }}>
<img <img
src="/images/vscode-sidebar.png" src="/images/vscode-sidebar.png"
alt="VS Code chat Sidebar" alt="VS Code chat Sidebar"
width="75%" width="75%"
/> />
</div> </div>
2. Select the model dropdown > **Manage models** 2. Select the model drowpdown > **Manage models**
<div style={{ display: "flex", justifyContent: "center" }}> <div style={{ display: 'flex', justifyContent: 'center' }}>
<img <img
src="/images/vscode-models.png" src="/images/vscode-models.png"
alt="VS Code model picker" alt="VS Code model picker"
width="75%" width="75%"
/> />
</div> </div>
3. Enter **Ollama** under **Provider Dropdown** and select desired models (e.g `qwen3, qwen3-coder:480b-cloud`) 3. Enter **Ollama** under **Provider Dropdown** and select desired models (e.g `qwen3, qwen3-coder:480b-cloud`)
<div style={{ display: "flex", justifyContent: "center" }}> <div style={{ display: 'flex', justifyContent: 'center' }}>
<img <img
src="/images/vscode-model-options.png" src="/images/vscode-model-options.png"
alt="VS Code model options dropdown" alt="VS Code model options dropdown"
width="75%" width="75%"
/> />
</div> </div>

View File

@ -41,7 +41,6 @@ INSTRUCTION arguments
| [`ADAPTER`](#adapter) | Defines the (Q)LoRA adapters to apply to the model. | | [`ADAPTER`](#adapter) | Defines the (Q)LoRA adapters to apply to the model. |
| [`LICENSE`](#license) | Specifies the legal license. | | [`LICENSE`](#license) | Specifies the legal license. |
| [`MESSAGE`](#message) | Specify message history. | | [`MESSAGE`](#message) | Specify message history. |
| [`REQUIRES`](#requires) | Specify the minimum version of Ollama required by the model. |
## Examples ## Examples
@ -150,6 +149,9 @@ PARAMETER <parameter> <parametervalue>
| Parameter | Description | Value Type | Example Usage | | Parameter | Description | Value Type | Example Usage |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- | | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 | | num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 | | repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 | | repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
@ -249,16 +251,6 @@ MESSAGE user Is Ontario in Canada?
MESSAGE assistant yes MESSAGE assistant yes
``` ```
### REQUIRES
The `REQUIRES` instruction allows you to specify the minimum version of Ollama required by the model.
```
REQUIRES <version>
```
The version should be a valid Ollama version (e.g. 0.14.0).
## Notes ## Notes
- the **`Modelfile` is not case sensitive**. In the examples, uppercase instructions are used to make it easier to distinguish it from arguments. - the **`Modelfile` is not case sensitive**. In the examples, uppercase instructions are used to make it easier to distinguish it from arguments.

View File

@ -111,12 +111,6 @@ components:
description: Model keep-alive duration (for example `5m` or `0` to unload immediately) description: Model keep-alive duration (for example `5m` or `0` to unload immediately)
options: options:
$ref: "#/components/schemas/ModelOptions" $ref: "#/components/schemas/ModelOptions"
logprobs:
type: boolean
description: Whether to return log probabilities of the output tokens
top_logprobs:
type: integer
description: Number of most likely tokens to return at each token position when logprobs are enabled
GenerateResponse: GenerateResponse:
type: object type: object
properties: properties:
@ -156,11 +150,6 @@ components:
eval_duration: eval_duration:
type: integer type: integer
description: Time spent generating tokens in nanoseconds description: Time spent generating tokens in nanoseconds
logprobs:
type: array
items:
$ref: "#/components/schemas/Logprob"
description: Log probability information for the generated tokens when logprobs are enabled
GenerateStreamEvent: GenerateStreamEvent:
type: object type: object
properties: properties:
@ -298,12 +287,6 @@ components:
- type: string - type: string
- type: number - type: number
description: Model keep-alive duration (for example `5m` or `0` to unload immediately) description: Model keep-alive duration (for example `5m` or `0` to unload immediately)
logprobs:
type: boolean
description: Whether to return log probabilities of the output tokens
top_logprobs:
type: integer
description: Number of most likely tokens to return at each token position when logprobs are enabled
ChatResponse: ChatResponse:
type: object type: object
properties: properties:
@ -361,11 +344,6 @@ components:
eval_duration: eval_duration:
type: integer type: integer
description: Time spent generating tokens in nanoseconds description: Time spent generating tokens in nanoseconds
logprobs:
type: array
items:
$ref: "#/components/schemas/Logprob"
description: Log probability information for the generated tokens when logprobs are enabled
ChatStreamEvent: ChatStreamEvent:
type: object type: object
properties: properties:
@ -728,41 +706,6 @@ components:
version: version:
type: string type: string
description: Version of Ollama description: Version of Ollama
TokenLogprob:
type: object
description: Log probability information for a single token alternative
properties:
token:
type: string
description: The text representation of the token
logprob:
type: number
description: The log probability of this token
bytes:
type: array
items:
type: integer
description: The raw byte representation of the token
Logprob:
type: object
description: Log probability information for a generated token
properties:
token:
type: string
description: The text representation of the token
logprob:
type: number
description: The log probability of this token
bytes:
type: array
items:
type: integer
description: The raw byte representation of the token
top_logprobs:
type: array
items:
$ref: "#/components/schemas/TokenLogprob"
description: Most likely tokens and their log probabilities at this position
ErrorResponse: ErrorResponse:
type: object type: object
properties: properties:

View File

@ -1,46 +0,0 @@
# extract-examples
Extracts code examples from MDX files to a temp directory so you can run them.
## Usage
```shell
go run docs/tools/extract-examples/main.go <mdx-file>
```
## Example
```shell
go run docs/tools/extract-examples/main.go docs/api/openai-compatibility.mdx
```
Output:
```
Extracting code examples to: /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
- 01_basic.py
- 01_basic.js
- 01_basic.sh
- 02_responses.py
- 02_responses.js
- 02_responses.sh
- 03_vision.py
- 03_vision.js
- 03_vision.sh
Extracted 9 file(s) to /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
To run examples:
cd /var/folders/vq/wfm2g6k917d3ldzpjdxc8ph00000gn/T/mdx-examples-3271754368
npm install # for JS examples
then run individual files with `node file.js`, `python file.py`, `bash file.sh`
```
## How it works
- Parses MDX files looking for fenced code blocks with filenames (e.g., ` ```python basic.py `)
- Groups examples by their `<CodeGroup>` and prefixes filenames with `01_`, `02_`, etc.
- Writes all extracted files to a temp directory

View File

@ -1,137 +0,0 @@
package main
import (
"bufio"
"fmt"
"os"
"path/filepath"
"regexp"
"strings"
)
func main() {
if len(os.Args) < 2 {
fmt.Fprintln(os.Stderr, "Usage: go run extract-examples.go <mdx-file>")
os.Exit(1)
}
mdxFile := os.Args[1]
f, err := os.Open(mdxFile)
if err != nil {
fmt.Fprintf(os.Stderr, "Error: %v\n", err)
os.Exit(1)
}
defer f.Close()
// Create temp directory
tempDir, err := os.MkdirTemp("", "mdx-examples-*")
if err != nil {
fmt.Fprintf(os.Stderr, "Error creating temp dir: %v\n", err)
os.Exit(1)
}
fmt.Printf("Extracting code examples to: %s\n\n", tempDir)
// Patterns
codeBlockStart := regexp.MustCompile("^```([a-zA-Z0-9_-]+)\\s+([^\\s]+)$")
codeGroupStart := regexp.MustCompile("^<CodeGroup")
codeGroupEnd := regexp.MustCompile("^</CodeGroup>")
scanner := bufio.NewScanner(f)
inCodeBlock := false
inCodeGroup := false
var currentFile string
var content strings.Builder
count := 0
codeGroupNum := 0
for scanner.Scan() {
line := scanner.Text()
// Track CodeGroup boundaries
if codeGroupStart.MatchString(line) {
inCodeGroup = true
codeGroupNum++
continue
}
if codeGroupEnd.MatchString(line) {
inCodeGroup = false
continue
}
if inCodeBlock {
if line == "```" {
// End of code block - write file
if currentFile != "" {
outPath := filepath.Join(tempDir, currentFile)
if err := os.WriteFile(outPath, []byte(content.String()), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing %s: %v\n", currentFile, err)
} else {
fmt.Printf(" - %s\n", currentFile)
count++
}
}
inCodeBlock = false
currentFile = ""
content.Reset()
} else {
content.WriteString(line)
content.WriteString("\n")
}
} else {
if matches := codeBlockStart.FindStringSubmatch(line); matches != nil {
inCodeBlock = true
filename := matches[2]
// Prefix with CodeGroup number if inside a CodeGroup
if inCodeGroup {
currentFile = fmt.Sprintf("%02d_%s", codeGroupNum, filename)
} else {
currentFile = filename
}
content.Reset()
}
}
}
if err := scanner.Err(); err != nil {
fmt.Fprintf(os.Stderr, "Error reading file: %v\n", err)
os.Exit(1)
}
// Write package.json for JavaScript dependencies
packageJSON := `{
"name": "mdx-examples",
"type": "module",
"dependencies": {
"openai": "^4",
"ollama": "^0.5"
}
}
`
if err := os.WriteFile(filepath.Join(tempDir, "package.json"), []byte(packageJSON), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing package.json: %v\n", err)
}
// Write pyproject.toml for Python dependencies
pyprojectTOML := `[project]
name = "mdx-examples"
version = "0.0.0"
dependencies = [
"openai",
"ollama",
]
`
if err := os.WriteFile(filepath.Join(tempDir, "pyproject.toml"), []byte(pyprojectTOML), 0o644); err != nil {
fmt.Fprintf(os.Stderr, "Error writing pyproject.toml: %v\n", err)
}
fmt.Printf("\n")
fmt.Printf("Extracted %d file(s) to %s\n", count, tempDir)
fmt.Printf("\n")
fmt.Printf("To run examples:\n")
fmt.Printf("\n")
fmt.Printf(" cd %s\n npm install # for JS examples\n", tempDir)
fmt.Printf("\n")
fmt.Printf("then run individual files with `node file.js`, `python file.py`, `bash file.sh`\n")
}

View File

@ -87,7 +87,7 @@ When Ollama starts up, it takes inventory of the GPUs present in the system to d
### Linux NVIDIA Troubleshooting ### Linux NVIDIA Troubleshooting
If you are using a container to run Ollama, make sure you've set up the container runtime first as described in [docker](./docker) If you are using a container to run Ollama, make sure you've set up the container runtime first as described in [docker.md](./docker.md)
Sometimes the Ollama can have difficulties initializing the GPU. When you check the server logs, this can show up as various error codes, such as "3" (not initialized), "46" (device unavailable), "100" (no device), "999" (unknown), or others. The following troubleshooting techniques may help resolve the problem Sometimes the Ollama can have difficulties initializing the GPU. When you check the server logs, this can show up as various error codes, such as "3" (not initialized), "46" (device unavailable), "100" (no device), "999" (unknown), or others. The following troubleshooting techniques may help resolve the problem

View File

@ -13,7 +13,6 @@ import (
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/util/bufioutil" "github.com/ollama/ollama/fs/util/bufioutil"
"github.com/ollama/ollama/ml"
) )
type GGML struct { type GGML struct {
@ -241,17 +240,12 @@ func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
func (kv KV) OllamaEngineRequired() bool { func (kv KV) OllamaEngineRequired() bool {
return slices.Contains([]string{ return slices.Contains([]string{
"bert",
"deepseek2",
"deepseekocr",
"gemma3", "gemma3",
"gemma3n", "gemma3n",
"gptoss", "gpt-oss", "gptoss", "gpt-oss",
"llama4", "llama4",
"mistral3", "mistral3",
"mllama", "mllama",
"nomic-bert",
"olmo3",
"qwen25vl", "qwen25vl",
"qwen3", "qwen3moe", "qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe", "qwen3vl", "qwen3vlmoe",
@ -553,7 +547,7 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
}, nil }, nil
} }
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention ml.FlashAttentionType) (kv []uint64, partialOffload, fullOffload uint64) { func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention bool) (kv []uint64, partialOffload, fullOffload uint64) {
context *= uint64(numParallel) context *= uint64(numParallel)
embedding := f.KV().EmbeddingLength() embedding := f.KV().EmbeddingLength()
@ -794,7 +788,7 @@ func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType stri
} }
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6 partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
if useFlashAttention == ml.FlashAttentionEnabled { if useFlashAttention {
// rough estimate of graph size with flash attention on // rough estimate of graph size with flash attention on
partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte
} }
@ -812,14 +806,6 @@ func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType) return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
} }
// KVCacheTypeIsQuantized checks if the requested cache type is a quantized type
func (f GGML) KVCacheTypeIsQuantized(cacheType string) bool {
if cacheType == "" || cacheType == "f16" || cacheType == "f32" || cacheType == "bf16" {
return false
}
return true
}
// SupportsFlashAttention checks if the model supports flash attention // SupportsFlashAttention checks if the model supports flash attention
func (f GGML) SupportsFlashAttention() bool { func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())] _, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
@ -840,11 +826,8 @@ func (f GGML) SupportsFlashAttention() bool {
// FlashAttention checks if the model should enable flash attention // FlashAttention checks if the model should enable flash attention
func (f GGML) FlashAttention() bool { func (f GGML) FlashAttention() bool {
return slices.Contains([]string{ return slices.Contains([]string{
"bert",
"gemma3", "gemma3",
"gptoss", "gpt-oss", "gptoss", "gpt-oss",
"mistral3",
"olmo3",
"qwen3", "qwen3moe", "qwen3", "qwen3moe",
"qwen3vl", "qwen3vlmoe", "qwen3vl", "qwen3vlmoe",
}, f.KV().String("general.architecture")) }, f.KV().String("general.architecture"))

View File

@ -305,7 +305,7 @@ func readGGUFV1StringsData(llm *gguf, r io.Reader, a *array[string]) (any, error
a.values[i] = e a.values[i] = e
} else { } else {
_ = discardGGUFString(llm, r) discardGGUFString(llm, r)
} }
} }
@ -568,6 +568,7 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
g.SetLimit(runtime.GOMAXPROCS(0)) g.SetLimit(runtime.GOMAXPROCS(0))
// TODO consider reducing if tensors size * gomaxprocs is larger than free memory // TODO consider reducing if tensors size * gomaxprocs is larger than free memory
for _, t := range ts { for _, t := range ts {
t := t
w := io.NewOffsetWriter(f, offset+int64(t.Offset)) w := io.NewOffsetWriter(f, offset+int64(t.Offset))
g.Go(func() error { g.Go(func() error {
_, err := t.WriteTo(w) _, err := t.WriteTo(w)
@ -597,10 +598,6 @@ func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
var err error var err error
switch v := v.(type) { switch v := v.(type) {
case int32:
err = writeGGUF(ws, ggufTypeInt32, v)
case int64:
err = writeGGUF(ws, ggufTypeInt64, v)
case uint32, FileType: case uint32, FileType:
err = writeGGUF(ws, ggufTypeUint32, v) err = writeGGUF(ws, ggufTypeUint32, v)
case uint64: case uint64:
@ -615,10 +612,6 @@ func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
err = writeGGUFArray(ws, ggufTypeInt32, v) err = writeGGUFArray(ws, ggufTypeInt32, v)
case *array[int32]: case *array[int32]:
err = writeGGUFArray(ws, ggufTypeInt32, v.values) err = writeGGUFArray(ws, ggufTypeInt32, v.values)
case []int64:
err = writeGGUFArray(ws, ggufTypeInt64, v)
case *array[int64]:
err = writeGGUFArray(ws, ggufTypeInt64, v.values)
case []uint32: case []uint32:
err = writeGGUFArray(ws, ggufTypeUint32, v) err = writeGGUFArray(ws, ggufTypeUint32, v)
case *array[uint32]: case *array[uint32]:

View File

@ -42,10 +42,6 @@ func TestWriteGGUF(t *testing.T) {
"general.architecture": "test", "general.architecture": "test",
"general.alignment": uint32(16), "general.alignment": uint32(16),
"test.key": "value", "test.key": "value",
"test.int32_key": int32(-42),
"test.int64_key": int64(-9223372036854775808),
"test.int32_array": []int32{-1, 0, 1, 2147483647, -2147483648},
"test.int64_array": []int64{-1, 0, 1, 9223372036854775807, -9223372036854775808},
"attention.key": "value2", "attention.key": "value2",
"tokenizer.key": "value3", "tokenizer.key": "value3",
"adapter.key": "value4", "adapter.key": "value4",
@ -59,7 +55,7 @@ func TestWriteGGUF(t *testing.T) {
} }
defer r.Close() defer r.Close()
ff, err := Decode(r, -1) ff, err := Decode(r, 0)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
@ -69,19 +65,15 @@ func TestWriteGGUF(t *testing.T) {
