* origin/main:
docs: update modelfile.md to reflect current default num_ctx (#11189)
ggml: Use assigned layers when reporting loading stats
ggml: Disable unused pipeline parallelism
Only load supported models on new engine (#11362)
Reporting params.NumGPULayers can be misleading because it is the
requested number of layers, not the actual number that is loaded.
While they are often the same, there are cases where they might mismatch,
such as if the GPU backend is missing.
We don't get valid UUIDs for AMD GPUs on Windows, so the best option
is to use the ordinal IDs. This brings us in line with what we currently
do on the Ollama server - the only exception is AMD GPUs on Linux, which
falls back to using ordinal IDs. The GGML implementation has no fallback
but it doesn't appear to occur for any of the GPUs that we support.
It's also possible that there are collisions between ordinal IDs for
different libraries - however the only places where we use them are
AMD on Windows and Metal on Mac, which can never occur on the same
system.
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This is causing segfaults, so disable it. Currently UUIDs are only
used for debugging purposes, although they planned to be used in
additional ways in the future.
Bug #11211
* Re-remove cuda v11
Revert the revert - drop v11 support requiring drivers newer than Feb 23
This reverts commit c6bcdc4223.
* Simplify layout
With only one version of the GPU libraries, we can simplify things down somewhat. (Jetsons still require special handling)
* distinct sbsa variant for linux arm64
This avoids accidentally trying to load the sbsa cuda libraries on
a jetson system which results in crashes.
* temporary prevent rocm+cuda mixed loading
We don't check the return status after computing the graph, which
can silently lead to bad outputs if we try to keep going and future
computation succeeds. This appears to happens in certain cases on
Apple M2 devices.
Fixes#11070
This enables matching up devices and information reported by the backend
with system management libraries such as nvml to get accurate free
memory reporting.
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.
In many cases, the caller can't really handle the error and panics.
Empty and Zeros directly panic if they can't allocate memory.
This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
This provides granular information about the backend memory allocations
required by the runner:
- Per backend
- Per layer
- Weights, cache and graph
- Allocation status
This can be used for debugging and validating memory estimates.
GGML has a function to report the allocated size of a backend buffer.
However, this returns 0 if we tried to allocate a buffer and it failed.
For memory management purposes, it's important to know how much we were
trying to allocate. This extends the API to report attempted sizes for
all buffers and whether it succeeeded.
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
- Create backend, including enumerating tensors and memory allocation
- Loading tensor data
This allows more flexibility in managing model loading.
* Move quantization logic to GGML via new backend
This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.
* Remove "add model quantizations"
This is no longer needed now that quantization is implemented in Go+GGML code directly.
Successfully completing processing with an errgroup cancels the
associated context. However, we also have a goroutine that is checking
for cancelation of the context. As a result, there is a race where
the goroutine can pick up the cancelation and report an error,
replacing the sucessful error message.
To avoid that, this replaces the goroutine with a cancelation check
when we are reading files. This also has the advantage of stopping
all reads relatively quickly on error and also ensuring that there are
no outstanding I/O operations when we return in this case.
The downside is that if a file read blocks forever (for example, over
the network) then cancelation of the context effectively won't be
honored. However, this is also true for other smaller files we read
and the tensors are read in small chunks (128K), so it's consistent
and better on balance overall.
Worst case graph preallocation was disabled by a27462b
"ollamarunner: Temporarily disable worst case graph preallocation"
since it caused crashes with large batches when not using the GPU.
This backports upstream llama.cpp commit f057808
"ggml: Don't assert fail when tensor data changes (#13222)", which
fixes the underlying bug and allows reverting the previous workaround.
When ggml_backend_buffer_free() is called, the device memory
is released but not all backends consistently release the actual
ggml_backend_buffer_t in system RAM, causing a memory leak.
Bug #10040
For every forward pass through the model, we need to allocate input
tensors: tokens, images, positions, outputs and masks. These get
allocated in system memory.
However, when we close the context that the tensors were allocated
through, the metadata gets freed but the actual backend memory does
not. This results in a significant memory leak.
This makes it so that all the memory allocated through a context
gets freed when it is closed.
Fixes#10040
Allocating (and in particular, freeing) memory from CUDA host buffers
is expensive and can cause a significant performance hit if we do
it for every token. Using normal system memory avoids this issue
and also gives the OS more flexibility to manage it.
There is no performance impact from this patch directly (either
positive or negative) but it makes a difference once we start
freeing memory correctly.
Context is currently mixed between pointer and value receivers. Change
this to be all pointer receivers so don't have to reason about whether
the things we are updating in the struct will be retained.
Sometimes loading the GGUF file fails with:
panic: context canceled
This is probably a filesystem error but it doesn't provide any
information about what happened.