feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
Branch: GraniteFour
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
parent
a30ae1fa20
commit
73d089bb90
|
|
@ -24,7 +24,7 @@ problem.
|
|||
9 files changed, 21 insertions(+), 2 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
|
||||
index b30b4cb3..0ce73a99 100644
|
||||
index b1050ad5..e8694e5c 100644
|
||||
--- a/ggml/src/ggml-backend.cpp
|
||||
+++ b/ggml/src/ggml-backend.cpp
|
||||
@@ -107,7 +107,6 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
||||
|
|
@ -43,7 +43,7 @@ index b30b4cb3..0ce73a99 100644
|
|||
}
|
||||
|
||||
static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
@@ -1871,6 +1871,11 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
@@ -1879,6 +1879,11 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
|
||||
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_aligned_free(buffer->context, buffer->size);
|
||||
|
|
@ -55,7 +55,7 @@ index b30b4cb3..0ce73a99 100644
|
|||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
@@ -1918,7 +1923,7 @@ static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
|
||||
@@ -1926,7 +1931,7 @@ static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
|
||||
};
|
||||
|
||||
static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
|
||||
|
|
@ -65,10 +65,10 @@ index b30b4cb3..0ce73a99 100644
|
|||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
|
||||
diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp
|
||||
index e2617b06..242e50a7 100644
|
||||
index d1a0ad37..b67a1012 100755
|
||||
--- a/ggml/src/ggml-cann/ggml-cann.cpp
|
||||
+++ b/ggml/src/ggml-cann/ggml-cann.cpp
|
||||
@@ -800,6 +800,7 @@ static void ggml_backend_cann_buffer_free_buffer(
|
||||
@@ -825,6 +825,7 @@ static void ggml_backend_cann_buffer_free_buffer(
|
||||
ggml_backend_cann_buffer_context* ctx =
|
||||
(ggml_backend_cann_buffer_context*)buffer->context;
|
||||
delete ctx;
|
||||
|
|
@ -76,7 +76,7 @@ index e2617b06..242e50a7 100644
|
|||
}
|
||||
|
||||
/**
|
||||
@@ -1472,6 +1473,7 @@ static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buf
|
||||
@@ -1497,6 +1498,7 @@ static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buf
|
||||
*/
|
||||
static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) {
|
||||
ACL_CHECK(aclrtFreeHost(buffer->context));
|
||||
|
|
@ -85,10 +85,10 @@ index e2617b06..242e50a7 100644
|
|||
|
||||
/**
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index b4b85abc..cb0d8528 100644
|
||||
index d0502018..b6cca93f 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -534,6 +534,7 @@ struct ggml_backend_cuda_buffer_context {
|
||||
@@ -561,6 +561,7 @@ struct ggml_backend_cuda_buffer_context {
|
||||
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
|
|
@ -96,7 +96,7 @@ index b4b85abc..cb0d8528 100644
|
|||
}
|
||||
|
||||
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
|
||||
@@ -790,6 +791,7 @@ struct ggml_backend_cuda_split_buffer_context {
|
||||
@@ -816,6 +817,7 @@ struct ggml_backend_cuda_split_buffer_context {
|
||||
static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
|
|
@ -104,7 +104,7 @@ index b4b85abc..cb0d8528 100644
|
|||
}
|
||||
|
||||
static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
@@ -1067,6 +1069,7 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
|
||||
@@ -1097,6 +1099,7 @@ static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
|
||||
|
||||
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
CUDA_CHECK(cudaFreeHost(buffer->context));
|
||||
|
|
@ -125,10 +125,10 @@ index 50579227..2799a0a5 100644
|
|||
|
||||
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
|
||||
index 576f9581..1b56f858 100644
|
||||
index 877236a2..74fd6654 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.m
|
||||
@@ -5214,6 +5214,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
|
||||
@@ -5501,6 +5501,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
|
||||
}
|
||||
|
||||
free(ctx);
|
||||
|
|
@ -137,10 +137,10 @@ index 576f9581..1b56f858 100644
|
|||
|
||||
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp
|
||||
index 05a2f4e6..392cc18d 100644
|
||||
index 96e8a858..184628e0 100644
|
||||
--- a/ggml/src/ggml-opencl/ggml-opencl.cpp
|
||||
+++ b/ggml/src/ggml-opencl/ggml-opencl.cpp
|
||||
@@ -1940,6 +1940,7 @@ struct ggml_backend_opencl_buffer_context {
|
||||
@@ -2466,6 +2466,7 @@ struct ggml_backend_opencl_buffer_context {
|
||||
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
||||
delete ctx;
|
||||
|
|
@ -149,22 +149,22 @@ index 05a2f4e6..392cc18d 100644
|
|||
|
||||
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
diff --git a/ggml/src/ggml-rpc/ggml-rpc.cpp b/ggml/src/ggml-rpc/ggml-rpc.cpp
|
||||
index 4f0abb5a..de1ec184 100644
|
||||
index f468f796..cbc4bf0a 100644
|
||||
--- a/ggml/src/ggml-rpc/ggml-rpc.cpp
|
||||
+++ b/ggml/src/ggml-rpc/ggml-rpc.cpp
|
||||
@@ -483,6 +483,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
@@ -486,6 +486,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
|
||||
GGML_ASSERT(status);
|
||||
RPC_STATUS_ASSERT(status);
|
||||
delete ctx;
|
||||
+ delete buffer;
|
||||
}
|
||||
|
||||
static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp
|
||||
index 0ea72994..ae3a3c33 100644
|
||||