"general.alignment": uint32(16), "general.alignment": uint32(16),
"general.parameter_count": uint64(54), "general.parameter_count": uint64(54),
"test.key": "value", "test.key": "value",
"test.int32_key": int32(-42),
"test.int64_key": int64(-9223372036854775808),
"test.int32_array": &array[int32]{size: 5, values: []int32{-1, 0, 1, 2147483647, -2147483648}},
"test.int64_array": &array[int64]{size: 5, values: []int64{-1, 0, 1, 9223372036854775807, -9223372036854775808}},
"test.attention.key": "value2", "test.attention.key": "value2",
"tokenizer.key": "value3", "tokenizer.key": "value3",
"adapter.key": "value4", "adapter.key": "value4",
}, ff.KV(), cmp.AllowUnexported(array[int32]{}, array[int64]{})); diff != "" { }, ff.KV()); diff != "" {
t.Errorf("Mismatch (-want +got):\n%s", diff) t.Errorf("Mismatch (-want +got):\n%s", diff)
} }
if diff := cmp.Diff(Tensors{ if diff := cmp.Diff(Tensors{
Offset: 992, Offset: 800,
items: []*Tensor{ items: []*Tensor{
{Name: "blk.0.attn_k.weight", Offset: 0, Shape: []uint64{2, 3}}, {Name: "blk.0.attn_k.weight", Offset: 0, Shape: []uint64{2, 3}},
{Name: "blk.0.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}}, {Name: "blk.0.attn_norm.weight", Offset: 32, Shape: []uint64{2, 3}},

20
go.mod
View File

@ -15,8 +15,9 @@ require (
github.com/spf13/cobra v1.7.0 github.com/spf13/cobra v1.7.0
github.com/stretchr/testify v1.9.0 github.com/stretchr/testify v1.9.0
github.com/x448/float16 v0.8.4 github.com/x448/float16 v0.8.4
golang.org/x/sync v0.17.0 golang.org/x/sync v0.12.0
golang.org/x/sys v0.37.0 golang.org/x/sys v0.36.0
) )
require ( require (
@ -28,17 +29,13 @@ require (
github.com/nlpodyssey/gopickle v0.3.0 github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
github.com/tkrajina/typescriptify-golang-structs v0.2.0 github.com/tkrajina/typescriptify-golang-structs v0.2.0
github.com/wk8/go-ordered-map/v2 v2.1.8
golang.org/x/image v0.22.0 golang.org/x/image v0.22.0
golang.org/x/mod v0.30.0 golang.org/x/tools v0.30.0
golang.org/x/tools v0.38.0
gonum.org/v1/gonum v0.15.0 gonum.org/v1/gonum v0.15.0
) )
require ( require (
github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40 // indirect github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40 // indirect
github.com/bahlo/generic-list-go v0.2.0 // indirect
github.com/buger/jsonparser v1.1.1 // indirect
github.com/bytedance/sonic/loader v0.1.1 // indirect github.com/bytedance/sonic/loader v0.1.1 // indirect
github.com/chewxy/hm v1.0.0 // indirect github.com/chewxy/hm v1.0.0 // indirect
github.com/chewxy/math32 v1.11.0 // indirect github.com/chewxy/math32 v1.11.0 // indirect
@ -48,7 +45,6 @@ require (
github.com/gogo/protobuf v1.3.2 // indirect github.com/gogo/protobuf v1.3.2 // indirect
github.com/google/flatbuffers v24.3.25+incompatible // indirect github.com/google/flatbuffers v24.3.25+incompatible // indirect
github.com/kr/text v0.2.0 // indirect github.com/kr/text v0.2.0 // indirect
github.com/mailru/easyjson v0.7.7 // indirect
github.com/pkg/errors v0.9.1 // indirect github.com/pkg/errors v0.9.1 // indirect
github.com/pmezard/go-difflib v1.0.0 // indirect github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/rivo/uniseg v0.2.0 // indirect github.com/rivo/uniseg v0.2.0 // indirect
@ -81,11 +77,11 @@ require (
github.com/twitchyliquid64/golang-asm v0.15.1 // indirect github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
github.com/ugorji/go/codec v1.2.12 // indirect github.com/ugorji/go/codec v1.2.12 // indirect
golang.org/x/arch v0.8.0 // indirect golang.org/x/arch v0.8.0 // indirect
golang.org/x/crypto v0.43.0 golang.org/x/crypto v0.36.0
golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa // indirect golang.org/x/exp v0.0.0-20250218142911-aa4b98e5adaa // indirect
golang.org/x/net v0.46.0 // indirect golang.org/x/net v0.38.0 // indirect
golang.org/x/term v0.36.0 golang.org/x/term v0.30.0
golang.org/x/text v0.30.0 golang.org/x/text v0.23.0
google.golang.org/protobuf v1.34.1 google.golang.org/protobuf v1.34.1
gopkg.in/yaml.v3 v3.0.1 // indirect gopkg.in/yaml.v3 v3.0.1 // indirect
) )

39
go.sum
View File

@ -14,11 +14,7 @@ github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40 h1:q4dksr6IC
github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40/go.mod h1:Q7yQnSMnLvcXlZ8RV+jwz/6y1rQTqbX6C82SndT52Zs= github.com/apache/arrow/go/arrow v0.0.0-20211112161151-bc219186db40/go.mod h1:Q7yQnSMnLvcXlZ8RV+jwz/6y1rQTqbX6C82SndT52Zs=
github.com/arbovm/levenshtein v0.0.0-20160628152529-48b4e1c0c4d0 h1:jfIu9sQUG6Ig+0+Ap1h4unLjW6YQJpKZVmUzxsD4E/Q= github.com/arbovm/levenshtein v0.0.0-20160628152529-48b4e1c0c4d0 h1:jfIu9sQUG6Ig+0+Ap1h4unLjW6YQJpKZVmUzxsD4E/Q=
github.com/arbovm/levenshtein v0.0.0-20160628152529-48b4e1c0c4d0/go.mod h1:t2tdKJDJF9BV14lnkjHmOQgcvEKgtqs5a1N3LNdJhGE= github.com/arbovm/levenshtein v0.0.0-20160628152529-48b4e1c0c4d0/go.mod h1:t2tdKJDJF9BV14lnkjHmOQgcvEKgtqs5a1N3LNdJhGE=
github.com/bahlo/generic-list-go v0.2.0 h1:5sz/EEAK+ls5wF+NeqDpk5+iNdMDXrh3z3nPnH1Wvgk=
github.com/bahlo/generic-list-go v0.2.0/go.mod h1:2KvAjgMlE5NNynlg/5iLrrCCZ2+5xWbdbCW3pNTGyYg=
github.com/boombuler/barcode v1.0.0/go.mod h1:paBWMcWSl3LHKBqUq+rly7CNSldXjb2rDl3JlRe0mD8= github.com/boombuler/barcode v1.0.0/go.mod h1:paBWMcWSl3LHKBqUq+rly7CNSldXjb2rDl3JlRe0mD8=
github.com/buger/jsonparser v1.1.1 h1:2PnMjfWD7wBILjqQbt530v576A/cAbQvEW9gGIpYMUs=
github.com/buger/jsonparser v1.1.1/go.mod h1:6RYKKt7H4d4+iWqouImQ9R2FZql3VbhNgx27UK13J/0=
github.com/bytedance/sonic v1.11.6 h1:oUp34TzMlL+OY1OUWxHqsdkgC/Zfc85zGqw9siXjrc0= github.com/bytedance/sonic v1.11.6 h1:oUp34TzMlL+OY1OUWxHqsdkgC/Zfc85zGqw9siXjrc0=
github.com/bytedance/sonic v1.11.6/go.mod h1:LysEHSvpvDySVdC2f87zGWf6CIKJcAvqab1ZaiQtds4= github.com/bytedance/sonic v1.11.6/go.mod h1:LysEHSvpvDySVdC2f87zGWf6CIKJcAvqab1ZaiQtds4=
github.com/bytedance/sonic/loader v0.1.1 h1:c+e5Pt1k/cy5wMveRDyk2X4B9hF4g7an8N3zCYjJFNM= github.com/bytedance/sonic/loader v0.1.1 h1:c+e5Pt1k/cy5wMveRDyk2X4B9hF4g7an8N3zCYjJFNM=
@ -127,7 +123,6 @@ github.com/google/uuid v1.6.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+
github.com/grpc-ecosystem/grpc-gateway v1.16.0/go.mod h1:BDjrQk3hbvj6Nolgz8mAMFbcEtjT1g+wF4CSlocrBnw= github.com/grpc-ecosystem/grpc-gateway v1.16.0/go.mod h1:BDjrQk3hbvj6Nolgz8mAMFbcEtjT1g+wF4CSlocrBnw=
github.com/inconshreveable/mousetrap v1.1.0 h1:wN+x4NVGpMsO7ErUn/mUI3vEoE6Jt13X2s0bqwp9tc8= github.com/inconshreveable/mousetrap v1.1.0 h1:wN+x4NVGpMsO7ErUn/mUI3vEoE6Jt13X2s0bqwp9tc8=
github.com/inconshreveable/mousetrap v1.1.0/go.mod h1:vpF70FUmC8bwa3OWnCshd2FqLfsEA9PFc4w1p2J65bw= github.com/inconshreveable/mousetrap v1.1.0/go.mod h1:vpF70FUmC8bwa3OWnCshd2FqLfsEA9PFc4w1p2J65bw=
github.com/josharian/intern v1.0.0/go.mod h1:5DoeVV0s6jJacbCEi61lwdGj/aVlrQvzHFFd8Hwg//Y=
github.com/json-iterator/go v1.1.12 h1:PV8peI4a0ysnczrg+LtxykD8LfKY9ML6u2jnxaEnrnM= github.com/json-iterator/go v1.1.12 h1:PV8peI4a0ysnczrg+LtxykD8LfKY9ML6u2jnxaEnrnM=
github.com/json-iterator/go v1.1.12/go.mod h1:e30LSqwooZae/UwlEbR2852Gd8hjQvJoHmT4TnhNGBo= github.com/json-iterator/go v1.1.12/go.mod h1:e30LSqwooZae/UwlEbR2852Gd8hjQvJoHmT4TnhNGBo=
github.com/jung-kurt/gofpdf v1.0.0/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes= github.com/jung-kurt/gofpdf v1.0.0/go.mod h1:7Id9E/uU8ce6rXgefFLlgrJj/GYY22cpxn+r32jIOes=
@ -148,8 +143,6 @@ github.com/ledongthuc/pdf v0.0.0-20250511090121-5959a4027728 h1:QwWKgMY28TAXaDl+
github.com/ledongthuc/pdf v0.0.0-20250511090121-5959a4027728/go.mod h1:1fEHWurg7pvf5SG6XNE5Q8UZmOwex51Mkx3SLhrW5B4= github.com/ledongthuc/pdf v0.0.0-20250511090121-5959a4027728/go.mod h1:1fEHWurg7pvf5SG6XNE5Q8UZmOwex51Mkx3SLhrW5B4=
github.com/leodido/go-urn v1.4.0 h1:WT9HwE9SGECu3lg4d/dIA+jxlljEa1/ffXKmRjqdmIQ= github.com/leodido/go-urn v1.4.0 h1:WT9HwE9SGECu3lg4d/dIA+jxlljEa1/ffXKmRjqdmIQ=
github.com/leodido/go-urn v1.4.0/go.mod h1:bvxc+MVxLKB4z00jd1z+Dvzr47oO32F/QSNjSBOlFxI= github.com/leodido/go-urn v1.4.0/go.mod h1:bvxc+MVxLKB4z00jd1z+Dvzr47oO32F/QSNjSBOlFxI=
github.com/mailru/easyjson v0.7.7 h1:UGYAvKxe3sBsEDzO8ZeWOSlIQfWFlxbzLZe7hwFURr0=
github.com/mailru/easyjson v0.7.7/go.mod h1:xzfreul335JAWq5oZzymOObrkdz5UnU4kGfJJLY9Nlc=
github.com/mattn/go-isatty v0.0.20 h1:xfD0iDuEKnDkl03q4limB+vH+GxLEtL/jb4xVJSWWEY= github.com/mattn/go-isatty v0.0.20 h1:xfD0iDuEKnDkl03q4limB+vH+GxLEtL/jb4xVJSWWEY=
github.com/mattn/go-isatty v0.0.20/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y= github.com/mattn/go-isatty v0.0.20/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
github.com/mattn/go-runewidth v0.0.9/go.mod h1:H031xJmbD/WCDINGzjvQ9THkh0rPKHF+m2gUSrubnMI= github.com/mattn/go-runewidth v0.0.9/go.mod h1:H031xJmbD/WCDINGzjvQ9THkh0rPKHF+m2gUSrubnMI=
@ -214,8 +207,6 @@ github.com/twitchyliquid64/golang-asm v0.15.1 h1:SU5vSMR7hnwNxj24w34ZyCi/FmDZTkS
github.com/twitchyliquid64/golang-asm v0.15.1/go.mod h1:a1lVb/DtPvCB8fslRZhAngC2+aY1QWCk3Cedj/Gdt08= github.com/twitchyliquid64/golang-asm v0.15.1/go.mod h1:a1lVb/DtPvCB8fslRZhAngC2+aY1QWCk3Cedj/Gdt08=
github.com/ugorji/go/codec v1.2.12 h1:9LC83zGrHhuUA9l16C9AHXAqEV/2wBQ4nkvumAE65EE= github.com/ugorji/go/codec v1.2.12 h1:9LC83zGrHhuUA9l16C9AHXAqEV/2wBQ4nkvumAE65EE=
github.com/ugorji/go/codec v1.2.12/go.mod h1:UNopzCgEMSXjBc6AOMqYvWC1ktqTAfzJZUZgYf6w6lg= github.com/ugorji/go/codec v1.2.12/go.mod h1:UNopzCgEMSXjBc6AOMqYvWC1ktqTAfzJZUZgYf6w6lg=
github.com/wk8/go-ordered-map/v2 v2.1.8 h1:5h/BUHu93oj4gIdvHHHGsScSTMijfx5PeYkE/fJgbpc=
github.com/wk8/go-ordered-map/v2 v2.1.8/go.mod h1:5nJHM5DyteebpVlHnWMV0rPz6Zp7+xBAnxjb1X5vnTw=
github.com/x448/float16 v0.8.4 h1:qLwI1I70+NjRFUR3zs1JPUCgaCXSh3SW62uAKT1mSBM= github.com/x448/float16 v0.8.4 h1:qLwI1I70+NjRFUR3zs1JPUCgaCXSh3SW62uAKT1mSBM=
github.com/x448/float16 v0.8.4/go.mod h1:14CWIYCyZA/cWjXOioeEpHeN/83MdbZDRQHoFcYsOfg= github.com/x448/float16 v0.8.4/go.mod h1:14CWIYCyZA/cWjXOioeEpHeN/83MdbZDRQHoFcYsOfg=
github.com/xtgo/set v1.0.0 h1:6BCNBRv3ORNDQ7fyoJXRv+tstJz3m1JVFQErfeZz2pY= github.com/xtgo/set v1.0.0 h1:6BCNBRv3ORNDQ7fyoJXRv+tstJz3m1JVFQErfeZz2pY=
@ -233,8 +224,8 @@ golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACk
golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= golang.org/x/crypto v0.0.0-20190510104115-cbcb75029529/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.43.0 h1:dduJYIi3A3KOfdGOHX8AVZ/jGiyPa3IbBozJ5kNuE04= golang.org/x/crypto v0.36.0 h1:AnAEvhDddvBdpY+uR+MyHmuZzzNqXSe/GvuDeob5L34=
golang.org/x/crypto v0.43.0/go.mod h1:BFbav4mRNlXJL4wNeejLpWxB7wMbc79PdRGhWKncxR0= golang.org/x/crypto v0.36.0/go.mod h1:Y4J0ReaxCR1IMaabaSMugxJES1EpwhBHhv2bDHklZvc=
golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= golang.org/x/exp v0.0.0-20180321215751-8460e604b9de/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= golang.org/x/exp v0.0.0-20180807140117-3d87b88a115f/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
@ -264,8 +255,6 @@ golang.org/x/mod v0.1.1-0.20191105210325-c90efee705ee/go.mod h1:QqPTAvyqsEbceGzB
golang.org/x/mod v0.2.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA= golang.org/x/mod v0.2.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.3.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA= golang.org/x/mod v0.3.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.4.2/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA= golang.org/x/mod v0.4.2/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.30.0 h1:fDEXFVZ/fmCKProc/yAXXUijritrDzahmwwefnjoPFk=
golang.org/x/mod v0.30.0/go.mod h1:lAsf5O2EvJeSFMiBxXDki7sCgAxEUcZHXoXMKT4GJKc=
golang.org/x/net v0.0.0-20180724234803-3673e40ba225/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= golang.org/x/net v0.0.0-20180724234803-3673e40ba225/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20180826012351-8a410e7b638d/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= golang.org/x/net v0.0.0-20180826012351-8a410e7b638d/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20190108225652-1e06a53dbb7e/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4= golang.org/x/net v0.0.0-20190108225652-1e06a53dbb7e/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
@ -278,8 +267,8 @@ golang.org/x/net v0.0.0-20200822124328-c89045814202/go.mod h1:/O7V0waA8r7cgGh81R
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU= golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM= golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4/go.mod h1:p54w0d4576C0XHj96bSt6lcn1PtDYWL6XObtHCRCNQM=
golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y= golang.org/x/net v0.0.0-20210614182718-04defd469f4e/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
golang.org/x/net v0.46.0 h1:giFlY12I07fugqwPuWJi68oOnpfqFnJIJzaIIm2JVV4= golang.org/x/net v0.38.0 h1:vRMAPTMaeGqVhG5QyLJHqNDwecKTomGeqbnfZyKlBI8=
golang.org/x/net v0.46.0/go.mod h1:Q9BGdFy1y4nkUwiLvT5qtyhAnEHgnQ/zd8PfU6nc210= golang.org/x/net v0.38.0/go.mod h1:ivrbrMbzFq5J41QOQh0siUuly180yBYtLp+CKbEaFx8=
golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U= golang.org/x/oauth2 v0.0.0-20180821212333-d2e6202438be/go.mod h1:N/0e6XlmueqKjAGxoOufVs8QHGRruUQn6yWY3a++T0U=
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw= golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d/go.mod h1:gOpvHmFTYa4IltrdGE7lF6nIHvwfUNPOp7c8zoXwtLw=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
@ -289,8 +278,8 @@ golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.17.0 h1:l60nONMj9l5drqw6jlhIELNv9I0A4OFgRsG9k2oT9Ug= golang.org/x/sync v0.12.0 h1:MHc5BpPuC30uJk597Ri8TV3CNZcTLu6B6z4lJy+g6Jw=
golang.org/x/sync v0.17.0/go.mod h1:9KTHXmSnoGruLpwFjVSX0lNNA75CykiMECbovNTZqGI= golang.org/x/sync v0.12.0/go.mod h1:1dzgHSNfp02xaA81J2MS99Qcpr2w7fw1gpm99rleRqA=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
@ -306,17 +295,17 @@ golang.org/x/sys v0.0.0-20210510120138-977fb7262007/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= golang.org/x/sys v0.5.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg= golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.37.0 h1:fdNQudmxPjkdUTPnLn5mdQv7Zwvbvpaxqs831goi9kQ= golang.org/x/sys v0.36.0 h1:KVRy2GtZBrk1cBYA7MKu5bEZFxQk4NIDV6RLVcC8o0k=
golang.org/x/sys v0.37.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks= golang.org/x/sys v0.36.0/go.mod h1:OgkHotnGiDImocRcuBABYBEXf8A9a87e/uXjp9XT3ks=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo= golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.36.0 h1:zMPR+aF8gfksFprF/Nc/rd1wRS1EI6nDBGyWAvDzx2Q= golang.org/x/term v0.30.0 h1:PQ39fJZ+mfadBm0y5WlL4vlM7Sx1Hgf13sMIY2+QS9Y=
golang.org/x/term v0.36.0/go.mod h1:Qu394IJq6V6dCBRgwqshf3mPF85AqzYEzofzRdZkWss= golang.org/x/term v0.30.0/go.mod h1:NYYFdzHoI5wRh/h5tDMdMqCqPJZEuNqVR5xJLd/n67g=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ= golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ= golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ= golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ= golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.30.0 h1:yznKA/E9zq54KzlzBEAWn1NXSQ8DIp/NYMy88xJjl4k= golang.org/x/text v0.23.0 h1:D71I7dUrlY+VX0gQShAThNGHFxZ13dGLBHQLVl1mJlY=
golang.org/x/text v0.30.0/go.mod h1:yDdHFIX9t+tORqspjENWgzaCVXgk0yYnYuSZ8UzzBVM= golang.org/x/text v0.23.0/go.mod h1:/BLNzu4aZCJ1+kcD0DNRotWKage4q2rGVAg4o22unh4=
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ= golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
@ -330,8 +319,8 @@ golang.org/x/tools v0.0.0-20200130002326-2f3ba24bd6e7/go.mod h1:TB2adYChydJhpapK
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE= golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA= golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk= golang.org/x/tools v0.1.4/go.mod h1:o0xws9oXOQQZyjljx8fwUC0k7L1pTE6eaCbjGeHmOkk=
golang.org/x/tools v0.38.0 h1:Hx2Xv8hISq8Lm16jvBZ2VQf+RLmbd7wVUsALibYI/IQ= golang.org/x/tools v0.30.0 h1:BgcpHewrV5AUp2G9MebG4XPFI1E2W41zU1SaqVA9vJY=
golang.org/x/tools v0.38.0/go.mod h1:yEsQ/d/YK8cjh0L6rZlY8tgtlKiBNTL14pGDJPJpYQs= golang.org/x/tools v0.30.0/go.mod h1:c347cR/OJfw5TI+GfX7RUPNMdDRRbjvYTS0jPyvsVtY=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0= golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=

View File

@ -388,9 +388,9 @@ func NewFunctionNameMap() *FunctionNameMap {
} }
} }
// Init initializes the handler with tools, optional last message, and think value // Init initializes the handler with tools and optional last message
// Implements the Parser interface // Implements the Parser interface
func (h *HarmonyMessageHandler) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool { func (h *HarmonyMessageHandler) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
// Initialize the harmony parser // Initialize the harmony parser
if h.HarmonyParser == nil { if h.HarmonyParser == nil {
h.HarmonyParser = &HarmonyParser{ h.HarmonyParser = &HarmonyParser{

View File

@ -13,5 +13,3 @@ The integration tests have 2 modes of operating.
