with #12181, there's now support for embeddings in ollama engine.
this is done by mutating the architecture and adding _embed when it
detects an embedding model. however this introduced a bug where if
an embedding model was run based on an existing ollama engine model
without an embedding implementation, e.g. llama4, it will pass the
initial arch support check but fail when actually loaded.
there's currently two entrypoints to creating a model. previously this
second entrypoint was necessary because calling model.New would also
load the model. since #11818, this is no longer th case so merge them
to reduce complexity
With the addition of cuda v13, on a clean setup, the level of parallelism
was causing docker desktop to become overwhelmed and compilers
were crashing. This limits to 8 parallel per build stage, with the ability
to override if you have many more cores available.
Now that we have a built-in parser abstraction, which was introduced in
<https://github.com/ollama/ollama/pull/12248>, we can modify our harmony
parser to match this and then get rid of nearly all of the
harmony-specific logic in routes.go. We do have a small amount of
code that turns the parser on by default if the architecture matches and
no other built-in parser was provided.
The built-in parser interface was modified in order to handle harmony's
prefill and tool name translation requirements.
This change moves back to converting bf16 vision weights to fp16,
specifically if they start with the name "v." (such as v.blk.0.attn_k.weight).
This fixes a bug where converted images are failing because they are trying
to call `im2col` which doesn't have a bf16 kernel in ggml.