index 9cb36ae9..84c25121 100644
|
||||
--- a/ggml/src/ggml-sycl/ggml-sycl.cpp
|
||||
+++ b/ggml/src/ggml-sycl/ggml-sycl.cpp
|
||||
@@ -320,6 +320,7 @@ ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
|
||||
@@ -329,6 +329,7 @@ ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
|
||||
ggml_sycl_set_device(ctx->device);
|
||||
|
||||
delete ctx;
|
||||
|
|
@ -172,7 +172,7 @@ index 0ea72994..ae3a3c33 100644
|
|||
}
|
||||
catch (sycl::exception const &exc) {
|
||||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||||
@@ -765,6 +766,7 @@ struct ggml_backend_sycl_split_buffer_context {
|
||||
@@ -790,6 +791,7 @@ struct ggml_backend_sycl_split_buffer_context {
|
||||
static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
|
|
@ -180,7 +180,7 @@ index 0ea72994..ae3a3c33 100644
|
|||
}
|
||||
|
||||
static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
@@ -1099,6 +1101,7 @@ static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_
|
||||
@@ -1132,6 +1134,7 @@ static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_
|
||||
|
||||
static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_sycl_host_free(buffer->context);
|
||||
|
|
@ -189,10 +189,10 @@ index 0ea72994..ae3a3c33 100644
|
|||
|
||||
static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
index e2b357fd..68768029 100644
|
||||
index 99be5e45..1527997b 100644
|
||||
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
@@ -8962,6 +8962,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
@@ -9355,6 +9355,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
ggml_vk_destroy_buffer(ctx->dev_buffer);
|
||||
delete ctx;
|
||||
|
|
@ -200,7 +200,7 @@ index e2b357fd..68768029 100644
|
|||
}
|
||||
|
||||
static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
@@ -9105,6 +9106,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
|
||||
@@ -9498,6 +9499,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
|
||||
static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
|
||||
ggml_vk_host_free(vk_instance.devices[0], buffer->context);
|
||||
|
|
|
|||
|
|
@ -10,10 +10,10 @@ logs instead of throwing an error
|
|||
1 file changed, 3 insertions(+), 11 deletions(-)
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index 9389ca80..806c1b3d 100644
|
||||
index 5c9eb875..f8c7f70a 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -1503,16 +1503,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
@@ -1506,16 +1506,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
if (type == LLAMA_VOCAB_TYPE_BPE) {
|
||||
add_space_prefix = false;
|
||||
clean_spaces = true;
|
||||
|
|
@ -31,7 +31,7 @@ index 9389ca80..806c1b3d 100644
|
|||
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||||
} else if (
|
||||
tokenizer_pre == "llama3" ||
|
||||
@@ -1651,7 +1642,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
@@ -1657,7 +1648,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
pre_type = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
|
||||
clean_spaces = false;
|
||||
} else {
|
||||
|
|
|
|||
|
|
@ -10,10 +10,10 @@ filesystems for paths that include wide characters
|
|||
1 file changed, 39 insertions(+)
|
||||
|
||||
diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp
|
||||
index 41ba45a7..cdd8ca44 100644
|
||||
index a990520e..1229e6e8 100644
|
||||
--- a/tools/mtmd/clip.cpp
|
||||
+++ b/tools/mtmd/clip.cpp
|
||||
@@ -31,6 +31,19 @@
|
||||
@@ -28,6 +28,19 @@
|
||||
#include <numeric>
|
||||
#include <functional>
|
||||
|
||||
|
|
@ -33,7 +33,7 @@ index 41ba45a7..cdd8ca44 100644
|
|||
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
|
||||
|
||||
enum ffn_op_type {
|
||||
@@ -2190,7 +2203,29 @@ struct clip_model_loader {
|
||||
@@ -2559,7 +2572,29 @@ struct clip_model_loader {
|
||||
{
|
||||
std::vector<uint8_t> read_buf;
|
||||
|
||||
|
|
@ -63,7 +63,7 @@ index 41ba45a7..cdd8ca44 100644
|
|||
if (!fin) {
|
||||
throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
|
||||
}
|
||||
@@ -2217,7 +2252,11 @@ struct clip_model_loader {
|
||||
@@ -2586,7 +2621,11 @@ struct clip_model_loader {
|
||||
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
|
||||
}
|
||||
}
|
||||
|
|
@ -1,43 +0,0 @@
|
|||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Tue, 8 Apr 2025 15:28:34 -0700
|
||||
Subject: [PATCH] embeddings
|
||||
|
||||
allow a loaded model in llama.cpp to be used for
|
||||
both embeddings and causal attention text generation
|
||||
instead of forcing one or the error
|
||||
---
|
||||
src/llama-context.cpp | 6 +++---
|
||||
1 file changed, 3 insertions(+), 3 deletions(-)
|
||||
|
||||
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
|
||||
index 62246c10..dca22d8b 100644
|
||||
--- a/src/llama-context.cpp
|
||||
+++ b/src/llama-context.cpp
|
||||
@@ -901,7 +901,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
int64_t n_outputs_all = 0;
|
||||
|
||||
// count outputs
|
||||
- if (batch.logits && !embd_pooled) {
|
||||
+ if (batch.logits) {
|
||||
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
||||
n_outputs_all += batch.logits[i] != 0;
|
||||
}
|
||||
@@ -982,7 +982,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
|
||||
//}
|
||||
|
||||
- auto * t_logits = cparams.embeddings ? nullptr : res->get_logits();
|
||||