> [!IMPORTANT] > [!IMPORTANT]
> Before running the tests locally without the "test existing" setting, compile ollama from the top of the source tree `go build .` in addition to GPU support with cmake if applicable on your platform. The integration tests expect to find an ollama binary at the top of the tree. > Before running the tests locally without the "test existing" setting, compile ollama from the top of the source tree `go build .` in addition to GPU support with cmake if applicable on your platform. The integration tests expect to find an ollama binary at the top of the tree.
Many tests use a default small model suitable to run on many systems. You can override this default model by setting `OLLAMA_TEST_DEFAULT_MODEL`

View File

@ -4,9 +4,7 @@ package integration
import ( import (
"context" "context"
"errors"
"math" "math"
"strings"
"testing" "testing"
"time" "time"
@ -206,8 +204,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
t.Fatalf("expected %v, got %v (similarity: %f)", expected[0:5], res.Embeddings[0][0:5], sim) t.Fatalf("expected %v, got %v (similarity: %f)", expected[0:5], res.Embeddings[0][0:5], sim)
} }
if res.PromptEvalCount != 8 { if res.PromptEvalCount != 6 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount) t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
} }
} }
@ -253,8 +251,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
t.Fatalf("expected %v, got %v (similarity: %f)", expected[1][0:5], res.Embeddings[1][0:5], sim) t.Fatalf("expected %v, got %v (similarity: %f)", expected[1][0:5], res.Embeddings[1][0:5], sim)
} }
if res.PromptEvalCount != 16 { if res.PromptEvalCount != 12 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount) t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
} }
} }
@ -277,7 +275,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
cases := []struct { cases := []struct {
name string name string
request api.EmbedRequest request api.EmbedRequest
check func(*testing.T, *api.EmbedResponse, error) check func(*api.EmbedResponse, error)
}{ }{
{ {
name: "target truncation", name: "target truncation",
@ -285,7 +283,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Model: "all-minilm", Model: "all-minilm",
Input: "why", Input: "why",
}, },
check: func(t *testing.T, got *api.EmbedResponse, err error) { check: func(got *api.EmbedResponse, err error) {
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
@ -302,11 +300,10 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Input: "why is the sky blue?", Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 3}, Options: map[string]any{"num_ctx": 3},
}, },
check: func(t *testing.T, got *api.EmbedResponse, err error) { check: func(got *api.EmbedResponse, err error) {
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
t.Logf("PromptEvalCount: want=%d got=%d", want.PromptEvalCount, got.PromptEvalCount)
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" { if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff) t.Errorf("embedding mismatch (-want +got):\n%s", diff)
} }
@ -320,11 +317,10 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncTrue, Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 3}, Options: map[string]any{"num_ctx": 3},
}, },
check: func(t *testing.T, got *api.EmbedResponse, err error) { check: func(got *api.EmbedResponse, err error) {
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
t.Logf("PromptEvalCount: want=%d got=%d", want.PromptEvalCount, got.PromptEvalCount)
if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" { if diff := cmp.Diff(want.Embeddings[0], got.Embeddings[0]); diff != "" {
t.Errorf("embedding mismatch (-want +got):\n%s", diff) t.Errorf("embedding mismatch (-want +got):\n%s", diff)
} }
@ -338,21 +334,21 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncFalse, Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 3}, Options: map[string]any{"num_ctx": 3},
}, },
check: func(t *testing.T, res *api.EmbedResponse, err error) { check: func(res *api.EmbedResponse, err error) {
if err.Error() != "the input length exceeds the context length" { if err.Error() != "input exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err) t.Fatalf("expected truncation error, got: %v", err)
} }
}, },
}, },
{ {
name: "input after truncate error with context length of 1", name: "input after truncate error",
request: api.EmbedRequest{ request: api.EmbedRequest{
Model: "all-minilm", Model: "all-minilm",
Input: "why is the sky blue?", Input: "why is the sky blue?",
Truncate: &truncTrue, Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1}, Options: map[string]any{"num_ctx": 1},
}, },
check: func(t *testing.T, res *api.EmbedResponse, err error) { check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" { if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err) t.Fatalf("expected truncation error, got: %v", err)
} }
@ -366,7 +362,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Truncate: &truncTrue, Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 0}, Options: map[string]any{"num_ctx": 0},
}, },
check: func(t *testing.T, res *api.EmbedResponse, err error) { check: func(res *api.EmbedResponse, err error) {
if err.Error() != "input after truncation exceeds maximum context length" { if err.Error() != "input after truncation exceeds maximum context length" {
t.Fatalf("expected truncation error, got: %v", err) t.Fatalf("expected truncation error, got: %v", err)
} }
@ -379,7 +375,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
Input: "why is the sky blue? Why is the sky blue? hi there my", Input: "why is the sky blue? Why is the sky blue? hi there my",
Options: map[string]any{"num_ctx": 16}, Options: map[string]any{"num_ctx": 16},
}, },
check: func(t *testing.T, res *api.EmbedResponse, err error) { check: func(res *api.EmbedResponse, err error) {
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
@ -389,8 +385,7 @@ func TestAllMiniLMEmbedTruncate(t *testing.T) {
for _, req := range cases { for _, req := range cases {
t.Run(req.name, func(t *testing.T) { t.Run(req.name, func(t *testing.T) {
resp, err := embedTestHelper(ctx, client, t, req.request) req.check(embedTestHelper(ctx, client, t, req.request))
req.check(t, resp, err)
}) })
} }
} }
@ -414,230 +409,3 @@ func embedTestHelper(ctx context.Context, client *api.Client, t *testing.T, req
return client.Embed(ctx, &req) return client.Embed(ctx, &req)
} }
func TestEmbedTruncation(t *testing.T) {
// Use test deadline if set, otherwise default to 2 minutes
timeout := 2 * time.Minute
if deadline, ok := t.Deadline(); ok {
timeout = time.Until(deadline) - 10*time.Second // Reserve 10s buffer
}
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
// Check if we're running out of time (reserve 20s for current model)
if deadline, ok := t.Deadline(); ok && time.Until(deadline) < 20*time.Second {
t.Skip("skipping remaining tests to avoid timeout")
}
// Give each model its own budget to account for first-time pulls/loads
mctx, mcancel := context.WithTimeout(ctx, 3*time.Minute)
defer mcancel()
t.Run("truncation batch", func(t *testing.T) {
truncTrue := true
req := api.EmbedRequest{
Model: model,
Input: []string{"short", strings.Repeat("long ", 100), "medium text"},
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 30},
}
res, err := embedTestHelper(mctx, client, t, req)
if err != nil {
t.Fatal(err)
}
if len(res.Embeddings) != 3 {
t.Fatalf("expected 3 embeddings, got %d", len(res.Embeddings))
}
if res.PromptEvalCount > 90 {
t.Fatalf("expected tokens <= 90 (3 × 30 max), got %d", res.PromptEvalCount)
}
})
t.Run("runner token count accuracy", func(t *testing.T) {
baseline := api.EmbedRequest{Model: model, Input: "test"}
baseRes, err := embedTestHelper(mctx, client, t, baseline)
if err != nil {
t.Fatal(err)
}
batch := api.EmbedRequest{
Model: model,
Input: []string{"test", "test", "test"},
}
batchRes, err := embedTestHelper(mctx, client, t, batch)
if err != nil {
t.Fatal(err)
}
expectedCount := baseRes.PromptEvalCount * 3
if batchRes.PromptEvalCount < expectedCount-2 || batchRes.PromptEvalCount > expectedCount+2 {
t.Fatalf("expected ~%d tokens (3 × %d), got %d",
expectedCount, baseRes.PromptEvalCount, batchRes.PromptEvalCount)
}
})
})
}
}
// TestEmbedLargeInput tests that embedding models can handle large inputs that would exceed typical batch sizes.
func TestEmbedLargeInput(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 3*time.Minute)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
mctx, mcancel := context.WithTimeout(ctx, 2*time.Minute)
defer mcancel()
// Test with progressively larger inputs
testCases := []struct {
name string
inputWords int
}{
{"medium_input_256_words", 256},
{"large_input_512_words", 512},
{"very_large_input_800_words", 800},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
words := make([]string, tc.inputWords)
for i := range words {
words[i] = "word"
}
input := strings.Join(words, " ")
req := api.EmbedRequest{
Model: model,
Input: input,
KeepAlive: &api.Duration{Duration: 30 * time.Second},
}
res, err := embedTestHelper(mctx, client, t, req)
if err != nil {
t.Fatalf("embedding failed for %d words: %v", tc.inputWords, err)
}
if len(res.Embeddings) != 1 {
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) == 0 {
t.Fatal("expected non-empty embedding")
}
t.Logf("Successfully embedded %d words (%d tokens)", tc.inputWords, res.PromptEvalCount)
})
}
})
}
}
// TestEmbedStatusCode tests that errors from the embedding endpoint
// properly preserve their HTTP status codes when returned to the client.
// This test specifically checks the error handling path in EmbedHandler
// where api.StatusError errors should maintain their original status code.
func TestEmbedStatusCode(t *testing.T) {
// Use test deadline if set, otherwise default to 2 minutes
timeout := 2 * time.Minute
if deadline, ok := t.Deadline(); ok {
timeout = time.Until(deadline) - 10*time.Second // Reserve 10s buffer
}
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
for _, model := range libraryEmbedModels {
model := model
t.Run(model, func(t *testing.T) {
// Check if we're running out of time (reserve 20s for current model)
if deadline, ok := t.Deadline(); ok && time.Until(deadline) < 20*time.Second {
t.Skip("skipping remaining tests to avoid timeout")
}
mctx, mcancel := context.WithTimeout(ctx, 3*time.Minute)
defer mcancel()
// Pull the model if needed
if err := PullIfMissing(mctx, client, model); err != nil {
t.Fatal(err)
}
t.Run("truncation error status code", func(t *testing.T) {
truncFalse := false
longInput := strings.Repeat("word ", 100)
req := api.EmbedRequest{
Model: model,
Input: longInput,
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 10},
}
_, err := embedTestHelper(mctx, client, t, req)
if err == nil {
t.Fatal("expected error when truncate=false with long input")
}
// Check that it's a StatusError with the correct status code
var statusErr api.StatusError
if !errors.As(err, &statusErr) {
t.Fatalf("expected api.StatusError, got %T: %v", err, err)
}
// The error should be a 4xx client error (likely 400 Bad Request)
// not a 500 Internal Server Error
if statusErr.StatusCode < 400 || statusErr.StatusCode >= 500 {
t.Errorf("expected 4xx status code, got %d", statusErr.StatusCode)
}
// Verify the error message is meaningful
if !strings.Contains(err.Error(), "context length") {
t.Errorf("expected error message to mention context length, got: %v", err)
}
})
t.Run("batch truncation error status code", func(t *testing.T) {
truncFalse := false
req := api.EmbedRequest{
Model: model,
Input: []string{
"short input",
strings.Repeat("very long input ", 100),
"another short input",
},
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 10},
}
_, err := embedTestHelper(mctx, client, t, req)
if err == nil {
t.Fatal("expected error when one input exceeds context with truncate=false")
}
// Check that it's a StatusError with the correct status code
var statusErr api.StatusError
if !errors.As(err, &statusErr) {
t.Fatalf("expected api.StatusError, got %T: %v", err, err)
}
// The error should be a 4xx client error, not a 500 Internal Server Error
if statusErr.StatusCode < 400 || statusErr.StatusCode >= 500 {
t.Errorf("expected 4xx status code, got %d", statusErr.StatusCode)
}
})
})
}
}

View File

@ -33,9 +33,6 @@ func TestVisionModels(t *testing.T) {
// Qwen 3 VL mixture of experts // Qwen 3 VL mixture of experts
model: "qwen3-vl:30b", model: "qwen3-vl:30b",
}, },
{
model: "ministral-3",
},
} }
for _, v := range testCases { for _, v := range testCases {

View File

@ -3,140 +3,353 @@
package integration package integration
import ( import (
"bytes"
"context" "context"
"encoding/json"
"fmt" "fmt"
"io"
"net/http"
"strings"
"testing" "testing"
"time" "time"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/openai"
) )
// testPropsMap creates a ToolPropertiesMap from a map (convenience function for tests) var libraryToolsModels = []string{
func testPropsMap(m map[string]api.ToolProperty) *api.ToolPropertiesMap { "qwen3-vl",
props := api.NewToolPropertiesMap() "gpt-oss:20b",
for k, v := range m { "gpt-oss:120b",
props.Set(k, v) "qwen3",
} "llama3.1",
return props "llama3.2",
"mistral",
"qwen2.5",
"qwen2",
"mistral-nemo",
"mistral-small",
"mixtral:8x22b",
"qwq",
"granite3.3",
} }
func TestAPIToolCalling(t *testing.T) { func float64Ptr(v float64) *float64 {
return &v
}
func sendOpenAIChatRequest(ctx context.Context, endpoint string, req openai.ChatCompletionRequest) (*openai.ChatCompletion, error) {
jsonData, err := json.Marshal(req)
if err != nil {
return nil, fmt.Errorf("failed to marshal request: %w", err)
}
httpReq, err := http.NewRequestWithContext(ctx, "POST", endpoint+"/v1/chat/completions", bytes.NewBuffer(jsonData))
if err != nil {
return nil, fmt.Errorf("failed to create request: %w", err)
}
httpReq.Header.Set("Content-Type", "application/json")
client := &http.Client{
Timeout: 10 * time.Minute,
}
resp, err := client.Do(httpReq)
if err != nil {
return nil, fmt.Errorf("failed to send request: %w", err)
}
defer resp.Body.Close()
body, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("failed to read response: %w", err)
}
if resp.StatusCode != http.StatusOK {
return nil, fmt.Errorf("API error: status=%d, body=%s", resp.StatusCode, string(body))
}
var chatResp openai.ChatCompletion
if err := json.Unmarshal(body, &chatResp); err != nil {
return nil, fmt.Errorf("failed to unmarshal response: %w, body: %s", err, string(body))
}
return &chatResp, nil
}
func sendOpenAIChatStreamRequest(ctx context.Context, endpoint string, req openai.ChatCompletionRequest, fn func(openai.ChatCompletionChunk) error) error {
jsonData, err := json.Marshal(req)
if err != nil {
return fmt.Errorf("failed to marshal request: %w", err)
}
httpReq, err := http.NewRequestWithContext(ctx, "POST", endpoint+"/v1/chat/completions", bytes.NewBuffer(jsonData))
if err != nil {
return fmt.Errorf("failed to create request: %w", err)
}
httpReq.Header.Set("Content-Type", "application/json")
httpReq.Header.Set("Accept", "text/event-stream")
client := &http.Client{
Timeout: 0, // No timeout for streaming
}
resp, err := client.Do(httpReq)
if err != nil {
return fmt.Errorf("failed to send request: %w", err)
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
body, _ := io.ReadAll(resp.Body)
return fmt.Errorf("API error: status=%d, body=%s", resp.StatusCode, string(body))
}
decoder := resp.Body
reader := bytes.NewBuffer([]byte{})
buf := make([]byte, 4096)
for {
select {
case <-ctx.Done():
return ctx.Err()
default:
n, err := decoder.Read(buf)
if n > 0 {
reader.Write(buf[:n])
// Process complete lines
for {
line, err := reader.ReadString('\n')
if err != nil {
// Not a complete line yet
reader.WriteString(line)
break
}
line = strings.TrimSpace(line)
if strings.HasPrefix(line, "data: ") {
data := strings.TrimPrefix(line, "data: ")
if data == "[DONE]" {
return nil
}
var streamResp openai.ChatCompletionChunk
if err := json.Unmarshal([]byte(data), &streamResp); err != nil {
return fmt.Errorf("failed to unmarshal stream response: %w", err)
}
if err := fn(streamResp); err != nil {
return err
}
}
}
}
if err != nil {
if err != io.EOF {
return fmt.Errorf("error reading stream: %w", err)
}
break
}
}
}
return nil
}
// TestToolCallingAllAPIs tests both Ollama and OpenAI APIs with shared model loading
func TestToolCallingAllAPIs(t *testing.T) {
initialTimeout := 60 * time.Second initialTimeout := 60 * time.Second
streamTimeout := 60 * time.Second streamTimeout := 60 * time.Second
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute) ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute)
defer cancel() defer cancel()
client, _, cleanup := InitServerConnection(ctx, t) client, endpoint, cleanup := InitServerConnection(ctx, t)
defer cleanup() defer cleanup()
minVRAM := map[string]uint64{
"qwen3-vl": 16,
"gpt-oss:20b": 16,
"gpt-oss:120b": 70,
"qwen3": 6,
"llama3.1": 8,
"llama3.2": 4,
"mistral": 6,
"qwen2.5": 6,
"qwen2": 6,
"ministral-3": 20,
"mistral-nemo": 9,
"mistral-small": 16,
"mixtral:8x22b": 80,
"qwq": 20,
"granite3.3": 7,
}
for _, model := range libraryToolsModels { for _, model := range libraryToolsModels {
t.Run(model, func(t *testing.T) { t.Run(model, func(t *testing.T) {
// Skip if insufficient VRAM
if v, ok := minVRAM[model]; ok { if v, ok := minVRAM[model]; ok {
skipUnderMinVRAM(t, v) skipUnderMinVRAM(t, v)
} }
// Pull model if missing - only do this once per model
if err := PullIfMissing(ctx, client, model); err != nil { if err := PullIfMissing(ctx, client, model); err != nil {
t.Fatalf("pull failed %s", err) t.Fatalf("pull failed %s", err)
} }
tools := []api.Tool{ t.Run("OllamaAPI", func(t *testing.T) {
{ tools := []api.Tool{
Type: "function", {
Function: api.ToolFunction{ Type: "function",
Name: "get_weather", Function: api.ToolFunction{
Description: "Get the current weather in a given location", Name: "get_weather",
Parameters: api.ToolFunctionParameters{ Description: "Get the current weather in a given location",
Type: "object", Parameters: api.ToolFunctionParameters{
Required: []string{"location"}, Type: "object",
Properties: testPropsMap(map[string]api.ToolProperty{ Required: []string{"location"},
"location": { Properties: map[string]api.ToolProperty{
Type: api.PropertyType{"string"}, "location": {
Description: "The city and state, e.g. San Francisco, CA", Type: api.PropertyType{"string"},
Description: "The city and state, e.g. San Francisco, CA",
},
}, },
}), },
}, },
}, },
}, }
}
req := api.ChatRequest{ req := api.ChatRequest{
Model: model, Model: model,
Messages: []api.Message{ Messages: []api.Message{
{ {
Role: "user", Role: "user",
Content: "Call get_weather with location set to San Francisco.", Content: "Call get_weather with location set to San Francisco.",
},
},
Tools: tools,
Options: map[string]any{
"temperature": 0,
}, },
},
Tools: tools,
Options: map[string]any{
"temperature": 0,
