The current scheduler algorithm of picking the paralellism based on available
VRAM complicates the upcoming dynamic layer memory allocation algorithm. This
changes the default to 1, with the intent going forward that parallelism is
explicit and will no longer be dynamically determined. Removal of the dynamic
logic will come in a follow up.
* Re-remove cuda v11
Revert the revert - drop v11 support requiring drivers newer than Feb 23
This reverts commit c6bcdc4223.
* Simplify layout
With only one version of the GPU libraries, we can simplify things down somewhat. (Jetsons still require special handling)
* distinct sbsa variant for linux arm64
This avoids accidentally trying to load the sbsa cuda libraries on
a jetson system which results in crashes.
* temporary prevent rocm+cuda mixed loading
- Both `/api/generate` and `/api/chat` now accept a `"think"`
option that allows specifying whether thinking mode should be on or
not
- Templates get passed this new option so, e.g., qwen3's template can
put `/think` or `/no_think` in the system prompt depending on the
value of the setting
- Models' thinking support is inferred by inspecting model templates.
The prefix and suffix the parser uses to identify thinking support is
also automatically inferred from templates
- Thinking control & parsing is opt-in via the API to prevent breaking
existing API consumers. If the `"think"` option is not specified, the
behavior is unchanged from previous versions of ollama
- Add parsing for thinking blocks in both streaming/non-streaming mode
in both `/generate` and `/chat`
- Update the CLI to make use of these changes. Users can pass `--think`
or `--think=false` to control thinking, or during an interactive
session they can use the commands `/set think` or `/set nothink`
- A `--hidethinking` option has also been added to the CLI. This makes
it easy to use thinking in scripting scenarios like
`ollama run qwen3 --think --hidethinking "my question here"` where you
just want to see the answer but still want the benefits of thinking
models
The quantization PR didn't block all unsupported file types,
which this PR fixes. It also updates the API docs to reflect
the now reduced set of supported types.
This reduces the size of our Windows installer payloads by ~256M by dropping
support for nvidia drivers older than Feb 2023. Hardware support is unchanged.
Linux default bundle sizes are reduced by ~600M to 1G.
Some options listed in api/types.go are not supported in
newer models, or have been deprecated in the past. This is
the first of a series of PRs to clean up the API options
* increase default context length to 4096
We lower the default numParallel from 4 to 2 and use these "savings" to
double the default context length from 2048 to 4096.
We're memory neutral in cases when we previously would've used
numParallel == 4, but we add the following mitigation to handle some
cases where we would have previously fallen back to 1x2048 due to low
VRAM: we decide between 2048 and 4096 using a runtime check, choosing
2048 if we're on a one GPU system with total VRAM of <= 4 GB. We
purposefully don't check the available VRAM because we don't want the
context window size to change unexpectedly based on the available VRAM.
We plan on making the default even larger, but this is a relatively
low-risk change we can make to quickly double it.
* fix tests
add an explicit context length so they don't get truncated. The code
that converts -1 from being a signal for doing a runtime check isn't
running as part of these tests.
* tweak small gpu message
* clarify context length default
also make it actually show up in `ollama serve --help`
With support for multimodal models becoming more varied and common it is important for clients to be able to easily see what capabilities a model has. Retuning these from the show endpoint will allow clients to easily see what a model can do.
The problem with default.target is that it always points to the target that is currently started. So if you boot into single user mode or the rescue mode still Ollama tries to start.
I noticed this because either tried (and failed) to start all the time during a system update, where Ollama definitely is not wanted.
Previously, developers without the synctest experiment enabled would see
build failures when running tests in some server/internal/internal
packages using the synctest package. This change makes the transition to
use of the package less painful but guards the use of the synctest
package with build tags.
synctest is enabled in CI. If a new change will break a synctest
package, it will break in CI, even if it does not break locally.
The developer docs have been updated to help with any confusion about
why package tests pass locally but fail in CI.
* Windows ARM build
Skip cmake, and note it's unused in the developer docs.
* Win: only check for ninja when we need it
On windows ARM, the cim lookup fails, but we don't need ninja anyway.