+ auto * t_logits = cparams.causal_attn ? res->get_logits() : nullptr;
|
||||
auto * t_embd = cparams.embeddings ? res->get_embd() : nullptr;
|
||||
|
||||
if (t_embd && res->get_embd_pooled()) {
|
||||
@@ -1151,7 +1151,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
|
||||
const auto n_embd = hparams.n_embd;
|
||||
|
||||
// TODO: use a per-batch flag for logits presence instead
|
||||
- bool has_logits = !cparams.embeddings;
|
||||
+ bool has_logits = cparams.causal_attn;
|
||||
bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
|
||||
|
||||
// TODO: hacky enc-dec support
|
||||
|
|
@ -15,26 +15,26 @@ adds support for the Solar Pro architecture
|
|||
7 files changed, 248 insertions(+)
|
||||
|
||||
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
|
||||
index f2bc8ca7..5ab3f572 100644
|
||||
index 221d9b8d..6bde5155 100644
|
||||
--- a/src/llama-arch.cpp
|
||||
+++ b/src/llama-arch.cpp
|
||||
@@ -69,6 +69,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_GRANITE, "granite" },
|
||||
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
||||
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
||||
+ { LLM_ARCH_SOLAR, "solar" },
|
||||
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
||||
{ LLM_ARCH_PLM, "plm" },
|
||||
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
|
||||
@@ -142,6 +143,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
@@ -74,6 +74,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
||||
{ LLM_ARCH_GRANITE_MOE_HYBRID, "granitemoehybrid" },
|
||||
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
||||
+ { LLM_ARCH_SOLAR, "solar" },
|
||||
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
||||
{ LLM_ARCH_PLM, "plm" },
|
||||
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
|
||||
@@ -149,6 +150,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
||||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
|
||||
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
|
||||
|
||||
@@ -1502,6 +1504,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_KV_ATTENTION_LAYER_INDICES, "%s.attention.layer_indices" },
|
||||
@@ -1666,6 +1668,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
},
|
||||
},
|
||||
|
|
@ -59,8 +59,8 @@ index f2bc8ca7..5ab3f572 100644
|
|||
{
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
{
|
||||
@@ -1680,6 +1700,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_FFN_EXP_PROBS_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
|
||||
@@ -1890,6 +1910,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_LAUREL_POST_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
// this tensor is loaded for T5, but never used
|
||||
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
|
||||
+ {LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
|
|
@ -68,26 +68,26 @@ index f2bc8ca7..5ab3f572 100644
|
|||
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
diff --git a/src/llama-arch.h b/src/llama-arch.h
|
||||
index 41a023da..525c1b7d 100644
|
||||
index a17be63c..51c2d523 100644
|
||||
--- a/src/llama-arch.h
|
||||
+++ b/src/llama-arch.h
|
||||
@@ -73,6 +73,7 @@ enum llm_arch {
|
||||
LLM_ARCH_GRANITE,
|
||||
@@ -78,6 +78,7 @@ enum llm_arch {
|
||||
LLM_ARCH_GRANITE_MOE,
|
||||
LLM_ARCH_GRANITE_MOE_HYBRID,
|
||||
LLM_ARCH_CHAMELEON,
|
||||
+ LLM_ARCH_SOLAR,
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
LLM_ARCH_PLM,
|
||||
LLM_ARCH_BAILINGMOE,
|
||||
@@ -146,6 +147,7 @@ enum llm_kv {
|
||||
@@ -153,6 +154,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
|
||||
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
|
||||
|
||||
@@ -346,6 +348,7 @@ enum llm_tensor {
|
||||
LLM_KV_ATTENTION_LAYER_INDICES,
|
||||
@@ -374,6 +376,7 @@ enum llm_tensor {
|
||||
LLM_TENSOR_ENC_OUTPUT_NORM,
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
|
|
@ -96,11 +96,11 @@ index 41a023da..525c1b7d 100644
|
|||
LLM_TENSOR_CONVNEXT_DW,
|
||||
LLM_TENSOR_CONVNEXT_NORM,
|
||||
diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp
|
||||
index 90dfe7a7..8a667960 100644
|
||||
index 86c814d5..f1c965b8 100644
|
||||
--- a/src/llama-hparams.cpp
|
||||
+++ b/src/llama-hparams.cpp
|
||||
@@ -70,6 +70,14 @@ uint32_t llama_hparams::n_embd_v_s() const {
|
||||
return ssm_d_state * ssm_d_inner;
|
||||
@@ -95,6 +95,14 @@ uint32_t llama_hparams::n_pos_per_embd() const {
|
||||
return rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1;
|
||||
}
|
||||
|
||||
+bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
|
||||
|
|
@ -113,12 +113,12 @@ index 90dfe7a7..8a667960 100644
|
|||
+
|
||||
bool llama_hparams::is_swa(uint32_t il) const {
|
||||
if (il < n_layer) {
|
||||
return n_swa > 0 && n_swa_pattern > 0 && il % n_swa_pattern < (n_swa_pattern - 1);
|
||||
return swa_layers[il];
|
||||
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
|
||||
index 7ee6a5b7..48dce407 100644
|
||||
index 476d0a5e..906fa185 100644
|
||||
--- a/src/llama-hparams.h
|
||||
+++ b/src/llama-hparams.h
|
||||
@@ -55,6 +55,8 @@ struct llama_hparams {
|
||||
@@ -59,6 +59,8 @@ struct llama_hparams {
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
||||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||||
|
||||
|
|
@ -127,9 +127,9 @@ index 7ee6a5b7..48dce407 100644
|
|||
uint32_t n_layer_dense_lead = 0;
|
||||
uint32_t n_lora_q = 0;