},
}
stallTimer := time.NewTimer(initialTimeout)
var gotToolCall bool
var lastToolCall api.ToolCall
fn := func(response api.ChatResponse) error {
if len(response.Message.ToolCalls) > 0 {
gotToolCall = true
lastToolCall = response.Message.ToolCalls[len(response.Message.ToolCalls)-1]
}
if !stallTimer.Reset(streamTimeout) {
return fmt.Errorf("stall was detected while streaming response, aborting")
}
return nil
}
stream := true
req.Stream = &stream
done := make(chan int)
var genErr error
go func() {
genErr = client.Chat(ctx, &req, fn)
done <- 0
}()
select {
case <-stallTimer.C:
t.Errorf("tool-calling chat never started. Timed out after: %s", initialTimeout.String())
case <-done:
if genErr != nil {
t.Fatalf("chat failed: %v", genErr)
} }
if !gotToolCall { stallTimer := time.NewTimer(initialTimeout)
t.Fatalf("expected at least one tool call, got none") var gotToolCall bool
var lastToolCall api.ToolCall
fn := func(response api.ChatResponse) error {
if len(response.Message.ToolCalls) > 0 {
gotToolCall = true
lastToolCall = response.Message.ToolCalls[len(response.Message.ToolCalls)-1]
}
if !stallTimer.Reset(streamTimeout) {
return fmt.Errorf("stall was detected while streaming response, aborting")
}
return nil
} }
if lastToolCall.Function.Name != "get_weather" { stream := true
t.Errorf("unexpected tool called: got %q want %q", lastToolCall.Function.Name, "get_weather") req.Stream = &stream
done := make(chan int)
var genErr error
go func() {
genErr = client.Chat(ctx, &req, fn)
done <- 0
}()
select {
case <-stallTimer.C:
t.Errorf("tool-calling chat never started. Timed out after: %s", initialTimeout.String())
case <-done:
if genErr != nil {
t.Fatalf("chat failed: %v", genErr)
}
if !gotToolCall {
t.Fatalf("expected at least one tool call, got none")
}
if lastToolCall.Function.Name != "get_weather" {
t.Errorf("unexpected tool called: got %q want %q", lastToolCall.Function.Name, "get_weather")
}
if _, ok := lastToolCall.Function.Arguments["location"]; !ok {
t.Errorf("expected tool arguments to include 'location', got: %s", lastToolCall.Function.Arguments.String())
}
case <-ctx.Done():
t.Error("outer test context done while waiting for tool-calling chat")
}
})
t.Run("OpenAIAPI", func(t *testing.T) {
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather in a given location",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"location"},
Properties: map[string]api.ToolProperty{
"location": {
Type: api.PropertyType{"string"},
Description: "The city and state, e.g. San Francisco, CA",
},
},
},
},
},
} }
if _, ok := lastToolCall.Function.Arguments["location"]; !ok { req := openai.ChatCompletionRequest{
t.Errorf("expected tool arguments to include 'location', got: %s", lastToolCall.Function.Arguments.String()) Model: model,
Messages: []openai.Message{
{
Role: "user",
Content: "Call get_weather with location set to San Francisco.",
},
},
Tools: tools,
Stream: true,
Temperature: float64Ptr(0),
} }
case <-ctx.Done():
t.Error("outer test context done while waiting for tool-calling chat") stallTimer := time.NewTimer(initialTimeout)
} var gotToolCall bool
var lastToolCall openai.ToolCall
fn := func(response openai.ChatCompletionChunk) error {
if len(response.Choices) > 0 && len(response.Choices[0].Delta.ToolCalls) > 0 {
gotToolCall = true
toolCalls := response.Choices[0].Delta.ToolCalls
lastToolCall = toolCalls[len(toolCalls)-1]
}
if !stallTimer.Reset(streamTimeout) {
return fmt.Errorf("stall was detected while streaming response, aborting")
}
return nil
}
done := make(chan int)
var genErr error
go func() {
genErr = sendOpenAIChatStreamRequest(ctx, "http://"+endpoint, req, fn)
done <- 0
}()
select {
case <-stallTimer.C:
t.Errorf("tool-calling chat never started. Timed out after: %s", initialTimeout.String())
case <-done:
if genErr != nil {
t.Fatalf("chat failed: %v", genErr)
}
if !gotToolCall {
t.Fatalf("expected at least one tool call, got none")
}
if lastToolCall.Function.Name != "get_weather" {
t.Errorf("unexpected tool called: got %q want %q", lastToolCall.Function.Name, "get_weather")
}
if !strings.Contains(lastToolCall.Function.Arguments, "location") {
t.Errorf("expected tool arguments to include 'location', got: %s", lastToolCall.Function.Arguments)
}
if !strings.Contains(lastToolCall.Function.Arguments, "San Francisco") {
t.Errorf("expected tool arguments to include 'San Francisco', got: %s", lastToolCall.Function.Arguments)
}
case <-ctx.Done():
t.Error("outer test context done while waiting for tool-calling chat")
}
})
}) })
} }
} }

View File

@ -38,7 +38,6 @@ var (
// Note: add newer models at the top of the list to test them first // Note: add newer models at the top of the list to test them first
ollamaEngineChatModels = []string{ ollamaEngineChatModels = []string{
"ministral-3",
"qwen3-coder:30b", "qwen3-coder:30b",
"gpt-oss:20b", "gpt-oss:20b",
"gemma3n:e2b", "gemma3n:e2b",
@ -168,7 +167,6 @@ var (
"medllama2", "medllama2",
"megadolphin", "megadolphin",
"minicpm-v", "minicpm-v",
"ministral-3",
"mistral-large", "mistral-large",
"mistral-nemo", "mistral-nemo",
"mistral-openorca", "mistral-openorca",
@ -262,23 +260,6 @@ var (
"snowflake-arctic-embed", "snowflake-arctic-embed",
"snowflake-arctic-embed2", "snowflake-arctic-embed2",
} }
libraryToolsModels = []string{
"qwen3-vl",
"gpt-oss:20b",
"gpt-oss:120b",
"qwen3",
"llama3.1",
"llama3.2",
"mistral",
"qwen2.5",
"qwen2",
"ministral-3",
"mistral-nemo",
"mistral-small",
"mixtral:8x22b",
"qwq",
"granite3.3",
}
blueSkyPrompt = "why is the sky blue? Be brief but factual in your reply" blueSkyPrompt = "why is the sky blue? Be brief but factual in your reply"
blueSkyExpected = []string{"rayleigh", "scatter", "atmosphere", "nitrogen", "oxygen", "wavelength", "interact"} blueSkyExpected = []string{"rayleigh", "scatter", "atmosphere", "nitrogen", "oxygen", "wavelength", "interact"}
@ -750,6 +731,23 @@ func skipUnderMinVRAM(t *testing.T, gb uint64) {
} }
} }
var minVRAM = map[string]uint64{
"qwen3-vl": 16,
"gpt-oss:20b": 16,
"gpt-oss:120b": 70,
"qwen3": 6,
"llama3.1": 8,
"llama3.2": 4,
"mistral": 6,
"qwen2.5": 6,
"qwen2": 6,
"mistral-nemo": 9,
"mistral-small": 16,
"mixtral:8x22b": 80,
"qwq": 20,
"granite3.3": 7,
}
// Skip if the target model isn't X% GPU loaded to avoid excessive runtime // Skip if the target model isn't X% GPU loaded to avoid excessive runtime
func skipIfNotGPULoaded(ctx context.Context, t *testing.T, client *api.Client, model string, minPercent int) { func skipIfNotGPULoaded(ctx context.Context, t *testing.T, client *api.Client, model string, minPercent int) {
gpuPercent := getGPUPercent(ctx, t, client, model) gpuPercent := getGPUPercent(ctx, t, client, model)

View File

@ -1,94 +0,0 @@
// Package orderedmap provides a generic ordered map that maintains insertion order.
// It wraps github.com/wk8/go-ordered-map/v2 to encapsulate the dependency.
package orderedmap
import (
"encoding/json"
"iter"
orderedmap "github.com/wk8/go-ordered-map/v2"
)
// Map is a generic ordered map that maintains insertion order.
type Map[K comparable, V any] struct {
om *orderedmap.OrderedMap[K, V]
}
// New creates a new empty ordered map.
func New[K comparable, V any]() *Map[K, V] {
return &Map[K, V]{
om: orderedmap.New[K, V](),
}
}
// Get retrieves a value by key.
func (m *Map[K, V]) Get(key K) (V, bool) {
if m == nil || m.om == nil {
var zero V
return zero, false
}
return m.om.Get(key)
}
// Set sets a key-value pair. If the key already exists, its value is updated
// but its position in the iteration order is preserved. If the key is new,
// it is appended to the end.
func (m *Map[K, V]) Set(key K, value V) {
if m == nil {
return
}
if m.om == nil {
m.om = orderedmap.New[K, V]()
}
m.om.Set(key, value)
}
// Len returns the number of entries.
func (m *Map[K, V]) Len() int {
if m == nil || m.om == nil {
return 0
}
return m.om.Len()
}
// All returns an iterator over all key-value pairs in insertion order.
func (m *Map[K, V]) All() iter.Seq2[K, V] {
return func(yield func(K, V) bool) {
if m == nil || m.om == nil {
return
}
for pair := m.om.Oldest(); pair != nil; pair = pair.Next() {
if !yield(pair.Key, pair.Value) {
return
}
}
}
}
// ToMap converts to a regular Go map.
// Note: The resulting map does not preserve order.
func (m *Map[K, V]) ToMap() map[K]V {
if m == nil || m.om == nil {
return nil
}
result := make(map[K]V, m.om.Len())
for pair := m.om.Oldest(); pair != nil; pair = pair.Next() {
result[pair.Key] = pair.Value
}
return result
}
// MarshalJSON implements json.Marshaler. The JSON output preserves key order.
func (m *Map[K, V]) MarshalJSON() ([]byte, error) {
if m == nil || m.om == nil {
return []byte("null"), nil
}
return json.Marshal(m.om)
}
// UnmarshalJSON implements json.Unmarshaler. The insertion order matches the
// order of keys in the JSON input.
func (m *Map[K, V]) UnmarshalJSON(data []byte) error {
m.om = orderedmap.New[K, V]()
return json.Unmarshal(data, &m.om)
}

View File

@ -1,348 +0,0 @@
package orderedmap
import (
"encoding/json"
"slices"
"testing"
)
func TestMap_BasicOperations(t *testing.T) {
m := New[string, int]()
// Test empty map
if m.Len() != 0 {
t.Errorf("expected Len() = 0, got %d", m.Len())
}
v, ok := m.Get("a")
if ok {
t.Error("expected Get on empty map to return false")
}
if v != 0 {
t.Errorf("expected zero value, got %d", v)
}
// Test Set and Get
m.Set("a", 1)
m.Set("b", 2)
m.Set("c", 3)
if m.Len() != 3 {
t.Errorf("expected Len() = 3, got %d", m.Len())
}
v, ok = m.Get("a")
if !ok || v != 1 {
t.Errorf("expected Get(a) = (1, true), got (%d, %v)", v, ok)
}
v, ok = m.Get("b")
if !ok || v != 2 {
t.Errorf("expected Get(b) = (2, true), got (%d, %v)", v, ok)
}
v, ok = m.Get("c")
if !ok || v != 3 {
t.Errorf("expected Get(c) = (3, true), got (%d, %v)", v, ok)
}
// Test updating existing key preserves position
m.Set("a", 10)
v, ok = m.Get("a")
if !ok || v != 10 {
t.Errorf("expected Get(a) = (10, true), got (%d, %v)", v, ok)
}
if m.Len() != 3 {
t.Errorf("expected Len() = 3 after update, got %d", m.Len())
}
}
func TestMap_InsertionOrderPreserved(t *testing.T) {
m := New[string, int]()
// Insert in non-alphabetical order
m.Set("z", 1)
m.Set("a", 2)
m.Set("m", 3)
m.Set("b", 4)
// Verify iteration order matches insertion order
var keys []string
var values []int
for k, v := range m.All() {
keys = append(keys, k)
values = append(values, v)
}
expectedKeys := []string{"z", "a", "m", "b"}
expectedValues := []int{1, 2, 3, 4}
if !slices.Equal(keys, expectedKeys) {
t.Errorf("expected keys %v, got %v", expectedKeys, keys)
}
if !slices.Equal(values, expectedValues) {
t.Errorf("expected values %v, got %v", expectedValues, values)
}
}
func TestMap_UpdatePreservesPosition(t *testing.T) {
m := New[string, int]()
m.Set("first", 1)
m.Set("second", 2)
m.Set("third", 3)
// Update middle element
m.Set("second", 20)
var keys []string
for k := range m.All() {
keys = append(keys, k)
}
// Order should still be first, second, third
expected := []string{"first", "second", "third"}
if !slices.Equal(keys, expected) {
t.Errorf("expected keys %v, got %v", expected, keys)
}
}
func TestMap_MarshalJSON_PreservesOrder(t *testing.T) {
m := New[string, int]()
// Insert in non-alphabetical order
m.Set("z", 1)
m.Set("a", 2)
m.Set("m", 3)
data, err := json.Marshal(m)
if err != nil {
t.Fatalf("Marshal failed: %v", err)
}
// JSON should preserve insertion order, not alphabetical
expected := `{"z":1,"a":2,"m":3}`
if string(data) != expected {
t.Errorf("expected %s, got %s", expected, string(data))
}
}
func TestMap_UnmarshalJSON_PreservesOrder(t *testing.T) {
// JSON with non-alphabetical key order
jsonData := `{"z":1,"a":2,"m":3}`
m := New[string, int]()
if err := json.Unmarshal([]byte(jsonData), m); err != nil {
t.Fatalf("Unmarshal failed: %v", err)
}
// Verify iteration order matches JSON order
var keys []string
for k := range m.All() {
keys = append(keys, k)
}
expected := []string{"z", "a", "m"}
if !slices.Equal(keys, expected) {
t.Errorf("expected keys %v, got %v", expected, keys)
}
}
func TestMap_JSONRoundTrip(t *testing.T) {
// Test that unmarshal -> marshal produces identical JSON
original := `{"zebra":"z","apple":"a","mango":"m","banana":"b"}`
m := New[string, string]()
if err := json.Unmarshal([]byte(original), m); err != nil {
t.Fatalf("Unmarshal failed: %v", err)
}
data, err := json.Marshal(m)
if err != nil {
t.Fatalf("Marshal failed: %v", err)
}
if string(data) != original {
t.Errorf("round trip failed: expected %s, got %s", original, string(data))
}
}
func TestMap_ToMap(t *testing.T) {
m := New[string, int]()
m.Set("a", 1)
m.Set("b", 2)
regular := m.ToMap()
if len(regular) != 2 {
t.Errorf("expected len 2, got %d", len(regular))
}
if regular["a"] != 1 {
t.Errorf("expected regular[a] = 1, got %d", regular["a"])
}
if regular["b"] != 2 {
t.Errorf("expected regular[b] = 2, got %d", regular["b"])
}
}
func TestMap_NilSafety(t *testing.T) {
var m *Map[string, int]
// All operations should be safe on nil
if m.Len() != 0 {
t.Errorf("expected Len() = 0 on nil map, got %d", m.Len())
}
v, ok := m.Get("a")
if ok {
t.Error("expected Get on nil map to return false")
}
if v != 0 {
t.Errorf("expected zero value from nil map, got %d", v)
}
// Set on nil is a no-op
m.Set("a", 1)
if m.Len() != 0 {
t.Errorf("expected Len() = 0 after Set on nil, got %d", m.Len())
}
// All returns empty iterator
var keys []string
for k := range m.All() {
keys = append(keys, k)
}
if len(keys) != 0 {
t.Errorf("expected empty iteration on nil map, got %v", keys)
}
// ToMap returns nil
if m.ToMap() != nil {
t.Error("expected ToMap to return nil on nil map")
}
// MarshalJSON returns null
data, err := json.Marshal(m)
if err != nil {
t.Fatalf("Marshal failed: %v", err)
}
if string(data) != "null" {
t.Errorf("expected null, got %s", string(data))
}
}
func TestMap_EmptyMapMarshal(t *testing.T) {
m := New[string, int]()
data, err := json.Marshal(m)
if err != nil {
t.Fatalf("Marshal failed: %v", err)
}
if string(data) != "{}" {
t.Errorf("expected {}, got %s", string(data))
}
}
func TestMap_NestedValues(t *testing.T) {
m := New[string, any]()
m.Set("string", "hello")
m.Set("number", 42)
m.Set("bool", true)
m.Set("nested", map[string]int{"x": 1})
data, err := json.Marshal(m)
if err != nil {
t.Fatalf("Marshal failed: %v", err)
}
expected := `{"string":"hello","number":42,"bool":true,"nested":{"x":1}}`
if string(data) != expected {
t.Errorf("expected %s, got %s", expected, string(data))
}
}
func TestMap_AllIteratorEarlyExit(t *testing.T) {
m := New[string, int]()
m.Set("a", 1)
m.Set("b", 2)
m.Set("c", 3)
m.Set("d", 4)
// Collect only first 2
var keys []string
for k := range m.All() {
keys = append(keys, k)
if len(keys) == 2 {
break
}
}
expected := []string{"a", "b"}
if !slices.Equal(keys, expected) {
t.Errorf("expected %v, got %v", expected, keys)
}
}
func TestMap_IntegerKeys(t *testing.T) {
m := New[int, string]()
m.Set(3, "three")
m.Set(1, "one")
m.Set(2, "two")
var keys []int
for k := range m.All() {
keys = append(keys, k)
}
// Should preserve insertion order, not numerical order
expected := []int{3, 1, 2}
if !slices.Equal(keys, expected) {
t.Errorf("expected %v, got %v", expected, keys)
}
}
func TestMap_UnmarshalIntoExisting(t *testing.T) {
m := New[string, int]()
m.Set("existing", 999)
// Unmarshal should replace contents
if err := json.Unmarshal([]byte(`{"new":1}`), m); err != nil {
t.Fatalf("Unmarshal failed: %v", err)
}
_, ok := m.Get("existing")
if ok {
t.Error("existing key should be gone after unmarshal")
}
v, ok := m.Get("new")
if !ok || v != 1 {
t.Errorf("expected Get(new) = (1, true), got (%d, %v)", v, ok)
}
}
func TestMap_LargeOrderPreservation(t *testing.T) {
m := New[string, int]()
// Create many keys in specific order
keys := make([]string, 100)
for i := range 100 {
keys[i] = string(rune('a' + (99 - i))) // reverse order: 'd', 'c', 'b', 'a' (extended)
if i >= 26 {
keys[i] = string(rune('A'+i-26)) + string(rune('a'+i%26))
}
}
for i, k := range keys {
m.Set(k, i)
}
// Verify order preserved
var resultKeys []string
for k := range m.All() {
resultKeys = append(resultKeys, k)
}
if !slices.Equal(keys, resultKeys) {
t.Error("large map should preserve insertion order")
}
}

View File

@ -3,6 +3,7 @@ package kvcache
import ( import (
"errors" "errors"
"fmt" "fmt"
"log/slog"
"math" "math"
"slices" "slices"
@ -39,18 +40,18 @@ type Causal struct {
// ** current forward pass ** // ** current forward pass **
// the active layer for Get and Put
curLayer int
// starting location for data storage for this batch
curLoc int
// size of the current batch // size of the current batch
curBatchSize int curBatchSize int
// locations for data storage for this batch
curLoc ml.Tensor
// mask of the cache as used by this batch // mask of the cache as used by this batch
curMask ml.Tensor curMask ml.Tensor
// the active layer for Get and Put
curLayer int
// locations in the cache that are needed for this batch // locations in the cache that are needed for this batch
curCellRange cellRange curCellRange cellRange
@ -140,6 +141,10 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity
c.config.CachePadding = 1 c.config.CachePadding = 1
} }
if c.config.MaskBatchPadding == 0 {
c.config.MaskBatchPadding = 1
}
if c.config.MaskDType == ml.DTypeOther { if c.config.MaskDType == ml.DTypeOther {
c.config.MaskDType = ml.DTypeF32 c.config.MaskDType = ml.DTypeF32
} }
@ -201,47 +206,45 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
c.curPositions = batch.Positions c.curPositions = batch.Positions
c.opts.Except = nil c.opts.Except = nil
var locs []int32
if !reserve { if !reserve {
c.updateSlidingWindow() c.updateSlidingWindow()
var err error var err error
locs, err = c.findLocs() c.curLoc, err = c.findStartLoc()
if errors.Is(err, ErrKvCacheFull) {
c.defrag()
c.curLoc, err = c.findStartLoc()
}
if err != nil { if err != nil {
return err return err
} }
for i, pos := range batch.Positions { for i, pos := range batch.Positions {
seq := batch.Sequences[i] seq := batch.Sequences[i]
loc := int(locs[i])
c.cells[loc] = cacheCell{pos: pos, sequences: []int{seq}} c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}
seqRange, ok := c.cellRanges[seq] seqRange, ok := c.cellRanges[seq]
if !ok { if !ok {
seqRange = newRange() seqRange = newRange()
} }
seqRange.min = min(seqRange.min, loc) seqRange.min = min(seqRange.min, c.curLoc+i)
c.curCellRange.min = min(c.curCellRange.min, loc) c.curCellRange.min = min(c.curCellRange.min, c.curLoc+i)
seqRange.max = max(seqRange.max, loc) seqRange.max = max(seqRange.max, c.curLoc+i)
c.curCellRange.max = max(c.curCellRange.max, loc) c.curCellRange.max = max(c.curCellRange.max, c.curLoc+i)
c.cellRanges[seq] = seqRange c.cellRanges[seq] = seqRange
} }
} else { } else {
// If we are reserving memory, don't update any of the cache metadata but set the size // If we are reserving memory, don't update any of the cache metadata but set the size
// to the worst case. // to the worst case.