* add build to .dockerignore
* test: only build one arch
* add build to .gitignore
* fix ccache path
* filter amdgpu targets
* only filter if autodetecting
* Don't clobber gpu list for default runner
This ensures the GPU specific environment variables are set properly
* explicitly set CXX compiler for HIP
* Update build_windows.ps1
This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset.
* build: add ollama subdir
* add .git to .dockerignore
* docs: update development.md
* update build_darwin.sh
* remove unused scripts
* llm: add cwd and build/lib/ollama to library paths
* default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS
* add additional cmake output vars for msvc
* interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12
* remove unncessary filepath.Dir, cleanup
* add hardware-specific directory to path
* use absolute server path
* build: linux arm
* cmake install targets
* remove unused files
* ml: visit each library path once
* build: skip cpu variants on arm
* build: install cpu targets
* build: fix workflow
* shorter names
* fix rocblas install
* docs: clean up development.md
* consistent build dir removal in development.md
* silence -Wimplicit-function-declaration build warnings in ggml-cpu
* update readme
* update development readme
* llm: update library lookup logic now that there is one runner (#8587)
* tweak development.md
* update docs
* add windows cuda/rocm tests
---------
Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
* llama: wire up builtin runner
This adds a new entrypoint into the ollama CLI to run the cgo built runner.
On Mac arm64, this will have GPU support, but on all other platforms it will
be the lowest common denominator CPU build. After we fully transition
to the new Go runners more tech-debt can be removed and we can stop building
the "default" runner via make and rely on the builtin always.
* build: Make target improvements
Add a few new targets and help for building locally.
This also adjusts the runner lookup to favor local builds, then
runners relative to the executable, and finally payloads.
* Support customized CPU flags for runners
This implements a simplified custom CPU flags pattern for the runners.
When built without overrides, the runner name contains the vector flag
we check for (AVX) to ensure we don't try to run on unsupported systems
and crash. If the user builds a customized set, we omit the naming
scheme and don't check for compatibility. This avoids checking
requirements at runtime, so that logic has been removed as well. This
can be used to build GPU runners with no vector flags, or CPU/GPU
runners with additional flags (e.g. AVX512) enabled.
* Use relative paths
If the user checks out the repo in a path that contains spaces, make gets
really confused so use relative paths for everything in-repo to avoid breakage.
* Remove payloads from main binary
* install: clean up prior libraries
This removes support for v0.3.6 and older versions (before the tar bundle)
and ensures we clean up prior libraries before extracting the bundle(s).
Without this change, runners and dependent libraries could leak when we
update and lead to subtle runtime errors.
Docker uses the container filesystem for name resolution, so we can't guide users
to use the name of the host group. Instead they must specify the numeric ID.
This will no longer error if built with regular gcc on windows. To help
triage issues that may come in related to different compilers, the runner now
reports the compier used by cgo.
* windows: Support alt install paths
Advanced users are leveraging innosetup's /DIR switch to target
an alternate location, but we get confused by things not existing in the LocalAppData dir.
This also hardens the server path lookup code for a future attempt to unify with a ./bin prefix
* Fit and finish improvements for windows app
Document alternate install location instructions for binaries and model.
Pop up progress UI for upgrades (automatic, with cancel button).
Expose non-default port in menu to disambiguate mutiple instances.
Set minimum Windows version to 10 22H2
* Switch over to clang for deepseek on windows
The patch for deepseek requires clang on windows. gcc on windows
has a buggy c++ library and can't handle the unicode characters
* Fail fast with wrong compiler on windows
Avoid users mistakenly building with GCC when we need clang
* Better support for AMD multi-GPU
This resolves a number of problems related to AMD multi-GPU setups on linux.
The numeric IDs used by rocm are not the same as the numeric IDs exposed in
sysfs although the ordering is consistent. We have to count up from the first
valid gfx (major/minor/patch with non-zero values) we find starting at zero.
There are 3 different env vars for selecting GPUs, and only ROCR_VISIBLE_DEVICES
supports UUID based identification, so we should favor that one, and try
to use UUIDs if detected to avoid potential ordering bugs with numeric IDs
* ROCR_VISIBLE_DEVICES only works on linux
Use the numeric ID only HIP_VISIBLE_DEVICES on windows