|
||||
uint32_t n_lora_kv = 0;
|
||||
@@ -154,6 +156,9 @@ struct llama_hparams {
|
||||
// dimension of the recurrent state embeddings
|
||||
uint32_t n_embd_v_s() const;
|
||||
@@ -201,6 +203,9 @@ struct llama_hparams {
|
||||
|
||||
uint32_t n_pos_per_embd() const;
|
||||
|
||||
+ // Block skip connection
|
||||
+ bool n_bskcn(uint32_t n, uint32_t il) const;
|
||||
|
|
@ -138,22 +138,22 @@ index 7ee6a5b7..48dce407 100644
|
|||
};
|
||||
|
||||
diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp
|
||||
index 4cce5166..7f6617fa 100644
|
||||
index 0bd1e5d0..445c81d4 100644
|
||||
--- a/src/llama-model-loader.cpp
|
||||
+++ b/src/llama-model-loader.cpp
|
||||
@@ -439,6 +439,7 @@ namespace GGUFMeta {
|
||||
@@ -464,6 +464,7 @@ namespace GGUFMeta {
|
||||
// TODO: this is not very clever - figure out something better
|
||||
template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
|
||||
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
|
||||
+ template bool llama_model_loader::get_key_or_arr<uint32_t>(const std::string & key, std::array<uint32_t, 512> & result, uint32_t n, bool required);
|
||||
template bool llama_model_loader::get_arr(enum llm_kv kid, std::vector<uint32_t> & result, bool required);
|
||||
|
||||
llama_model_loader::llama_model_loader(
|
||||
const std::string & fname,
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index 3a4e72a3..db62973f 100644
|
||||
index 482efa55..f1fe64ba 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -1402,6 +1402,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
@@ -1551,6 +1551,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
|
|
@ -175,7 +175,7 @@ index 3a4e72a3..db62973f 100644
|
|||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
@@ -3774,6 +3789,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
@@ -4170,6 +4185,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
|
|
@ -210,7 +210,7 @@ index 3a4e72a3..db62973f 100644
|
|||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
@@ -12397,6 +12440,165 @@ struct llm_build_chameleon : public llm_graph_context {
|
||||
@@ -14076,6 +14119,165 @@ struct llm_build_granite_hybrid : public llm_graph_context {
|
||||
}
|
||||
};
|
||||
|
||||
|
|
@ -270,7 +270,7 @@ index 3a4e72a3..db62973f 100644
|
|||
+ // self-attention
|
||||
+ {
|
||||
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
+ ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
+ ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
+
|
||||
+ // compute Q and K and RoPE them
|
||||
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
|
|
@ -373,10 +373,10 @@ index 3a4e72a3..db62973f 100644
|
|||
+ }
|
||||
+};
|
||||
+
|
||||
struct llm_build_wavtokenizer_dec : public llm_graph_context {
|
||||
llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
ggml_tensor * cur;
|
||||
@@ -13157,6 +13359,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
||||
// ref: https://github.com/facebookresearch/chameleon
|
||||
// based on the original build_llama() function, changes:
|
||||
// * qk-norm
|
||||
@@ -15381,6 +15583,10 @@ llm_graph_result_ptr llama_model::build_graph(
|
||||
{
|
||||
llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
|
||||
} break;
|
||||
|
|
@ -387,16 +387,16 @@ index 3a4e72a3..db62973f 100644
|
|||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
{
|
||||
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
|
||||
@@ -13301,6 +13507,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
@@ -15552,6 +15758,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_GRANITE_MOE_HYBRID:
|
||||
case LLM_ARCH_BAMBA:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
+ case LLM_ARCH_SOLAR:
|
||||
case LLM_ARCH_BAILINGMOE:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
case LLM_ARCH_NEO_BERT:
|
||||
case LLM_ARCH_ARCEE:
|
||||
diff --git a/src/llama-model.h b/src/llama-model.h
|
||||
index 6bdec263..43746c7d 100644
|
||||
index abbc34be..fd8a1f26 100644
|
||||
--- a/src/llama-model.h
|
||||
+++ b/src/llama-model.h
|
||||
@@ -65,6 +65,7 @@ enum llm_type {
|
||||
|
|
@ -407,9 +407,9 @@ index 6bdec263..43746c7d 100644
|
|||
LLM_TYPE_27B,
|
||||
LLM_TYPE_30B,
|
||||
LLM_TYPE_32B,
|
||||
@@ -315,6 +316,8 @@ struct llama_layer {
|
||||
struct ggml_tensor * ffn_up_scale = nullptr;
|
||||
struct ggml_tensor * ffn_down_scale = nullptr;
|
||||
@@ -333,6 +334,8 @@ struct llama_layer {
|
||||
struct ggml_tensor * laurel_r = nullptr;
|
||||
struct ggml_tensor * laurel_post_norm = nullptr;
|
||||
|
||||
+ struct ggml_tensor * bskcn_tv = nullptr;
|
||||
+
|
||||
|
|
@ -12,7 +12,7 @@ regex
|
|||
2 files changed, 22 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index 806c1b3d..10f34d33 100644
|
||||
index f8c7f70a..96109f04 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -298,7 +298,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
|
|
@ -25,7 +25,7 @@ index 806c1b3d..10f34d33 100644
|
|||
"\\s+$",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
diff --git a/src/unicode.cpp b/src/unicode.cpp
|
||||
index e63bb4ab..73cb2b1a 100644
|
||||
index 43a4581b..4da581c5 100644
|
||||
--- a/src/unicode.cpp
|
||||
+++ b/src/unicode.cpp
|
||||
@@ -2,6 +2,11 @@
|
||||
|
|
@ -62,7 +62,7 @@ index e63bb4ab..73cb2b1a 100644
|
|||
#if defined(__clang__)