locs = make([]int32, c.curBatchSize) c.curLoc = 0
for i := range locs {
locs[i] = int32(i)
}
c.curCellRange.min = 0 c.curCellRange.min = 0
c.curCellRange.max = len(c.cells) - 1 c.curCellRange.max = len(c.cells) - 1
} }
c.curLoc = ctx.Input().FromInts(locs, len(locs))
c.curMask = c.buildMask(ctx) c.curMask = c.buildMask(ctx)
return nil return nil
@ -254,20 +257,22 @@ func newRange() cellRange {
} }
} }
// Returns a slice of locations where each token in the batch should be stored // Find the first contiguous block of at least curBatchSize
func (c *Causal) findLocs() ([]int32, error) { func (c *Causal) findStartLoc() (int, error) {
loc := make([]int32, 0, c.curBatchSize) var start, count int
for i := range c.cells { for i := range c.cells {
if len(c.cells[i].sequences) == 0 { if len(c.cells[i].sequences) == 0 {
loc = append(loc, int32(i)) count++
if len(loc) >= c.curBatchSize { if count >= c.curBatchSize {
return loc, nil return start, nil
} }
} else {
start = i + 1
count = 0
} }
} }
return nil, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize) return 0, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize)
} }
func (c *Causal) updateSlidingWindow() { func (c *Causal) updateSlidingWindow() {
@ -360,12 +365,15 @@ func roundUp(length, pad int) int {
// token in the history should apply. This is based on both the sequence and causality (the // token in the history should apply. This is based on both the sequence and causality (the
// position of the history is not ahead of the token in the batch). // position of the history is not ahead of the token in the batch).
func (c *Causal) buildMask(ctx ml.Context) ml.Tensor { func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
// Align and pad the two dimensions as required by the backend
batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)
c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding) c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1 c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1
length := c.curCellRange.max - c.curCellRange.min + 1 length := c.curCellRange.max - c.curCellRange.min + 1
mask := make([]float32, c.curBatchSize*length) mask := make([]float32, batchSize*length)
for i := range c.curBatchSize { for i := range c.curBatchSize {
enabled := !slices.Contains(c.opts.Except, i) enabled := !slices.Contains(c.opts.Except, i)
@ -379,7 +387,13 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
} }
} }
maskTensor := ctx.Input().FromFloats(mask, length, c.curBatchSize) // Mask out any padding tokens we added. For padding that we added to the cache history, this
// has already been masked out because the sequence doesn't match.
for i := c.curBatchSize * length; i < len(mask); i++ {
mask[i] = float32(math.Inf(-1))
}
maskTensor := ctx.Input().FromFloats(mask, length, batchSize)
if c.config.MaskDType != ml.DTypeF32 { if c.config.MaskDType != ml.DTypeF32 {
maskTensor = maskTensor.Cast(ctx, c.config.MaskDType) maskTensor = maskTensor.Cast(ctx, c.config.MaskDType)
@ -388,6 +402,145 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
return maskTensor return maskTensor
} }
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
for i, key := range c.keys {
if key == nil {
continue
}
kHeadDim := key.Dim(0)
numKVHeads := key.Dim(1)
rowSize := key.Stride(2)
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length)
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length)
value := c.values[i]
var vSrcView, vDstView ml.Tensor
if c.config.PermutedV {
vHeadDim := value.Dim(1)
elemSize := value.Stride(0)
vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
} else {
vHeadDim := value.Dim(0)
rowSize := value.Stride(2)
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length)
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length)
}
ctx.Forward(
kSrcView.Copy(ctx, kDstView),
vSrcView.Copy(ctx, vDstView),
)
}
}
func (c *Causal) defrag() {
slog.Debug("defragmenting kv cache")
// Defrag strategy:
// - Search for empty holes at the beginning of the cache,
// filling them with active data starting at the end
// - If there are contiguous elements that need to be moved,
// combine them into a single operation by holding new moves
// until we see that the next one is non-contiguous
// - Fill up the context with the maximum number of operations it
// can hold then compute that and continue with a new context
//
// We could try to optimize placement by grouping blocks from
// the same sequences together but most likely the next forward
// pass will disrupt this anyways, so the real world benefit
// seems limited as this time.
ctx := c.backend.NewContext()
// For every move, 6 tensors are required per layer (2 views and a
// copy for each of k and v). We also need to refer to the original
// k and v cache tensors - once per layer, not per move.
layers := 0
for _, key := range c.keys {
if key == nil {
continue
}
layers++
}
maxMoves := (ctx.MaxGraphNodes() - 2*layers) / (6 * layers)
moves := 0
var pendingSrc, pendingDst, pendingLen int
src := len(c.cells) - 1
for dst := 0; dst < src; dst++ {
if len(c.cells[dst].sequences) == 0 {
for ; src > dst; src-- {
if len(c.cells[src].sequences) != 0 {
c.cells[dst] = c.cells[src]
c.cells[src] = cacheCell{}
if pendingLen > 0 {
if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen {
pendingSrc = src
pendingLen++
break
} else {
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
moves++
}
}
pendingSrc = src
pendingDst = dst
pendingLen = 1
break
}
}
}
if moves >= maxMoves {
ctx.Compute()
ctx.Close()
ctx = c.backend.NewContext()
moves = 0
}
}
if pendingLen > 0 {
c.moveCells(ctx, pendingSrc, pendingDst, pendingLen)
moves++
}
if moves > 0 {
ctx.Compute()
}
ctx.Close()
// Reset range metadata
for seq := range c.cellRanges {
seqRange := newRange()
for i, cell := range c.cells {
if slices.Contains(cell.sequences, seq) {
if i < seqRange.min {
seqRange.min = i
}
if i > seqRange.max {
seqRange.max = i
}
}
}
c.cellRanges[seq] = seqRange
}
c.updateSlidingWindow()
}
func (c *Causal) SetLayer(layer int) { func (c *Causal) SetLayer(layer int) {
c.curLayer = layer c.curLayer = layer
} }
@ -472,25 +625,18 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
} }
} }
key = key.Reshape(ctx, kHeadDim*numKVHeads, batchSize) rowSize := c.keys[c.curLayer].Stride(2)
keyCache := c.keys[c.curLayer] ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, rowSize*c.curLoc, kHeadDim*numKVHeads*batchSize)))
keyCache = keyCache.Reshape(ctx, kHeadDim*numKVHeads, len(c.cells))
ctx.Forward(keyCache.SetRows(ctx, key, c.curLoc))
if c.config.PermutedV { if c.config.PermutedV {
value = value.Reshape(ctx, vHeadDim*numKVHeads, 1, batchSize) elemSize := c.values[c.curLayer].Stride(0)
value = value.Permute(ctx, 2, 0, 1, 3)
valueCache := c.values[c.curLayer] value = value.Permute(ctx, 1, 2, 0, 3)
valueCache = valueCache.Reshape(ctx, 1, len(c.cells), vHeadDim*numKVHeads) ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads)))
ctx.Forward(valueCache.SetRows(ctx, value, c.curLoc))
} else { } else {
value = value.Reshape(ctx, vHeadDim*numKVHeads, batchSize) rowSize := c.values[c.curLayer].Stride(2)
valueCache := c.values[c.curLayer]
valueCache = valueCache.Reshape(ctx, vHeadDim*numKVHeads, len(c.cells))
ctx.Forward(valueCache.SetRows(ctx, value, c.curLoc)) ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, rowSize*c.curLoc, vHeadDim*numKVHeads*batchSize)))
} }
} }

File diff suppressed because it is too large Load Diff

2
llama/build-info.cpp generated vendored
View File

@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = 0; int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "ec98e2002"; char const *LLAMA_COMMIT = "3cfa9c3f125763305b4226bc032f1954f08990dc";
char const *LLAMA_COMPILER = ""; char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = ""; char const *LLAMA_BUILD_TARGET = "";

View File

@ -17,17 +17,11 @@ include /tools/mtmd/clip.cpp
include /tools/mtmd/mtmd.cpp include /tools/mtmd/mtmd.cpp
include /tools/mtmd/mtmd-audio.cpp include /tools/mtmd/mtmd-audio.cpp
include /tools/mtmd/mtmd-helper.cpp include /tools/mtmd/mtmd-helper.cpp
include /tools/mtmd/models/
include /tools/mtmd/models/*.h
include /tools/mtmd/models/*.cpp
include /src/ include /src/
include /src/llama.* include /src/llama.*
include /src/llama-*.* include /src/llama-*.*
include /src/unicode-data.* include /src/unicode-data.*
include /src/unicode.* include /src/unicode.*
include /src/models/
include /src/models/*.h
include /src/models/*.cpp
include /vendor/ include /vendor/
include /vendor/miniaudio/ include /vendor/miniaudio/
include /vendor/miniaudio/*.h include /vendor/miniaudio/*.h

View File

@ -8,7 +8,6 @@
#include "common.h" #include "common.h"
#include "log.h" #include "log.h"
#include "llama.h" #include "llama.h"
#include "sampling.h"
#include <algorithm> #include <algorithm>
#include <cinttypes> #include <cinttypes>
@ -27,6 +26,7 @@
#include <sstream> #include <sstream>
#include <string> #include <string>
#include <thread> #include <thread>
#include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include <vector> #include <vector>
@ -60,14 +60,6 @@
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif
common_time_meas::common_time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
common_time_meas::~common_time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
// //
// CPU utils // CPU utils
// //
@ -363,7 +355,11 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
} }
void common_init() { void common_init() {
llama_log_set(common_log_default_callback, NULL); llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}, NULL);
#ifdef NDEBUG #ifdef NDEBUG
const char * build_type = ""; const char * build_type = "";
@ -694,7 +690,7 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
// Validate if a filename is safe to use // Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) { bool fs_validate_filename(const std::string & filename) {
if (!filename.length()) { if (!filename.length()) {
// Empty filename invalid // Empty filename invalid
return false; return false;
@ -754,14 +750,10 @@ bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c == 0xFFFD // Replacement Character (UTF-8) || c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM) || c == 0xFEFF // Byte Order Mark (BOM)
|| c == ':' || c == '*' // Illegal characters || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') { || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
return false; return false;
} }
if (!allow_subdirs && (c == '/' || c == '\\')) {
// Subdirectories not allowed, reject path separators
return false;
}
} }
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
@ -786,29 +778,11 @@ bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
#include <iostream> #include <iostream>
#ifdef _WIN32
static std::wstring utf8_to_wstring(const std::string & str) {
if (str.empty()) {
return std::wstring();
}
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
if (size <= 0) {
return std::wstring();
}
std::wstring wstr(size, 0);
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
return wstr;
}
#endif
// returns true if successful, false otherwise // returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) { bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32 #ifdef _WIN32
std::wstring wpath = utf8_to_wstring(path); std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
// if the path already exists, check whether it's a directory // if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str()); const DWORD attributes = GetFileAttributesW(wpath.c_str());
@ -881,11 +855,6 @@ bool fs_create_directory_with_parents(const std::string & path) {
#endif // _WIN32 #endif // _WIN32
} }
bool fs_is_directory(const std::string & path) {
std::filesystem::path dir(path);
return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
}
std::string fs_get_cache_directory() { std::string fs_get_cache_directory() {
std::string cache_directory = ""; std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) { auto ensure_trailing_slash = [](std::string p) {
@ -920,8 +889,6 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/"); cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32) #elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA"); cache_directory = std::getenv("LOCALAPPDATA");
#elif defined(__EMSCRIPTEN__)
GGML_ABORT("not implemented on this platform");
#else #else
# error Unknown architecture # error Unknown architecture
#endif #endif
@ -941,258 +908,34 @@ std::string fs_get_cache_file(const std::string & filename) {
return cache_directory + filename; return cache_directory + filename;
} }
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
std::vector<common_file_info> files;
if (path.empty()) return files;
std::filesystem::path dir(path);
if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
return files;
}
for (const auto & entry : std::filesystem::directory_iterator(dir)) {
try {
// Only include regular files (skip directories)
const auto & p = entry.path();
if (std::filesystem::is_regular_file(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.is_dir = false;
try {
info.size = static_cast<size_t>(std::filesystem::file_size(p));
} catch (const std::filesystem::filesystem_error &) {
info.size = 0;
}
files.push_back(std::move(info));
} else if (include_directories && std::filesystem::is_directory(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.size = 0; // Directories have no size
info.is_dir = true;
files.push_back(std::move(info));
}
} catch (const std::filesystem::filesystem_error &) {
// skip entries we cannot inspect
continue;
}
}
return files;
}
//
// TTY utils
//
bool tty_can_use_colors() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
// //
// Model utils // Model utils
// //
// TODO: move to common/sampling struct common_init_result common_init_from_params(common_params & params) {
static void common_init_sampler_from_model( common_init_result iparams;
const llama_model * model,
common_params_sampling & sparams) {
const uint64_t config = sparams.user_sampling_config;
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
if (config & user_config) {
return;
}
char buf[64] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
int32_t v = strtol(buf, &end, 10);
if (end && end != buf) {
dst = v;
}
}
};
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
if (config & user_config) {
return;
}
char buf[128] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
float v = strtof(buf, &end);
if (end && end != buf) {
dst = v;
}
}
};
// Sampling sequence
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
char buf[512] = {0};
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
if (!sampler_names.empty()) {
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
}
}
}
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}
struct common_init_result::impl {
impl() = default;
~impl() = default;
llama_model_ptr model;
llama_context_ptr context;
std::vector<llama_adapter_lora_ptr> lora;
std::vector<common_sampler_ptr> samplers;
};
common_init_result::common_init_result(common_params & params) :
pimpl(new impl{}) {
auto mparams = common_model_params_to_llama(params); auto mparams = common_model_params_to_llama(params);
auto cparams = common_context_params_to_llama(params);
if (params.fit_params) {
LOG_INF("%s: fitting params to device memory, to report bugs during this step use -fit off (or --verbose if you can't)\n", __func__);
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target, params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
}
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams); llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) { if (model == NULL) {
return; LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
return iparams;
} }
pimpl->model.reset(model);
const llama_vocab * vocab = llama_model_get_vocab(model); const llama_vocab * vocab = llama_model_get_vocab(model);
// updates params.sampling auto cparams = common_context_params_to_llama(params);
// TODO: fix naming
common_init_sampler_from_model(model, params.sampling);
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(vocab, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
//if (params.sampling.penalty_last_n == -1) {
// LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
// params.sampling.penalty_last_n = llama_n_ctx(lctx);
//}
//if (params.sampling.dry_penalty_last_n == -1) {
// LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
// params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
//}
pimpl->samplers.resize(cparams.n_seq_max);
for (int i = 0; i < (int) cparams.n_seq_max; ++i) {
pimpl->samplers[i].reset(common_sampler_init(model, params.sampling));
}
llama_context * lctx = llama_init_from_model(model, cparams); llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) { if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str()); LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
return; __func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
} }
pimpl->context.reset(lctx);
}
llama_model * common_init_result::model() {
return pimpl->model.get();
}
llama_context * common_init_result::context() {
return pimpl->context.get();
}
common_sampler * common_init_result::sampler(llama_seq_id seq_id) {
return pimpl->samplers[seq_id].get();
}
std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
return pimpl->lora;
}
void common_init_result::free_context() {
pimpl->context.reset();
}
common_init_result_ptr common_init_from_params(common_params & params) {
common_init_result_ptr res(new common_init_result(params));
llama_model * model = res->model();
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
return res;
}
llama_context * lctx = res->context();
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
return res;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) { if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__); LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false; params.ctx_shift = false;
@ -1204,7 +947,10 @@ common_init_result_ptr common_init_from_params(common_params & params) {
const auto cvec = common_control_vector_load(params.control_vectors); const auto cvec = common_control_vector_load(params.control_vectors);
if (cvec.n_embd == -1) { if (cvec.n_embd == -1) {
return res; llama_free(lctx);
llama_model_free(model);
return iparams;
} }
int err = llama_apply_adapter_cvec( int err = llama_apply_adapter_cvec(
@ -1215,7 +961,10 @@ common_init_result_ptr common_init_from_params(common_params & params) {
params.control_vector_layer_start, params.control_vector_layer_start,
params.control_vector_layer_end); params.control_vector_layer_end);
if (err) { if (err) {
return res; llama_free(lctx);
llama_model_free(model);
return iparams;
} }
} }
@ -1239,7 +988,10 @@ common_init_result_ptr common_init_from_params(common_params & params) {
} }
if (!ok) { if (!ok) {
return res; llama_free(lctx);
llama_model_free(model);
return iparams;
} }
} }
@ -1249,7 +1001,9 @@ common_init_result_ptr common_init_from_params(common_params & params) {
lora.reset(llama_adapter_lora_init(model, la.path.c_str())); lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
if (lora == nullptr) { if (lora == nullptr) {
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str()); LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
return res; llama_free(lctx);
llama_model_free(model);
return iparams;
} }
char buf[1024]; char buf[1024];