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
# pragma clang diagnostic push
|
||||
@@ -213,6 +233,7 @@ static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
|
||||
@@ -218,6 +238,7 @@ static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
|
||||
#endif
|
||||
|
||||
return conv.from_bytes(s);
|
||||
|
|
@ -8,10 +8,10 @@ Subject: [PATCH] maintain ordering for rules for grammar
|
|||
1 file changed, 1 insertion(+), 1 deletion(-)
|
||||
|
||||
diff --git a/common/json-schema-to-grammar.cpp b/common/json-schema-to-grammar.cpp
|
||||
index 5b3059c2..656b3eca 100644
|
||||
index 637891f5..98b8280f 100644
|
||||
--- a/common/json-schema-to-grammar.cpp
|
||||
+++ b/common/json-schema-to-grammar.cpp
|
||||
@@ -349,7 +349,7 @@ private:
|
||||
@@ -307,7 +307,7 @@ private:
|
||||
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
|
||||
std::function<json(const std::string &)> _fetch_json;
|
||||
bool _dotall;
|
||||
|
|
@ -11,10 +11,10 @@ with the fastest acceleration is loaded
|
|||
1 file changed, 13 insertions(+), 8 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 405d8e31..4e67d243 100644
|
||||
index 2d93771f..5b004d6d 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -157,7 +157,7 @@ struct ggml_backend_reg_entry {
|
||||
@@ -162,7 +162,7 @@ struct ggml_backend_reg_entry {
|
||||
|
||||
struct ggml_backend_registry {
|
||||
std::vector<ggml_backend_reg_entry> backends;
|
||||
|
|
@ -23,7 +23,7 @@ index 405d8e31..4e67d243 100644
|
|||
|
||||
ggml_backend_registry() {
|
||||
#ifdef GGML_USE_CUDA
|
||||
@@ -202,7 +202,7 @@ struct ggml_backend_registry {
|
||||
@@ -207,7 +207,7 @@ struct ggml_backend_registry {
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -32,7 +32,7 @@ index 405d8e31..4e67d243 100644
|
|||
if (!reg) {
|
||||
return;
|
||||
}
|
||||
@@ -213,15 +213,20 @@ struct ggml_backend_registry {
|
||||
@@ -218,15 +218,20 @@ struct ggml_backend_registry {
|
||||
#endif
|
||||
backends.push_back({ reg, std::move(handle) });
|
||||
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
|
||||
|
|
@ -56,7 +56,7 @@ index 405d8e31..4e67d243 100644
|
|||
}
|
||||
|
||||
ggml_backend_reg_t load_backend(const fs::path & path, bool silent) {
|
||||
@@ -265,7 +270,7 @@ struct ggml_backend_registry {
|
||||
@@ -270,7 +275,7 @@ struct ggml_backend_registry {
|
||||
|
||||
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path_str(path).c_str());
|
||||
|
||||
|
|
@ -65,7 +65,7 @@ index 405d8e31..4e67d243 100644
|
|||
|
||||
return reg;
|
||||
}
|
||||
@@ -288,7 +293,7 @@ struct ggml_backend_registry {
|
||||
@@ -293,7 +298,7 @@ struct ggml_backend_registry {
|
||||
// remove devices
|
||||
devices.erase(
|
||||
std::remove_if(devices.begin(), devices.end(),
|
||||
|
|
@ -74,7 +74,7 @@ index 405d8e31..4e67d243 100644
|
|||
devices.end());
|
||||
|
||||
// remove backend
|
||||
@@ -346,7 +351,7 @@ size_t ggml_backend_dev_count() {
|
||||
@@ -351,7 +356,7 @@ size_t ggml_backend_dev_count() {
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
|
||||
GGML_ASSERT(index < ggml_backend_dev_count());
|
||||
|
|
@ -8,22 +8,22 @@ Subject: [PATCH] add phony target ggml-cpu for all cpu variants
|
|||
1 file changed, 2 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
|
||||
index ddea5ad3..45918bf6 100644
|
||||
index 9cb2c228..a494cf44 100644
|
||||
--- a/ggml/src/CMakeLists.txt
|
||||
+++ b/ggml/src/CMakeLists.txt
|
||||
@@ -279,6 +279,7 @@ function(ggml_add_cpu_backend_variant tag_name)
|
||||
endforeach()
|
||||
@@ -293,6 +293,7 @@ function(ggml_add_cpu_backend_variant tag_name)
|
||||
endif()
|
||||
|
||||
ggml_add_cpu_backend_variant_impl(${tag_name})
|
||||
+ add_dependencies(ggml-cpu ggml-cpu-${tag_name})
|
||||
endfunction()
|
||||
|
||||
ggml_add_backend(CPU)
|
||||
@@ -287,6 +288,7 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
|
||||
@@ -303,6 +304,7 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
elseif (GGML_CPU_ARM_ARCH)
|
||||
message(FATAL_ERROR "Cannot use both GGML_CPU_ARM_ARCH and GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
+ add_custom_target(ggml-cpu)
|
||||
ggml_add_cpu_backend_variant(x64)
|
||||
ggml_add_cpu_backend_variant(sse42 SSE42)
|
||||
ggml_add_cpu_backend_variant(sandybridge SSE42 AVX)
|
||||
if (GGML_SYSTEM_ARCH STREQUAL "x86")
|
||||
ggml_add_cpu_backend_variant(x64)
|
||||
ggml_add_cpu_backend_variant(sse42 SSE42)
|
||||
|
|
@ -1,352 +0,0 @@
|
|||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Tue, 15 Apr 2025 14:27:40 -0400
|
||||
Subject: [PATCH] ensure KV cache is fully defragmented
|
||||
|
||||
Sometimes the KV cache requires defragmentation even without
|
||||
triggering the threshold heuristic. In this case, decoding
|
||||
will not being able to find a KV cache slot. This is particularly
|
||||
difficult for the caller to handle if it happens in between
|
||||
ubatches. To avoid this, we should immediately trigger a defrag.
|
||||
|
||||
In addition, a heavily fragmented cache can require more than
|
||||
max_moves to defragment. Currently, we stop when we hit the limit
|
||||
but this can leave a cache that still does not have adequate space
|
||||
even after defragmentation is triggered. Instead, we should do
|
||||
multiple batches of processing until everything is complete.