@ -1258,13 +1012,43 @@ common_init_result_ptr common_init_from_params(common_params & params) {
la.task_name = buf; la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf)); llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf; la.prompt_prefix = buf;
res->lora().emplace_back(std::move(lora)); // copy to list of loaded adapters iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
} }
if (!params.lora_init_without_apply) { if (!params.lora_init_without_apply) {
common_set_adapter_lora(lctx, params.lora_adapters); common_set_adapter_lora(lctx, params.lora_adapters);
} }
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
if (params.sampling.penalty_last_n == -1) {
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.penalty_last_n = llama_n_ctx(lctx);
}
if (params.sampling.dry_penalty_last_n == -1) {
LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
}
if (params.warmup) { if (params.warmup) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__); LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
@ -1303,10 +1087,11 @@ common_init_result_ptr common_init_from_params(common_params & params) {
llama_set_warmup(lctx, false); llama_set_warmup(lctx, false);
} }
return res; iparams.model.reset(model);
} iparams.context.reset(lctx);
common_init_result::~common_init_result() = default; return iparams;
}
std::string get_model_endpoint() { std::string get_model_endpoint() {
const char * model_endpoint_env = getenv("MODEL_ENDPOINT"); const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
@ -1316,9 +1101,7 @@ std::string get_model_endpoint() {
std::string model_endpoint = "https://huggingface.co/"; std::string model_endpoint = "https://huggingface.co/";
if (endpoint_env) { if (endpoint_env) {
model_endpoint = endpoint_env; model_endpoint = endpoint_env;
if (model_endpoint.back() != '/') { if (model_endpoint.back() != '/') model_endpoint += '/';
model_endpoint += '/';
}
} }
return model_endpoint; return model_endpoint;
} }

View File

@ -2,19 +2,17 @@
#pragma once #pragma once
#include "ggml-opt.h"
#include "llama-cpp.h"
#include <set> #include <set>
#include <sstream> #include <sstream>
#include <string> #include <string>
#include <string_view> #include <string_view>
#include <vector> #include <vector>
#include <map> #include <map>
#include <sstream>
#include <cmath>
#if defined(_WIN32) && !defined(_WIN32_WINNT) #include "ggml-opt.h"
#define _WIN32_WINNT 0x0A00 #include "llama-cpp.h"
#endif
#ifdef _WIN32 #ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\' #define DIRECTORY_SEPARATOR '\\'
@ -30,14 +28,7 @@
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \ fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0) } while(0)
struct common_time_meas { #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
common_time_meas(int64_t & t_acc, bool disable = false);
~common_time_meas();
const int64_t t_start_us;
int64_t & t_acc;
};
struct common_adapter_lora_info { struct common_adapter_lora_info {
std::string path; std::string path;
@ -82,8 +73,7 @@ int32_t cpu_get_num_math();
enum llama_example { enum llama_example {
LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_CLI,
LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_RETRIEVAL,
@ -99,7 +89,6 @@ enum llama_example {
LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_TTS,
LLAMA_EXAMPLE_DIFFUSION, LLAMA_EXAMPLE_DIFFUSION,
LLAMA_EXAMPLE_FINETUNE, LLAMA_EXAMPLE_FINETUNE,
LLAMA_EXAMPLE_FIT_PARAMS,
LLAMA_EXAMPLE_COUNT, LLAMA_EXAMPLE_COUNT,
}; };
@ -144,22 +133,6 @@ struct common_grammar_trigger {
llama_token token = LLAMA_TOKEN_NULL; llama_token token = LLAMA_TOKEN_NULL;
}; };
enum common_params_sampling_config : uint64_t {
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
};
// sampling parameters // sampling parameters
struct common_params_sampling { struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
@ -192,10 +165,9 @@ struct common_params_sampling {
bool no_perf = false; // disable performance metrics bool no_perf = false; // disable performance metrics
bool timing_per_token = false; bool timing_per_token = false;
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
std::vector<enum common_sampler_type> samplers = { std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES, COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY, COMMON_SAMPLER_TYPE_DRY,
@ -216,10 +188,6 @@ struct common_params_sampling {
std::vector<llama_logit_bias> logit_bias; // logit biases to apply std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
bool has_logit_bias() const {
return !logit_bias.empty();
}
// print the parameters into a string // print the parameters into a string
std::string print() const; std::string print() const;
}; };
@ -230,7 +198,6 @@ struct common_params_model {
std::string hf_repo = ""; // HF repo // NOLINT std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT std::string docker_repo = ""; // Docker repo // NOLINT
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
}; };
struct common_params_speculative { struct common_params_speculative {
@ -307,8 +274,8 @@ struct lr_opt {
struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata); struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata);
struct common_params { struct common_params {
int32_t n_predict = -1; // max. number of new tokens to predict, -1 == no limit int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size, 0 == context the model was trained with int32_t n_ctx = 4096; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_keep = 0; // number of tokens to keep from initial prompt
@ -329,12 +296,9 @@ struct common_params {
// offload params // offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default) int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
bool fit_params = true; // whether to fit unset model/context parameters to free device memory
size_t fit_params_target = 1024 * 1024*1024; // margin per device in bytes for fitting parameters to free memory
int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
@ -380,7 +344,7 @@ struct common_params {
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t verbosity = 3; // LOG_LEVEL_INFO int32_t verbosity = 0;
int32_t control_vector_layer_start = -1; // layer range for control vector int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector int32_t control_vector_layer_end = -1; // layer range for control vector
bool offline = false; bool offline = false;
@ -414,7 +378,6 @@ struct common_params {
bool simple_io = false; // improves compatibility with subprocesses and limited consoles bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool no_perf = false; // disable performance metrics bool no_perf = false; // disable performance metrics
bool show_timings = true; // show timing information on CLI
bool ctx_shift = false; // context shift on infinite text generation bool ctx_shift = false; // context shift on infinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055) bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
bool kv_unified = false; // enable unified KV cache bool kv_unified = false; // enable unified KV cache
@ -443,8 +406,6 @@ struct common_params {
bool mmproj_use_gpu = true; // use GPU for multimodal model bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s) std::vector<std::string> image; // path to image file(s)
int image_min_tokens = -1;
int image_max_tokens = -1;
// finetune // finetune
struct lr_opt lr; struct lr_opt lr;
@ -471,7 +432,7 @@ struct common_params {
std::string public_path = ""; // NOLINT std::string public_path = ""; // NOLINT
std::string api_prefix = ""; // NOLINT std::string api_prefix = ""; // NOLINT
std::string chat_template = ""; // NOLINT std::string chat_template = ""; // NOLINT
bool use_jinja = true; // NOLINT bool use_jinja = false; // NOLINT
bool enable_chat_template = true; bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
int reasoning_budget = -1; int reasoning_budget = -1;
@ -490,22 +451,14 @@ struct common_params {
bool endpoint_props = false; // only control POST requests, not GET bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false; bool endpoint_metrics = false;
// router server configs
std::string models_dir = ""; // directory containing models for the router server
std::string models_preset = ""; // directory containing model presets for the router server
int models_max = 4; // maximum number of models to load simultaneously
bool models_autoload = true; // automatically load models when requested via the router server
bool log_json = false; bool log_json = false;
std::string slot_save_path; std::string slot_save_path;
std::string media_path; // path to directory for loading media files
float slot_prompt_similarity = 0.1f; float slot_prompt_similarity = 0.1f;
// batched-bench params // batched-bench params
bool is_pp_shared = false; bool is_pp_shared = false;
bool is_tg_separate = false;
std::vector<int32_t> n_pp; std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg; std::vector<int32_t> n_tg;
@ -552,10 +505,6 @@ struct common_params {
// return false from callback to abort model loading or true to continue // return false from callback to abort model loading or true to continue
llama_progress_callback load_progress_callback = NULL; llama_progress_callback load_progress_callback = NULL;
void * load_progress_callback_user_data = NULL; void * load_progress_callback_user_data = NULL;
bool has_speculative() const {
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
}
}; };
// call once at the start of a program if it uses libcommon // call once at the start of a program if it uses libcommon
@ -650,55 +599,25 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
// Filesystem utils // Filesystem utils
// //
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false); bool fs_validate_filename(const std::string & filename);
bool fs_create_directory_with_parents(const std::string & path); bool fs_create_directory_with_parents(const std::string & path);
bool fs_is_directory(const std::string & path);
std::string fs_get_cache_directory(); std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename); std::string fs_get_cache_file(const std::string & filename);
struct common_file_info {
std::string path;
std::string name;
size_t size = 0; // in bytes
bool is_dir = false;
};
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
//
// TTY utils
//
// Auto-detect if colors can be enabled based on terminal and environment
bool tty_can_use_colors();
// //
// Model utils // Model utils
// //
struct common_sampler; // note: defines object's lifetime
// note: defines the model, context, samplers, ets. lifetimes
struct common_init_result { struct common_init_result {
common_init_result(common_params & params); llama_model_ptr model;
~common_init_result(); llama_context_ptr context;
llama_model * model(); std::vector<llama_adapter_lora_ptr> lora;
llama_context * context();
common_sampler * sampler(llama_seq_id seq_id);
std::vector<llama_adapter_lora_ptr> & lora();
void free_context();
private:
struct impl;
std::unique_ptr<impl> pimpl;
}; };
using common_init_result_ptr = std::unique_ptr<common_init_result>; struct common_init_result common_init_from_params(common_params & params);
common_init_result_ptr common_init_from_params(common_params & params);
struct llama_model_params common_model_params_to_llama ( common_params & params); struct llama_model_params common_model_params_to_llama ( common_params & params);
struct llama_context_params common_context_params_to_llama(const common_params & params); struct llama_context_params common_context_params_to_llama(const common_params & params);

View File

@ -268,10 +268,10 @@ static bool is_reserved_name(const std::string & name) {
} }
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+"); std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"\\\\]"); std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]"); std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = { std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}, {'\\', "\\\\"} {'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
}; };
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'}; std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
@ -303,11 +303,8 @@ static std::string format_literal(const std::string & literal) {
return "\"" + escaped + "\""; return "\"" + escaped + "\"";
} }
std::string gbnf_format_literal(const std::string & literal) { return format_literal(literal); } class SchemaConverter {
class common_schema_converter {
private: private:
friend class common_schema_info;
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options); friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
std::function<json(const std::string &)> _fetch_json; std::function<json(const std::string &)> _fetch_json;
bool _dotall; bool _dotall;
@ -604,10 +601,7 @@ private:
} }
std::string _resolve_ref(const std::string & ref) { std::string _resolve_ref(const std::string & ref) {
auto it = ref.find('#'); std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
std::string ref_fragment = it != std::string::npos ? ref.substr(it + 1) : ref;
static const std::regex nonalphanumeric_regex(R"([^a-zA-Z0-9-]+)");
std::string ref_name = "ref" + std::regex_replace(ref_fragment, nonalphanumeric_regex, "-");
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) { if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
_refs_being_resolved.insert(ref); _refs_being_resolved.insert(ref);
json resolved = _refs[ref]; json resolved = _refs[ref];
@ -730,7 +724,7 @@ private:
} }
public: public:
common_schema_converter( SchemaConverter(
const std::function<json(const std::string &)> & fetch_json, const std::function<json(const std::string &)> & fetch_json,
bool dotall) bool dotall)
: _fetch_json(fetch_json), _dotall(dotall) : _fetch_json(fetch_json), _dotall(dotall)
@ -780,24 +774,11 @@ public:
std::vector<std::string> tokens = string_split(pointer, "/"); std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) { for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i]; std::string sel = tokens[i];
if (target.is_object() && target.contains(sel)) { if (target.is_null() || !target.contains(sel)) {
target = target[sel];
} else if (target.is_array()) {
size_t sel_index;
try {
sel_index = std::stoul(sel);
} catch (const std::invalid_argument & e) {
sel_index = target.size();
}
if (sel_index >= target.size()) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel_index];
} else {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump()); _errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return; return;
} }
target = target[sel];
} }
_refs[ref] = target; _refs[ref] = target;
} }
@ -975,7 +956,7 @@ public:
void check_errors() { void check_errors() {
if (!_errors.empty()) { if (!_errors.empty()) {
throw std::invalid_argument("JSON schema conversion failed:\n" + string_join(_errors, "\n")); throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
} }
if (!_warnings.empty()) { if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str()); fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
@ -991,134 +972,6 @@ public:
} }
}; };
// common_schema_info implementation (pimpl)
common_schema_info::common_schema_info()
: impl_(std::make_unique<common_schema_converter>(
[](const std::string &) { return json(); },
false)) {}
common_schema_info::~common_schema_info() = default;
common_schema_info::common_schema_info(common_schema_info &&) noexcept = default;
common_schema_info & common_schema_info::operator=(common_schema_info &&) noexcept = default;
void common_schema_info::resolve_refs(nlohmann::ordered_json & schema) {
impl_->resolve_refs(schema, "");
}
// Determines if a JSON schema can resolve to a string type through any path.
// Some models emit raw string values rather than JSON-encoded strings for string parameters.
// If any branch of the schema (via oneOf, anyOf, $ref, etc.) permits a string, this returns
// true, allowing callers to handle the value as a raw string for simplicity.
bool common_schema_info::resolves_to_string(const nlohmann::ordered_json & schema) {
std::unordered_set<std::string> visited_refs;
std::function<bool(const json &)> check = [&](const json & s) -> bool {
if (!s.is_object()) {
return false;
}
// Handle $ref
if (s.contains("$ref")) {
const std::string & ref = s["$ref"];
if (visited_refs.find(ref) != visited_refs.end()) {
// Circular reference, assume not a string to be safe
return false;
}
visited_refs.insert(ref);
auto it = impl_->_refs.find(ref);
if (it != impl_->_refs.end()) {
return check(it->second);
}
return false;
}
// Check type field
if (s.contains("type")) {
const json & schema_type = s["type"];
if (schema_type.is_string()) {
if (schema_type == "string") {
return true;
}
} else if (schema_type.is_array()) {
// Type can be an array like ["string", "null"]
for (const auto & t : schema_type) {
if (t == "string") {
return true;
}
}
}
}
// Check oneOf/anyOf - if any alternative can be a string
if (s.contains("oneOf")) {
for (const auto & alt : s["oneOf"]) {
if (check(alt)) {
return true;
}
}
}
if (s.contains("anyOf")) {
for (const auto & alt : s["anyOf"]) {
if (check(alt)) {
return true;
}
}
}
// Check allOf - all components must be compatible with string type
if (s.contains("allOf")) {
bool all_string = true;
for (const auto & component : s["allOf"]) {
if (!check(component)) {
all_string = false;
break;
}
}
if (all_string) {
return true;
}
}
// Check const - if the constant value is a string
if (s.contains("const")) {
if (s["const"].is_string()) {
return true;
}
}
// Check enum - if any enum value is a string
if (s.contains("enum")) {
for (const auto & val : s["enum"]) {
if (val.is_string()) {
return true;
}
}
}
// String-specific keywords imply string type
if (s.contains("pattern") || s.contains("minLength") || s.contains("maxLength")) {
return true;
}
// Check format - many formats imply string
if (s.contains("format")) {
const std::string & fmt = s["format"];
if (fmt == "date" || fmt == "time" || fmt == "date-time" ||
fmt == "uri" || fmt == "email" || fmt == "hostname" ||
fmt == "ipv4" || fmt == "ipv6" || fmt == "uuid" ||
fmt.find("uuid") == 0) {
return true;
}
}
return false;
};
return check(schema);
}
std::string json_schema_to_grammar(const json & schema, bool force_gbnf) { std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
#ifdef LLAMA_USE_LLGUIDANCE #ifdef LLAMA_USE_LLGUIDANCE
if (!force_gbnf) { if (!force_gbnf) {
@ -1135,7 +988,7 @@ std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
} }
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) { std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
common_schema_converter converter([&](const std::string &) { return json(); }, options.dotall); SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
common_grammar_builder builder { common_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) { /* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule); return converter._add_rule(name, rule);

View File

@ -3,31 +3,11 @@
#include <nlohmann/json_fwd.hpp> #include <nlohmann/json_fwd.hpp>
#include <functional> #include <functional>
#include <memory>
#include <string> #include <string>
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema, std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false); bool force_gbnf = false);
class common_schema_converter;
// Probes a JSON schema to extract information about its structure and type constraints.