|
||||
---
|
||||
src/llama-context.cpp | 18 ++++---
|
||||
src/llama-context.h | 1 +
|
||||
src/llama-kv-cache.cpp | 107 ++++++++++++++---------------------------
|
||||
src/llama-kv-cache.h | 12 ++++-
|
||||
4 files changed, 59 insertions(+), 79 deletions(-)
|
||||
|
||||
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
|
||||
index dca22d8b..1f3a3956 100644
|
||||
--- a/src/llama-context.cpp
|
||||
+++ b/src/llama-context.cpp
|
||||
@@ -947,9 +947,12 @@ int llama_context::decode(llama_batch & inp_batch) {
|
||||
|
||||
// find KV slot
|
||||
if (!kv_self->find_slot(ubatch)) {
|
||||
- LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
||||
-
|
||||
- return 1;
|
||||
+ kv_self->defrag_sched(-1.0f);
|
||||
+ kv_self->update(*this);
|
||||
+ if (!kv_self->find_slot(ubatch)) {
|
||||
+ LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
||||
+ return 1;
|
||||
+ }
|
||||
}
|
||||
|
||||
ggml_backend_sched_reset(sched.get());
|
||||
@@ -1965,9 +1968,12 @@ void llama_context::opt_epoch_iter(
|
||||
|
||||
// TODO: not sure if this is needed
|
||||
if (!kv_self->find_slot(ubatch)) {
|
||||
- LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
||||
-
|
||||
- GGML_ABORT("TODO: handle this error");
|
||||
+ kv_self->defrag_sched(-1.0f);
|
||||
+ kv_self->update(*this);
|
||||
+ if (!kv_self->find_slot(ubatch)) {
|
||||
+ LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
||||
+ GGML_ABORT("TODO: handle this error");
|
||||
+ }
|
||||
}
|
||||
|
||||
auto * gf = graph_init();
|
||||
diff --git a/src/llama-context.h b/src/llama-context.h
|
||||
index c0ceacb1..0264e937 100644
|
||||
--- a/src/llama-context.h
|
||||
+++ b/src/llama-context.h
|
||||
@@ -5,6 +5,7 @@
|
||||
#include "llama-cparams.h"
|
||||
#include "llama-graph.h"
|
||||
#include "llama-adapter.h"
|
||||
+#include "llama-kv-cache.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
#include "ggml-opt.h"
|
||||
diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp
|
||||
index 3dcad65b..60e67b03 100644
|
||||
--- a/src/llama-kv-cache.cpp
|
||||
+++ b/src/llama-kv-cache.cpp
|
||||
@@ -364,8 +364,6 @@ void llama_kv_cache_unified::commit() {
|
||||
}
|
||||
|
||||
bool llama_kv_cache_unified::update(llama_context & lctx) {
|
||||
- bool need_reserve = false;
|
||||
-
|
||||
auto * sched = lctx.get_sched();
|
||||
|
||||
if (has_shift) {
|
||||
@@ -388,8 +386,6 @@ bool llama_kv_cache_unified::update(llama_context & lctx) {
|
||||
res->set_inputs(nullptr);
|
||||
|
||||
lctx.graph_compute(gf, false);
|
||||
-
|
||||
- need_reserve = true;
|
||||
}
|
||||
|
||||
{
|
||||
@@ -403,27 +399,36 @@ bool llama_kv_cache_unified::update(llama_context & lctx) {
|
||||
|
||||
if (do_defrag) {
|
||||
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
|
||||
+ const uint32_t n_max_nodes = lctx.graph_max_nodes();
|
||||
+ const uint32_t max_moves = (n_max_nodes - 2*model.hparams.n_layer)/(6*model.hparams.n_layer);
|
||||
+ if (!defrag_prepare(n_max_nodes)) {
|
||||
+ LLAMA_LOG_ERROR("%s: failed to prepare defragmentation\n", __func__);
|
||||
+ return false;
|
||||
+ }
|
||||
+
|
||||
+ for (std::size_t i = 0; i < defrag_info.moves.size(); i += max_moves) {
|
||||
+ std::vector<struct llama_kv_defrag_move> chunk;
|
||||
+ auto end = std::min(i + max_moves, defrag_info.moves.size());
|
||||
+ chunk.assign(defrag_info.moves.begin() + i, defrag_info.moves.begin() + end);
|
||||
|
||||
- if (defrag_prepare(lctx.graph_max_nodes())) {
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
auto * gf = lctx.graph_init();
|
||||
|
||||
- auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
|
||||
+ auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf, chunk);
|
||||
|
||||
ggml_backend_sched_alloc_graph(sched, gf);
|
||||
|
||||
res->set_inputs(nullptr);
|
||||
|
||||
lctx.graph_compute(gf, false);
|
||||
-
|
||||
- need_reserve = true;
|
||||
}
|
||||
|
||||
do_defrag = false;
|
||||
}
|
||||
|
||||
- return need_reserve;
|
||||
+ // we never need to reserve a worst case graph
|
||||
+ return false;
|
||||
}
|
||||
|
||||
void llama_kv_cache_unified::defrag_sched(float thold) {
|
||||
@@ -707,11 +712,10 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift(
|
||||
llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
|
||||
const llama_cparams & cparams,
|
||||
ggml_context * ctx,
|
||||
- ggml_cgraph * gf) const {
|
||||
+ ggml_cgraph * gf,
|
||||
+ const std::vector<struct llama_kv_defrag_move> & moves) const {
|
||||
auto res = std::make_unique<llm_graph_result>();
|
||||
|
||||
- const auto & ids = defrag_info.ids;
|
||||
-
|
||||
#if 0
|
||||
// CPU defrag
|
||||
//
|
||||
@@ -783,32 +787,20 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
|
||||
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
|
||||
}
|
||||
#else
|
||||
- for (uint32_t i = 0; i < ids.size(); ++i) {
|
||||
- const uint32_t id = ids[i];
|
||||
-
|
||||
- if (i == id || id == ids.size()) {
|
||||
- continue;
|
||||
- }
|
||||
-
|
||||
- uint32_t nm = 1;
|
||||
-
|
||||
- while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
||||
- nm++;
|
||||
- }
|
||||
-
|
||||
+ for (const auto & move : moves) {
|
||||
for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
||||
|
||||
ggml_tensor * view_k_src = ggml_view_2d(ctx, k_l[il],
|
||||
- n_embd_k_gqa, nm,
|
||||
+ n_embd_k_gqa, move.len,
|
||||
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
||||
- ggml_row_size(k_l[il]->type, n_embd_k_gqa*i));
|
||||
+ ggml_row_size(k_l[il]->type, n_embd_k_gqa*move.src));
|
||||
|
||||
ggml_tensor * view_k_dst = ggml_view_2d(ctx, k_l[il],
|
||||
- n_embd_k_gqa, nm,
|
||||
+ n_embd_k_gqa, move.len,
|
||||
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
||||
- ggml_row_size(k_l[il]->type, n_embd_k_gqa*id));
|
||||
+ ggml_row_size(k_l[il]->type, n_embd_k_gqa*move.dst));
|
||||
|
||||
ggml_tensor * view_v_src;
|
||||
ggml_tensor * view_v_dst;
|
||||
@@ -816,31 +808,29 @@ llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
|
||||
if (cparams.flash_attn) {
|
||||
// NOTE: the V cache is not transposed when using flash attention
|
||||
view_v_src = ggml_view_2d(ctx, v_l[il],
|
||||
- n_embd_v_gqa, nm,
|
||||
+ n_embd_v_gqa, move.len,
|
||||
ggml_row_size(v_l[il]->type, n_embd_v_gqa),
|
||||
- ggml_row_size(v_l[il]->type, n_embd_v_gqa*i));
|
||||
+ ggml_row_size(v_l[il]->type, n_embd_v_gqa*move.dst));
|
||||
|
||||
view_v_dst = ggml_view_2d(ctx, v_l[il],
|
||||
- n_embd_v_gqa, nm,
|
||||
+ move.len, n_embd_v_gqa,
|
||||
ggml_row_size(v_l[il]->type, n_embd_v_gqa),
|
||||
- ggml_row_size(v_l[il]->type, n_embd_v_gqa*id));
|
||||
+ ggml_row_size(v_l[il]->type, move.src));
|
||||
} else {
|
||||
view_v_src = ggml_view_2d(ctx, v_l[il],
|
||||
- nm, n_embd_v_gqa,
|
||||
+ move.len, n_embd_v_gqa,
|
||||
ggml_row_size(v_l[il]->type, size),
|
||||
- ggml_row_size(v_l[il]->type, i));
|
||||
+ ggml_row_size(v_l[il]->type, move.src));
|
||||
|
||||
view_v_dst = ggml_view_2d(ctx, v_l[il],
|
||||
- nm, n_embd_v_gqa,
|
||||
+ move.len, n_embd_v_gqa,
|
||||
ggml_row_size(v_l[il]->type, size),
|
||||
- ggml_row_size(v_l[il]->type, id));
|
||||
+ ggml_row_size(v_l[il]->type, move.dst));
|
||||
}
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
|
||||
}
|
||||
-
|
||||
- i += nm - 1;
|
||||
}
|
||||
|
||||
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
||||
@@ -857,17 +847,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
|
||||
assert(n_used <= n_kv);
|
||||
|
||||
- //const int64_t t_start = ggml_time_us();
|
||||
-
|
||||
- // number of cells moved
|
||||
- uint32_t n_moves = 0;
|
||||
-
|
||||
- // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
|
||||
- // - source view, destination view, copy operation
|
||||
- // - x2 for keys and values
|
||||
- //const uint32_t max_moves = max_nodes()/(6*n_layer);
|
||||
- // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
|
||||
- const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
|
||||
+ defrag_info.moves.clear();
|
||||
|
||||
// determine which KV cells to move where
|
||||
//
|
||||
@@ -875,10 +855,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
//
|
||||
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
|
||||
//
|
||||
- auto & ids = defrag_info.ids;
|
||||
-
|
||||
- ids.clear();
|
||||
- ids.resize(n_kv, n_kv);
|
||||
+ std::vector<uint32_t> ids(n_kv, n_kv);
|
||||
|
||||
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
|
||||
const auto & cell0 = cells[i0];
|
||||
@@ -927,19 +904,11 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
// are we moving a continuous block of memory?
|
||||
bool cont = false;
|
||||
|
||||
- // should we stop searching for the next move?
|
||||
- bool stop = false;
|
||||
-
|
||||
// go back and move the nf cells to the hole
|
||||
for (; i1 < n_kv; ++i1) {
|
||||
auto & cell1 = cells[i1];
|
||||
|
||||
if (cell1.is_empty() || ids[i1] != n_kv) {
|
||||
- if (n_moves == max_moves) {
|
||||
- stop = true;
|
||||
- break;
|
||||
- }
|
||||
-
|
||||
cont = false;
|
||||
continue;
|
||||
}
|
||||
@@ -955,8 +924,10 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
head = n_used;
|
||||
|
||||
if (!cont) {
|
||||
- n_moves++;
|
||||
+ defrag_info.moves.push_back({i1, i0 + nf, 1});
|
||||
cont = true;
|
||||
+ } else {
|
||||
+ defrag_info.moves.back().len++;
|
||||
}
|
||||
|
||||
nf++;
|
||||
@@ -966,22 +937,16 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
||||
}
|
||||
}
|
||||
|
||||
- if (stop || n_moves == max_moves) {
|
||||
- break;
|
||||
- }
|
||||
-
|
||||
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
|
||||
|
||||
i0 += nh - 1;
|
||||
}
|
||||
|
||||
- if (n_moves == 0) {
|
||||
+ if (defrag_info.moves.size() == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
- LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
|
||||
-
|
||||
- LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
|
||||
+ // LLAMA_LOG_DEBUG("(tmp log) KV defrag cell moves: %u\n", n_moves);
|
||||
|
||||
return true;
|
||||
}
|
||||
diff --git a/src/llama-kv-cache.h b/src/llama-kv-cache.h
|
||||
index bf3b4b6a..928b9712 100644
|
||||
--- a/src/llama-kv-cache.h
|
||||
+++ b/src/llama-kv-cache.h
|
||||
@@ -82,6 +82,13 @@ struct llama_kv_cache_guard {
|
||||
private:
|
||||
llama_kv_cache * kv;
|
||||
};
|
||||
+
|
||||
+// block of KV slots to move when defragging
|
||||
+struct llama_kv_defrag_move {
|
||||
+ uint32_t src;
|
||||
+ uint32_t dst;
|
||||
+ uint32_t len;
|
||||
+};
|
||||
|
||||
//
|
||||
// llama_kv_cache_unified
|
||||
@@ -207,7 +214,7 @@ private:
|
||||
|
||||
// defrag
|
||||
struct {
|
||||
- std::vector<uint32_t> ids;
|
||||
+ std::vector<llama_kv_defrag_move> moves;
|
||||
} defrag_info;
|
||||
|
||||
// return true if cells have been moved
|
||||
@@ -249,7 +256,8 @@ private:
|
||||
llm_graph_result_ptr build_graph_defrag(
|
||||
const llama_cparams & cparams,
|
||||
ggml_context * ctx,
|
||||
- ggml_cgraph * gf) const;
|
||||
+ ggml_cgraph * gf,
|
||||
+ const std::vector<llama_kv_defrag_move> & moves) const;
|
||||
|
||||
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
||||
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
||||
|
|
@ -0,0 +1,25 @@
|
|||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Thu, 1 May 2025 15:05:08 -0700
|
||||
Subject: [PATCH] remove amx
|
||||
|
||||
disable amx as it reduces performance on some systems
|
||||
---
|
||||
ggml/src/CMakeLists.txt | 4 ----
|
||||
1 file changed, 4 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
|
||||
index a494cf44..ab05bac9 100644
|
||||
--- a/ggml/src/CMakeLists.txt
|
||||
+++ b/ggml/src/CMakeLists.txt
|
||||