class common_schema_info {
std::unique_ptr<common_schema_converter> impl_;
public:
common_schema_info();
~common_schema_info();
common_schema_info(const common_schema_info &) = delete;
common_schema_info & operator=(const common_schema_info &) = delete;
common_schema_info(common_schema_info &&) noexcept;
common_schema_info & operator=(common_schema_info &&) noexcept;
void resolve_refs(nlohmann::ordered_json & schema);
bool resolves_to_string(const nlohmann::ordered_json & schema);
};
struct common_grammar_builder { struct common_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule; std::function<std::string(const std::string &, const std::string &)> add_rule;
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema; std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
@ -38,6 +18,4 @@ struct common_grammar_options {
bool dotall = false; bool dotall = false;
}; };
std::string gbnf_format_literal(const std::string & literal);
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {}); std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});

View File

@ -1,4 +1,3 @@
#include "common.h"
#include "log.h" #include "log.h"
#include <chrono> #include <chrono>
@ -27,6 +26,30 @@ void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity; common_log_verbosity_thold = verbosity;
} }
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() { static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count(); return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
} }
@ -368,7 +391,7 @@ struct common_log * common_log_main() {
static std::once_flag init_flag; static std::once_flag init_flag;
std::call_once(init_flag, [&]() { std::call_once(init_flag, [&]() {
// Set default to auto-detect colors // Set default to auto-detect colors
log.set_colors(tty_can_use_colors()); log.set_colors(common_log_should_use_colors_auto());
}); });
return &log; return &log;
@ -399,7 +422,7 @@ void common_log_set_file(struct common_log * log, const char * file) {
void common_log_set_colors(struct common_log * log, log_colors colors) { void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) { if (colors == LOG_COLORS_AUTO) {
log->set_colors(tty_can_use_colors()); log->set_colors(common_log_should_use_colors_auto());
return; return;
} }
@ -419,28 +442,3 @@ void common_log_set_prefix(struct common_log * log, bool prefix) {
void common_log_set_timestamps(struct common_log * log, bool timestamps) { void common_log_set_timestamps(struct common_log * log, bool timestamps) {
log->set_timestamps(timestamps); log->set_timestamps(timestamps);
} }
void common_log_flush(struct common_log * log) {
log->pause();
log->resume();
}
static int common_get_verbosity(enum ggml_log_level level) {
switch (level) {
case GGML_LOG_LEVEL_DEBUG: return LOG_LEVEL_DEBUG;
case GGML_LOG_LEVEL_INFO: return LOG_LEVEL_INFO;
case GGML_LOG_LEVEL_WARN: return LOG_LEVEL_WARN;
case GGML_LOG_LEVEL_ERROR: return LOG_LEVEL_ERROR;
case GGML_LOG_LEVEL_CONT: return LOG_LEVEL_INFO; // same as INFO
case GGML_LOG_LEVEL_NONE:
default:
return LOG_LEVEL_OUTPUT;
}
}
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
auto verbosity = common_get_verbosity(level);
if (verbosity <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}

View File

@ -21,14 +21,8 @@
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) # define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif #endif
#define LOG_LEVEL_DEBUG 4 #define LOG_DEFAULT_DEBUG 1
#define LOG_LEVEL_INFO 3 #define LOG_DEFAULT_LLAMA 0
#define LOG_LEVEL_WARN 2
#define LOG_LEVEL_ERROR 1
#define LOG_LEVEL_OUTPUT 0 // output data from tools
#define LOG_DEFAULT_DEBUG LOG_LEVEL_DEBUG
#define LOG_DEFAULT_LLAMA LOG_LEVEL_INFO
enum log_colors { enum log_colors {
LOG_COLORS_AUTO = -1, LOG_COLORS_AUTO = -1,
@ -42,8 +36,6 @@ extern int common_log_verbosity_thold;
void common_log_set_verbosity_thold(int verbosity); // not thread-safe void common_log_set_verbosity_thold(int verbosity); // not thread-safe
void common_log_default_callback(enum ggml_log_level level, const char * text, void * user_data);
// the common_log uses an internal worker thread to print/write log messages // the common_log uses an internal worker thread to print/write log messages
// when the worker thread is paused, incoming log messages are discarded // when the worker thread is paused, incoming log messages are discarded
struct common_log; struct common_log;
@ -73,18 +65,16 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU // 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU // 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
// //
// I - info (stdout, V = 0)
// W - warning (stderr, V = 0)
// E - error (stderr, V = 0)
// D - debug (stderr, V = LOG_DEFAULT_DEBUG) // D - debug (stderr, V = LOG_DEFAULT_DEBUG)
// I - info (stdout, V = LOG_DEFAULT_INFO)
// W - warning (stderr, V = LOG_DEFAULT_WARN)
// E - error (stderr, V = LOG_DEFAULT_ERROR)
// O - output (stdout, V = LOG_DEFAULT_OUTPUT)
// //
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
void common_log_flush (struct common_log * log); // flush all pending log messages
// helper macros for logging // helper macros for logging
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold // use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
@ -103,14 +93,14 @@ void common_log_flush (struct common_log * log); // f
} \ } \
} while (0) } while (0)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, LOG_LEVEL_OUTPUT, __VA_ARGS__) #define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__) #define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG, __VA_ARGS__) #define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, LOG_LEVEL_INFO, __VA_ARGS__) #define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, LOG_LEVEL_WARN, __VA_ARGS__) #define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR, __VA_ARGS__) #define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, LOG_LEVEL_INFO, __VA_ARGS__) // same as INFO #define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__) #define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__) #define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)

View File

@ -3,10 +3,9 @@
#include "common.h" #include "common.h"
#include "log.h" #include "log.h"
#include <algorithm>
#include <cmath> #include <cmath>
#include <cstring>
#include <unordered_map> #include <unordered_map>
#include <algorithm>
// the ring buffer works similarly to std::deque, but with a fixed capacity // the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h // TODO: deduplicate with llama-impl.h
@ -104,22 +103,15 @@ struct ring_buffer {
struct common_sampler { struct common_sampler {
common_params_sampling params; common_params_sampling params;
struct llama_sampler * grmr;
struct llama_sampler * chain; struct llama_sampler * chain;
bool grammar;
ring_buffer<llama_token> prev; ring_buffer<llama_token> prev;
std::vector<llama_token_data> cur; std::vector<llama_token_data> cur;
llama_token_data_array cur_p; llama_token_data_array cur_p;
void reset() {
prev.clear();
llama_sampler_reset(chain);
}
void set_logits(struct llama_context * ctx, int idx) { void set_logits(struct llama_context * ctx, int idx) {
const auto * logits = llama_get_logits_ith(ctx, idx); const auto * logits = llama_get_logits_ith(ctx, idx);
@ -136,12 +128,6 @@ struct common_sampler {
cur_p = { cur.data(), cur.size(), -1, false }; cur_p = { cur.data(), cur.size(), -1, false };
} }
common_time_meas tm() {
return common_time_meas(t_total_us, params.no_perf);
}
mutable int64_t t_total_us = 0;
}; };
std::string common_params_sampling::print() const { std::string common_params_sampling::print() const {
@ -167,15 +153,10 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
lparams.no_perf = params.no_perf; lparams.no_perf = params.no_perf;
llama_sampler * chain = llama_sampler_chain_init(lparams); struct llama_sampler * grmr;
bool grammar = false;
std::vector<llama_sampler *> samplers;
if (params.grammar.compare(0, 11, "%llguidance") == 0) { if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE #ifdef LLAMA_USE_LLGUIDANCE
samplers.push_back(llama_sampler_init_llg(vocab, "lark", params.grammar.c_str())); grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
grammar = true;
#else #else
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled"); GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE #endif // LLAMA_USE_LLGUIDANCE
@ -222,23 +203,30 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
trigger_patterns_c.push_back(regex.c_str()); trigger_patterns_c.push_back(regex.c_str());
} }
if (!params.grammar.empty()) { grmr = params.grammar_lazy
if (params.grammar_lazy) { ? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
samplers.push_back( trigger_patterns_c.data(), trigger_patterns_c.size(),
llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root", trigger_tokens.data(), trigger_tokens.size())
trigger_patterns_c.data(), trigger_patterns_c.size(), : llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
trigger_tokens.data(), trigger_tokens.size())); if (!grmr) {
} else { return nullptr;
samplers.push_back(llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root"));
}
grammar = true;
} }
} }
if (params.has_logit_bias()) { auto * result = new common_sampler {
samplers.push_back(llama_sampler_init_logit_bias(llama_vocab_n_tokens(vocab), params.logit_bias.size(), params.logit_bias.data())); /* .params = */ params,
} /* .grmr = */ grmr,
/* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
llama_sampler_chain_add(result->chain,
llama_sampler_init_logit_bias(
llama_vocab_n_tokens(vocab),
params.logit_bias.size(),
params.logit_bias.data()));
if (params.mirostat == 0) { if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) { for (const auto & cnstr : params.samplers) {
@ -251,70 +239,58 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
c_breakers.push_back(str.c_str()); c_breakers.push_back(str.c_str());
} }
samplers.push_back(llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size())); llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
} }
break; break;
case COMMON_SAMPLER_TYPE_TOP_K: case COMMON_SAMPLER_TYPE_TOP_K:
samplers.push_back(llama_sampler_init_top_k (params.top_k)); llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break; break;
case COMMON_SAMPLER_TYPE_TOP_P: case COMMON_SAMPLER_TYPE_TOP_P:
samplers.push_back(llama_sampler_init_top_p (params.top_p, params.min_keep)); llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break; break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
samplers.push_back(llama_sampler_init_top_n_sigma(params.top_n_sigma)); llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
break; break;
case COMMON_SAMPLER_TYPE_MIN_P: case COMMON_SAMPLER_TYPE_MIN_P:
samplers.push_back(llama_sampler_init_min_p (params.min_p, params.min_keep)); llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break; break;
case COMMON_SAMPLER_TYPE_XTC: case COMMON_SAMPLER_TYPE_XTC:
samplers.push_back(llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed)); llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break; break;
case COMMON_SAMPLER_TYPE_TYPICAL_P: case COMMON_SAMPLER_TYPE_TYPICAL_P:
samplers.push_back(llama_sampler_init_typical (params.typ_p, params.min_keep)); llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break; break;
case COMMON_SAMPLER_TYPE_TEMPERATURE: case COMMON_SAMPLER_TYPE_TEMPERATURE:
samplers.push_back(llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent)); llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break; break;
case COMMON_SAMPLER_TYPE_INFILL: case COMMON_SAMPLER_TYPE_INFILL:
samplers.push_back(llama_sampler_init_infill (vocab)); llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break; break;
case COMMON_SAMPLER_TYPE_PENALTIES: case COMMON_SAMPLER_TYPE_PENALTIES:
samplers.push_back(llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present)); llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break; break;
default: default:
GGML_ASSERT(false && "unknown sampler type"); GGML_ASSERT(false && "unknown sampler type");
} }
} }
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
samplers.push_back(llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) { } else if (params.mirostat == 1) {
samplers.push_back(llama_sampler_init_temp(params.temp)); llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100)); llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
} else if (params.mirostat == 2) { } else if (params.mirostat == 2) {
samplers.push_back(llama_sampler_init_temp(params.temp)); llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta)); llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
} else { } else {
GGML_ASSERT(false && "unknown mirostat version"); GGML_ASSERT(false && "unknown mirostat version");
} }
for (auto * smpl : samplers) {
llama_sampler_chain_add(chain, smpl);
}
auto * result = new common_sampler {
/* .params = */ params,
/* .chain = */ chain,
/* .grammar = */ grammar,
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
return result; return result;
} }
void common_sampler_free(struct common_sampler * gsmpl) { void common_sampler_free(struct common_sampler * gsmpl) {
if (gsmpl) { if (gsmpl) {
llama_sampler_free(gsmpl->grmr);
llama_sampler_free(gsmpl->chain); llama_sampler_free(gsmpl->chain);
delete gsmpl; delete gsmpl;
@ -322,117 +298,91 @@ void common_sampler_free(struct common_sampler * gsmpl) {
} }
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) { void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
const auto tm = gsmpl->tm(); if (accept_grammar) {
llama_sampler_accept(gsmpl->grmr, token);
if (gsmpl->grammar) {
const int n_smpl = llama_sampler_chain_n(gsmpl->chain);
for (int i = 0; i < n_smpl; i++) {
auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
// the grammar sampler is always the first one
if (i == 0) {
if (accept_grammar) {
llama_sampler_accept(smpl, token);
}
} else {
llama_sampler_accept(smpl, token);
}
}
} else {
llama_sampler_accept(gsmpl->chain, token);
} }
llama_sampler_accept(gsmpl->chain, token);
gsmpl->prev.push_back(token); gsmpl->prev.push_back(token);
} }
void common_sampler_reset(struct common_sampler * gsmpl) { void common_sampler_reset(struct common_sampler * gsmpl) {
gsmpl->reset(); llama_sampler_reset(gsmpl->grmr);
llama_sampler_reset(gsmpl->chain);
} }
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) { struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
return new common_sampler { return new common_sampler {
/* .params = */ gsmpl->params, /* .params = */ gsmpl->params,
/* .chain = */ llama_sampler_clone(gsmpl->chain), /* .grmr = */ llama_sampler_clone(gsmpl->grmr),
/* .grammar = */ gsmpl->grammar, /* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .prev = */ gsmpl->prev, /* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur, /* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p, /* .cur_p = */ gsmpl->cur_p,
}; };
} }
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) { void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
// TODO: measure grammar performance // TODO: measure grammar performance
const double t_sampling_ms = gsmpl ? 1e-3*gsmpl->t_total_us : 0;
llama_perf_sampler_data data_smpl;
llama_perf_context_data data_ctx;
memset(&data_smpl, 0, sizeof(data_smpl));
memset(&data_ctx, 0, sizeof(data_ctx));
if (gsmpl) { if (gsmpl) {
auto & data = data_smpl; llama_perf_sampler_print(gsmpl->chain);
data = llama_perf_sampler(gsmpl->chain);
// note: the sampling time includes the samplers time + extra time spent in common/sampling
LOG_INF("%s: sampling time = %10.2f ms\n", __func__, t_sampling_ms);
LOG_INF("%s: samplers time = %10.2f ms / %5d tokens\n", __func__, data.t_sample_ms, data.n_sample);
} }
if (ctx) { if (ctx) {
auto & data = data_ctx; llama_perf_context_print(ctx);
data = llama_perf_context(ctx);
const double t_end_ms = 1e-3 * ggml_time_us();
const double t_total_ms = t_end_ms - data.t_start_ms;
const double t_unacc_ms = t_total_ms - (t_sampling_ms + data.t_p_eval_ms + data.t_eval_ms);
const double t_unacc_pc = 100.0 * t_unacc_ms / t_total_ms;
LOG_INF("%s: load time = %10.2f ms\n", __func__, data.t_load_ms);
LOG_INF("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
LOG_INF("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
LOG_INF("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
LOG_INF("%s: unaccounted time = %10.2f ms / %5.1f %% (total - sampling - prompt eval - eval) / (total)\n", __func__, t_unacc_ms, t_unacc_pc);
LOG_INF("%s: graphs reused = %10d\n", __func__, data.n_reused);
llama_memory_breakdown_print(ctx); llama_memory_breakdown_print(ctx);
} }
} }
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl) { llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
return gsmpl->chain; gsmpl->set_logits(ctx, idx);
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx) {
llama_synchronize(ctx);
// start measuring sampling time after the llama_context synchronization in order to not measure any ongoing async operations
const auto tm = gsmpl->tm();
llama_token id = LLAMA_TOKEN_NULL;
auto & grmr = gsmpl->grmr;
auto & chain = gsmpl->chain; auto & chain = gsmpl->chain;
auto & cur_p = gsmpl->cur_p; // initialized by set_logits auto & cur_p = gsmpl->cur_p; // initialized by set_logits
gsmpl->set_logits(ctx, idx); if (grammar_first) {
llama_sampler_apply(grmr, &cur_p);
}
llama_sampler_apply(chain, &cur_p); llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration"); GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
id = cur_p.data[cur_p.selected].id; const llama_token id = cur_p.data[cur_p.selected].id;
return id; if (grammar_first) {
return id;
}
// check if it the sampled token fits the grammar
{
llama_token_data single_token_data = { id, 1.0f, 0.0f };
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
llama_sampler_apply(grmr, &single_token_data_array);
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
if (is_valid) {
return id;
}
}
// resampling:
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
gsmpl->set_logits(ctx, idx);
llama_sampler_apply(grmr, &cur_p);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
return cur_p.data[cur_p.selected].id;
} }
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft) { std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1"); GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
std::vector<llama_token> result; std::vector<llama_token> result;
@ -440,7 +390,7 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
size_t i = 0; size_t i = 0;
for (; i < draft.size(); i++) { for (; i < draft.size(); i++) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i]); const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
common_sampler_accept(gsmpl, id, true); common_sampler_accept(gsmpl, id, true);
@ -452,7 +402,7 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
} }
if (i == draft.size()) { if (i == draft.size()) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i]); const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
common_sampler_accept(gsmpl, id, true); common_sampler_accept(gsmpl, id, true);
@ -462,13 +412,13 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
return result; return result;
} }
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft) { std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
std::vector<int> idxs(draft.size() + 1); std::vector<int> idxs(draft.size() + 1);
for (size_t i = 0; i < idxs.size(); ++i) { for (size_t i = 0; i < idxs.size(); ++i) {
idxs[i] = i; idxs[i] = i;
} }
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft); return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
} }
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) { uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
@ -478,8 +428,6 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
// helpers // helpers
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) { llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
const auto tm = gsmpl->tm();
auto * res = &gsmpl->cur_p; auto * res = &gsmpl->cur_p;
if (do_sort && !res->sorted) { if (do_sort && !res->sorted) {
@ -513,8 +461,7 @@ std::string common_sampler_print(const struct common_sampler * gsmpl) {
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) { for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i); const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
result += std::string("-> "); result += std::string("-> ") + llama_sampler_name(smpl) + " ";
result += std::string(llama_sampler_name(smpl)) + " ";
} }
return result; return result;

View File

@ -48,8 +48,6 @@ struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
// arguments can be nullptr to skip printing // arguments can be nullptr to skip printing
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl); void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl);
// extended sampling implementation: // extended sampling implementation:
// //
// - set logits // - set logits
@ -57,7 +55,10 @@ struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl);
// - check if the token fits the grammar (if any) // - check if the token fits the grammar (if any)
// - if not: resample by first applying the grammar constraints and then sampling again (slower path) // - if not: resample by first applying the grammar constraints and then sampling again (slower path)
// //
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx); // if grammar_first is true, the grammar is applied before the samplers (slower)
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
//
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
// generalized version of common_sampler_sample // generalized version of common_sampler_sample
// //
@ -75,10 +76,10 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
// //
// returns at least 1 token, up to idxs.size() // returns at least 1 token, up to idxs.size()
// //
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft); std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first = false);
// assume idxs == [ 0, 1, 2, ..., draft.size() ] // assume idxs == [ 0, 1, 2, ..., draft.size() ]
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft); std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first = false);
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl); uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
@ -106,9 +107,3 @@ std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std:
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
const char * grammar_kind, const char * grammar_data); const char * grammar_kind, const char * grammar_data);
struct common_sampler_deleter {
void operator()(common_sampler * s) { common_sampler_free(s); }
};
typedef std::unique_ptr<common_sampler, common_sampler_deleter> common_sampler_ptr;

View File

@ -83,7 +83,6 @@ extern "C" {
LLAMA_ROPE_TYPE_NORM = 0, LLAMA_ROPE_TYPE_NORM = 0,
LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX, LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE, LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE,
LLAMA_ROPE_TYPE_IMROPE = GGML_ROPE_TYPE_IMROPE,
LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION, LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION,
}; };
@ -246,21 +245,6 @@ extern "C" {
LLAMA_KV_OVERRIDE_TYPE_STR, LLAMA_KV_OVERRIDE_TYPE_STR,
}; };
enum llama_model_meta_key {
LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE,
LLAMA_MODEL_META_KEY_SAMPLING_TOP_K,
LLAMA_MODEL_META_KEY_SAMPLING_TOP_P,
LLAMA_MODEL_META_KEY_SAMPLING_MIN_P,
LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY,
LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD,
LLAMA_MODEL_META_KEY_SAMPLING_TEMP,
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N,
LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU,
LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA,
};
struct llama_model_kv_override { struct llama_model_kv_override {
enum llama_model_kv_override_type tag; enum llama_model_kv_override_type tag;
@ -313,7 +297,6 @@ extern "C" {
bool check_tensors; // validate model tensor data bool check_tensors; // validate model tensor data
bool use_extra_bufts; // use extra buffer types (used for weight repacking) bool use_extra_bufts; // use extra buffer types (used for weight repacking)
bool no_host; // bypass host buffer allowing extra buffers to be used bool no_host; // bypass host buffer allowing extra buffers to be used
bool no_alloc; // only load metadata and simulate memory allocations
}; };
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
@ -467,35 +450,17 @@ extern "C" {
// Frees all allocated memory // Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx); LLAMA_API void llama_free(struct llama_context * ctx);
// fits mparams and cparams to free device memory (assumes system memory is unlimited)
// returns true if the parameters could be successfully modified to fit device memory
// this function is NOT thread safe because it modifies the global llama logger state
LLAMA_API bool llama_params_fit(
const char * path_model,
struct llama_model_params * mparams,
struct llama_context_params * cparams,
float * tensor_split, // writable buffer for tensor split, needs at least llama_max_devices elements
struct llama_model_tensor_buft_override * tensor_buft_overrides, // writable buffer for overrides, needs at least llama_max_tensor_buft_overrides elements
size_t margin, // margin of memory to leave per device in bytes
uint32_t n_ctx_min, // minimum context size to set when trying to reduce memory use
enum ggml_log_level log_level); // minimum log level to print during fitting, lower levels go to debug log
LLAMA_API int64_t llama_time_us(void); LLAMA_API int64_t llama_time_us(void);
LLAMA_API size_t llama_max_devices(void); LLAMA_API size_t llama_max_devices(void);
LLAMA_API size_t llama_max_parallel_sequences(void); LLAMA_API size_t llama_max_parallel_sequences(void);
LLAMA_API size_t llama_max_tensor_buft_overrides(void);
LLAMA_API bool llama_supports_mmap (void); LLAMA_API bool llama_supports_mmap (void);
LLAMA_API bool llama_supports_mlock (void); LLAMA_API bool llama_supports_mlock (void);
LLAMA_API bool llama_supports_gpu_offload(void); LLAMA_API bool llama_supports_gpu_offload(void);
LLAMA_API bool llama_supports_rpc (void); LLAMA_API bool llama_supports_rpc (void);
// NOTE: After creating a llama_context, it is recommended to query the actual values using these functions
// In some cases the requested values via llama_context_params may differ from the actual values used by the context
// ref: https://github.com/ggml-org/llama.cpp/pull/17046#discussion_r2503085732
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx); LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ctx_seq (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx); LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx); LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx); LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
@ -516,7 +481,6 @@ extern "C" {
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model); LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model); LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd_inp (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model); LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model); LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model); LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
@ -548,9 +512,6 @@ extern "C" {
// Get the number of metadata key/value pairs // Get the number of metadata key/value pairs
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model); LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
// Get sampling metadata key name. Returns nullptr if the key is invalid
LLAMA_API const char * llama_model_meta_key_str(enum llama_model_meta_key key);
// Get metadata key name by index // Get metadata key name by index
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size); LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
@ -623,7 +584,7 @@ extern "C" {
LLAMA_API int32_t llama_adapter_meta_val_str_by_index(const struct llama_adapter_lora * adapter, int32_t i, char * buf, size_t buf_size); LLAMA_API int32_t llama_adapter_meta_val_str_by_index(const struct llama_adapter_lora * adapter, int32_t i, char * buf, size_t buf_size);
// Manually free a LoRA adapter // Manually free a LoRA adapter
// NOTE: loaded adapters will be free when the associated model is deleted // Note: loaded adapters will be free when the associated model is deleted
LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter); LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
// Get the invocation tokens if the current lora is an alora // Get the invocation tokens if the current lora is an alora
@ -1149,6 +1110,8 @@ extern "C" {
// // sample from the logits of the last token in the batch // // sample from the logits of the last token in the batch
// const llama_token id = llama_sampler_sample(smpl, ctx, -1); // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
// //
// // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
// llama_sampler_accept(smpl, id);
// ... // ...
// } // }
// //
@ -1369,9 +1332,7 @@ extern "C" {
// Set callback for all future logging events. // Set callback for all future logging events.
// If this is not called, or NULL is supplied, everything is output on stderr. // If this is not called, or NULL is supplied, everything is output on stderr.
// The logger state is global so these functions are NOT thread safe. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
LLAMA_API void llama_log_get(ggml_log_callback * log_callback, void ** user_data);
LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
// //
// Performance utils // Performance utils

File diff suppressed because it is too large Load Diff

View File

@ -3,7 +3,6 @@
#include "ggml.h" // ggml_op #include "ggml.h" // ggml_op
#include <string> #include <string>
#include <set>
// //
// gguf constants (sync with gguf.py) // gguf constants (sync with gguf.py)
@ -37,9 +36,6 @@ enum llm_arch {
LLM_ARCH_QWEN2VL, LLM_ARCH_QWEN2VL,
LLM_ARCH_QWEN3, LLM_ARCH_QWEN3,
LLM_ARCH_QWEN3MOE, LLM_ARCH_QWEN3MOE,
LLM_ARCH_QWEN3NEXT,
LLM_ARCH_QWEN3VL,
LLM_ARCH_QWEN3VLMOE,
LLM_ARCH_PHI2, LLM_ARCH_PHI2,
LLM_ARCH_PHI3, LLM_ARCH_PHI3,
LLM_ARCH_PHIMOE, LLM_ARCH_PHIMOE,
@ -80,7 +76,6 @@ enum llm_arch {
LLM_ARCH_JAIS, LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON, LLM_ARCH_NEMOTRON,
LLM_ARCH_NEMOTRON_H, LLM_ARCH_NEMOTRON_H,
LLM_ARCH_NEMOTRON_H_MOE,
LLM_ARCH_EXAONE, LLM_ARCH_EXAONE,
LLM_ARCH_EXAONE4, LLM_ARCH_EXAONE4,
LLM_ARCH_RWKV6, LLM_ARCH_RWKV6,
@ -98,7 +93,6 @@ enum llm_arch {
LLM_ARCH_BAILINGMOE2, LLM_ARCH_BAILINGMOE2,
LLM_ARCH_DOTS1, LLM_ARCH_DOTS1,
LLM_ARCH_ARCEE, LLM_ARCH_ARCEE,
LLM_ARCH_AFMOE,
LLM_ARCH_ERNIE4_5, LLM_ARCH_ERNIE4_5,
LLM_ARCH_ERNIE4_5_MOE, LLM_ARCH_ERNIE4_5_MOE,
LLM_ARCH_HUNYUAN_MOE, LLM_ARCH_HUNYUAN_MOE,
@ -114,11 +108,6 @@ enum llm_arch {
LLM_ARCH_SEED_OSS, LLM_ARCH_SEED_OSS,
LLM_ARCH_GROVEMOE, LLM_ARCH_GROVEMOE,
LLM_ARCH_APERTUS, LLM_ARCH_APERTUS,
LLM_ARCH_MINIMAX_M2,
LLM_ARCH_COGVLM,
LLM_ARCH_RND1,
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_MISTRAL3,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };
@ -128,18 +117,6 @@ enum llm_kv {
LLM_KV_GENERAL_QUANTIZATION_VERSION, LLM_KV_GENERAL_QUANTIZATION_VERSION,
LLM_KV_GENERAL_ALIGNMENT, LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_FILE_TYPE, LLM_KV_GENERAL_FILE_TYPE,
LLM_KV_GENERAL_SAMPLING_SEQUENCE,
LLM_KV_GENERAL_SAMPLING_TOP_K,
LLM_KV_GENERAL_SAMPLING_TOP_P,
LLM_KV_GENERAL_SAMPLING_MIN_P,
LLM_KV_GENERAL_SAMPLING_XTC_PROBABILITY,
LLM_KV_GENERAL_SAMPLING_XTC_THRESHOLD,
LLM_KV_GENERAL_SAMPLING_TEMP,
LLM_KV_GENERAL_SAMPLING_PENALTY_LAST_N,
LLM_KV_GENERAL_SAMPLING_PENALTY_REPEAT,
LLM_KV_GENERAL_SAMPLING_MIROSTAT,
LLM_KV_GENERAL_SAMPLING_MIROSTAT_TAU,
LLM_KV_GENERAL_SAMPLING_MIROSTAT_ETA,
LLM_KV_GENERAL_NAME, LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR, LLM_KV_GENERAL_AUTHOR,
LLM_KV_GENERAL_VERSION, LLM_KV_GENERAL_VERSION,
@ -173,7 +150,6 @@ enum llm_kv {
LLM_KV_EXPERTS_PER_GROUP, LLM_KV_EXPERTS_PER_GROUP,
LLM_KV_MOE_EVERY_N_LAYERS, LLM_KV_MOE_EVERY_N_LAYERS,
LLM_KV_NEXTN_PREDICT_LAYERS, LLM_KV_NEXTN_PREDICT_LAYERS,
LLM_KV_NUM_DEEPSTACK_LAYERS,
LLM_KV_POOLING_TYPE, LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE, LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID, LLM_KV_DECODER_START_TOKEN_ID,
@ -212,7 +188,6 @@ enum llm_kv {
LLM_KV_ATTENTION_SCALE, LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_OUTPUT_SCALE, LLM_KV_ATTENTION_OUTPUT_SCALE,
LLM_KV_ATTENTION_TEMPERATURE_LENGTH, LLM_KV_ATTENTION_TEMPERATURE_LENGTH,
LLM_KV_ATTENTION_TEMPERATURE_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ATTENTION_KEY_LENGTH_MLA, LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA, LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
@ -319,7 +294,6 @@ enum llm_tensor {
LLM_TENSOR_DENSE_3_OUT, LLM_TENSOR_DENSE_3_OUT,
LLM_TENSOR_OUTPUT, LLM_TENSOR_OUTPUT,
LLM_TENSOR_OUTPUT_NORM, LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT_NORM_LFM2, // fix for wrong tensor name
LLM_TENSOR_ROPE_FREQS, LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ROPE_FACTORS_LONG, LLM_TENSOR_ROPE_FACTORS_LONG,
LLM_TENSOR_ROPE_FACTORS_SHORT, LLM_TENSOR_ROPE_FACTORS_SHORT,
@ -334,7 +308,6 @@ enum llm_tensor {
LLM_TENSOR_ATTN_POST_NORM, LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD, LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_ATTN_SINKS, LLM_TENSOR_ATTN_SINKS,
LLM_TENSOR_ATTN_GATE,
LLM_TENSOR_FFN_GATE_INP, LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP, LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM, LLM_TENSOR_FFN_NORM,
@ -384,13 +357,11 @@ enum llm_tensor {
LLM_TENSOR_SSM_DT, LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_DT_NORM, LLM_TENSOR_SSM_DT_NORM,
LLM_TENSOR_SSM_A, LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_A_NOSCAN, // qwen3next special case with MUL instead of SSM_SCAN
LLM_TENSOR_SSM_B_NORM, LLM_TENSOR_SSM_B_NORM,
LLM_TENSOR_SSM_C_NORM, LLM_TENSOR_SSM_C_NORM,
LLM_TENSOR_SSM_D, LLM_TENSOR_SSM_D,
LLM_TENSOR_SSM_NORM, LLM_TENSOR_SSM_NORM,
LLM_TENSOR_SSM_OUT, LLM_TENSOR_SSM_OUT,
LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next
LLM_TENSOR_TIME_MIX_W0, LLM_TENSOR_TIME_MIX_W0,
LLM_TENSOR_TIME_MIX_W1, LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2, LLM_TENSOR_TIME_MIX_W2,
@ -487,11 +458,6 @@ enum llm_tensor {
LLM_TENSOR_SHORTCONV_CONV, LLM_TENSOR_SHORTCONV_CONV,
LLM_TENSOR_SHORTCONV_INPROJ, LLM_TENSOR_SHORTCONV_INPROJ,
LLM_TENSOR_SHORTCONV_OUTPROJ, LLM_TENSOR_SHORTCONV_OUTPROJ,
LLM_TENSOR_VISEXP_ATTN_QKV,
LLM_TENSOR_VISEXP_ATTN_OUT,
LLM_TENSOR_VISEXP_FFN_GATE,
LLM_TENSOR_VISEXP_FFN_DOWN,
LLM_TENSOR_VISEXP_FFN_UP,
LLM_TENSOR_NEXTN_EH_PROJ, LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS, LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM, LLM_TENSOR_NEXTN_ENORM,
@ -531,10 +497,6 @@ struct LLM_TN_IMPL {
const int bid; const int bid;
const int xid; const int xid;
const std::set<llm_tensor> model_tensors;
LLM_TN_IMPL(llm_arch arch, llm_tensor tensor, const char * suffix, int bid, int xid);
std::string str() const; std::string str() const;
operator std::string() const { operator std::string() const {
@ -556,11 +518,11 @@ struct LLM_TN {
llm_arch arch; llm_arch arch;
LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const { LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const {
return LLM_TN_IMPL(arch, tensor, suffix, bid, xid); return { arch, tensor, suffix, bid, xid };
} }
LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const { LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const {
return LLM_TN_IMPL(arch, tensor, nullptr, bid, xid); return { arch, tensor, nullptr, bid, xid };
} }
}; };

View File

@ -215,7 +215,6 @@ bool llama_batch_allocr::init(
/*.n_seq_tokens =*/ (uint32_t) 1, /*.n_seq_tokens =*/ (uint32_t) 1,
/*.n_seqs =*/ (uint32_t) batch.n_tokens, /*.n_seqs =*/ (uint32_t) batch.n_tokens,
/*.n_seqs_unq =*/ (uint32_t) this->seq_id_unq.size(), /*.n_seqs_unq =*/ (uint32_t) this->seq_id_unq.size(),
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ batch.token, /*.token =*/ batch.token,
/*.embd =*/ batch.embd, /*.embd =*/ batch.embd,
/*.pos =*/ batch.pos, /*.pos =*/ batch.pos,
@ -252,72 +251,46 @@ bool llama_batch_allocr::init(
// consistency checks // consistency checks
// //
if (n_pos_per_embd > 1) { for (uint32_t s = 0; s < n_seq_max; ++s) {
// M-RoPE case: allow position to "jump" forward only (non-continuous positions are allowed) if (seq_pos[s].empty()) {
for (uint32_t s = 0; s < n_seq_max; ++s) { continue;
if (seq_pos[s].empty()) { }
continue;
}
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1; const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (p0 >= 0) {
bool ok = true;
if (batch.token) { if (batch.token) {
if (p0 >= 0 && p0 >= seq_pos_min(s)) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" for M-RoPE, it is required that the position satisfies: X < Y\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
} else {
// embedding inputs can have overlapping positions
if (p0 >= 0 && p0 > seq_pos_min(s)) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" for M-RoPE, it is required that the position satisfies: X <= Y\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
}
}
} else {
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_pos[s].empty()) {
continue;
}
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (p0 >= 0) {
bool ok = true;
if (seq_pos_min(s) != p0 + 1) { if (seq_pos_min(s) != p0 + 1) {
ok = false; ok = false;
} }
} else {
assert(batch.embd);
if (!ok) { // for embeddings (typically used as vision input), we allow them to have repeating positions
LLAMA_LOG_ERROR( // ref: https://github.com/ggml-org/llama.cpp/issues/13694#issuecomment-2983871762
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n" if (seq_pos_min(s) != p0 && seq_pos_min(s) != p0 + 1) {
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n" ok = false;
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" it is required that the sequence positions remain consecutive: Y = X + 1\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
} }
} }
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) { if (!ok) {
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s); LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" it is required that the sequence positions remain consecutive: Y = X + 1\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false; return false;
} }
} }
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) {
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s);
return false;
}
} }
if (memory) { if (memory) {
@ -416,7 +389,6 @@ llama_ubatch llama_batch_allocr::ubatch_reserve(uint32_t n_seq_tokens, uint32_t
/*.n_seq_tokens =*/ n_seq_tokens, /*.n_seq_tokens =*/ n_seq_tokens,
/*.n_seqs =*/ n_seqs, /*.n_seqs =*/ n_seqs,
/*.n_seqs_unq =*/ n_seqs, /*.n_seqs_unq =*/ n_seqs,
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ udata->token.data(), /*.token =*/ udata->token.data(),
/*.embd =*/ nullptr, /*.embd =*/ nullptr,
@ -683,8 +655,10 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
auto udata = std::make_shared<llama_ubatch::data_t>(); auto udata = std::make_shared<llama_ubatch::data_t>();
const int32_t n_pos_cur = batch.embd ? n_pos_per_embd : 1;
const int64_t n_embd_all = batch.embd ? (int64_t) n_tokens*n_embd : 0; const int64_t n_embd_all = batch.embd ? (int64_t) n_tokens*n_embd : 0;
const int64_t n_pos_all = (int64_t) n_tokens*n_pos_per_embd; const int64_t n_pos_all = (int64_t) n_tokens*n_pos_cur;
udata->token .resize(n_tokens); udata->token .resize(n_tokens);
udata->embd .resize(n_embd_all); udata->embd .resize(n_embd_all);
@ -695,8 +669,6 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
udata->seq_idx .resize(LLAMA_MAX_SEQ, -1); udata->seq_idx .resize(LLAMA_MAX_SEQ, -1);
udata->output .resize(n_tokens); udata->output .resize(n_tokens);
udata->seq_id_data.reserve(n_tokens);
seq_set_t seq_set_unq; seq_set_t seq_set_unq;
for (size_t i = 0; i < idxs.size(); ++i) { for (size_t i = 0; i < idxs.size(); ++i) {
@ -708,23 +680,16 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
memcpy(udata->embd.data() + i*n_embd, batch.embd + (int64_t) idxs[i]*n_embd, n_embd*sizeof(float)); memcpy(udata->embd.data() + i*n_embd, batch.embd + (int64_t) idxs[i]*n_embd, n_embd*sizeof(float));
} }
for (size_t j = 0; j < (size_t)n_pos_per_embd; ++j) { for (int j = 0; j < n_pos_cur; ++j) {
// if we are using M-RoPE udata->pos[j*n_tokens + i] = batch.pos[j*batch.n_tokens + idxs[i]];
// if the current batch is text, we need to broadcast the same position across all RoPE sections
// otherwise, the input batch is image embeddings, we copy the positions as-is
// if we are not using M-RoPE, there is only one position per token (this loop runs only once)
size_t src_off = batch.token ? 0 : j*batch.n_tokens;
udata->pos[j*n_tokens + i] = batch.pos[src_off + idxs[i]];
} }
udata->n_seq_id[i] = batch.n_seq_id[idxs[i]]; udata->n_seq_id[i] = batch.n_seq_id[idxs[i]];
udata->seq_id[i] = batch.seq_id[idxs[i]];
udata->output[i] = batch.logits[idxs[i]]; udata->output[i] = batch.logits[idxs[i]];
for (int s = 0; s < udata->n_seq_id[i]; ++s) { for (int s = 0; s < udata->n_seq_id[i]; ++s) {
const llama_seq_id seq_id = batch.seq_id[idxs[i]][s]; seq_set_unq.set(udata->seq_id[i][s]);
udata->seq_id_data.push_back(seq_id);
seq_set_unq.set(seq_id);
} }
if (udata->output[i]) { if (udata->output[i]) {
@ -732,12 +697,6 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
} }
} }
llama_seq_id * seq_id_ptr = udata->seq_id_data.data();
for (size_t i = 0; i < idxs.size(); ++i) {
udata->seq_id[i] = seq_id_ptr;
seq_id_ptr += udata->n_seq_id[i];
}
for (uint32_t s = 0; s < n_seq_max; ++s) { for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_set_unq.test(s)) { if (seq_set_unq.test(s)) {
udata->seq_idx[s] = udata->seq_id_unq.size(); udata->seq_idx[s] = udata->seq_id_unq.size();
@ -751,7 +710,6 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
/*.n_seq_tokens =*/ n_tokens/n_seqs, /*.n_seq_tokens =*/ n_tokens/n_seqs,
/*.n_seqs =*/ n_seqs, /*.n_seqs =*/ n_seqs,
/*.n_seqs_unq =*/ (uint32_t) udata->seq_id_unq.size(), /*.n_seqs_unq =*/ (uint32_t) udata->seq_id_unq.size(),
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ batch.token ? udata->token.data() : nullptr, /*.token =*/ batch.token ? udata->token.data() : nullptr,
/*.embd =*/ batch.embd ? udata->embd.data() : nullptr, /*.embd =*/ batch.embd ? udata->embd.data() : nullptr,

Some files were not shown because too many files have changed in this diff Show More