@@ -313,10 +313,6 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
- if (NOT MSVC)
|
||||
- # MSVC doesn't support AMX
|
||||
- ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
- endif()
|
||||
elseif(GGML_SYSTEM_ARCH STREQUAL "ARM")
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
# Many of these features are optional so we build versions with popular
|
||||
|
|
@ -25,10 +25,10 @@ index 79ee2020..3efb22f0 100644
|
|||
// get ith C string from array with given key_id
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
|
||||
diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp
|
||||
index 381a9c7d..e45b453d 100644
|
||||
index 5ffd12b8..6d47981e 100644
|
||||
--- a/ggml/src/gguf.cpp
|
||||
+++ b/ggml/src/gguf.cpp
|
||||
@@ -777,10 +777,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
|
||||
@@ -798,10 +798,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
|
||||
|
||||
const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
|
|
@ -44,7 +44,7 @@ index 381a9c7d..e45b453d 100644
|
|||
const char * gguf_get_arr_str(const struct gguf_context * ctx, int64_t key_id, size_t i) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_type() == GGUF_TYPE_STRING);
|
||||
@@ -874,7 +878,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
|
||||
@@ -895,7 +899,6 @@ const char * gguf_get_val_str(const struct gguf_context * ctx, int64_t key_id) {
|
||||
const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id) {
|
||||
GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
|
||||
GGML_ASSERT(ctx->kv[key_id].get_ne() == 1);
|
||||
|
|
@ -53,10 +53,10 @@ index 381a9c7d..e45b453d 100644
|
|||
}
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index 10f34d33..9f5fd57b 100644
|
||||
index 96109f04..3e261ccf 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -1469,9 +1469,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
@@ -1472,9 +1472,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
||||
if (precompiled_charsmap_keyidx != -1) {
|
||||
const gguf_type pc_type = gguf_get_arr_type(ctx, precompiled_charsmap_keyidx);
|
||||
|
|
@ -8,7 +8,7 @@ Subject: [PATCH] ollama debug tensor
|
|||
1 file changed, 6 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
index a30e67f2..2462d2b8 100644
|
||||
index 2042ee71..8448153f 100644
|
||||
--- a/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
@@ -15,6 +15,8 @@
|
||||
|
|
@ -20,7 +20,7 @@ index a30e67f2..2462d2b8 100644
|
|||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||||
@@ -2841,6 +2843,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
@@ -2818,6 +2820,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
|
|
@ -1,25 +0,0 @@
|
|||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: jmorganca <jmorganca@gmail.com>
|
||||
Date: Thu, 1 May 2025 15:05:08 -0700
|
||||
Subject: [PATCH] remove amx
|
||||
|
||||
disable amx as it reduces performance on some systems
|
||||
---
|
||||
ggml/src/CMakeLists.txt | 4 ----
|
||||
1 file changed, 4 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
|
||||
index 45918bf6..0beaed86 100644
|
||||
--- a/ggml/src/CMakeLists.txt
|
||||
+++ b/ggml/src/CMakeLists.txt
|
||||
@@ -296,10 +296,6 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
- if (NOT MSVC)
|
||||
- # MSVC doesn't support AMX
|
||||
- ggml_add_cpu_backend_variant(sapphirerapids SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
- endif()
|
||||
elseif (GGML_CPU)
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
endif()
|
||||
|
|
@ -10,7 +10,7 @@ Subject: [PATCH] add ollama vocab for grammar support
|
|||
3 files changed, 58 insertions(+), 9 deletions(-)
|
||||
|
||||
diff --git a/src/llama-grammar.cpp b/src/llama-grammar.cpp
|
||||
index 973b47ae..60d58236 100644
|
||||
index bed706bb..b51cee09 100644
|
||||
--- a/src/llama-grammar.cpp
|
||||
+++ b/src/llama-grammar.cpp
|
||||
@@ -907,6 +907,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
|
||||
|
|
@ -90,7 +90,7 @@ index 973b47ae..60d58236 100644
|
|||
|
||||
if (grammar.awaiting_trigger) {
|
||||
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
|
||||
@@ -1191,13 +1200,14 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
@@ -1201,13 +1210,14 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -107,7 +107,7 @@ index 973b47ae..60d58236 100644
|
|||
}
|
||||
|
||||
llama_grammar_accept_str(grammar, piece);
|
||||
@@ -1217,3 +1227,28 @@ void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string
|
||||
@@ -1227,3 +1237,28 @@ void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string
|
||||
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece);
|
||||
}
|
||||
}
|
||||
|
|
@ -184,7 +184,7 @@ index f8c291de..2a3a62db 100644
|
|||
const char * grammar_root,
|
||||
bool lazy,
|
||||
diff --git a/src/llama-sampling.cpp b/src/llama-sampling.cpp
|
||||
index 804b11e0..15a10ca8 100644
|
||||
index bfbf5fa2..11f93f42 100644
|
||||
--- a/src/llama-sampling.cpp
|
||||
+++ b/src/llama-sampling.cpp
|
||||
@@ -1466,7 +1466,7 @@ static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
|
||||
|
|
@ -10,10 +10,10 @@ Subject: [PATCH] add argsort and cuda copy for i32
|
|||
3 files changed, 192 insertions(+), 2 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp
|
||||
index 955fec59..654e2f28 100644
|
||||
index aefa37e0..ed5a6c91 100644
|
||||
--- a/ggml/src/ggml-cpu/ops.cpp
|
||||
+++ b/ggml/src/ggml-cpu/ops.cpp
|
||||
@@ -6822,6 +6822,45 @@ static void ggml_compute_forward_argsort_f32(
|
||||
@@ -7050,6 +7050,45 @@ static void ggml_compute_forward_argsort_f32(
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -59,7 +59,7 @@ index 955fec59..654e2f28 100644
|
|||
void ggml_compute_forward_argsort(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
@@ -6833,6 +6872,10 @@ void ggml_compute_forward_argsort(
|
||||
@@ -7061,6 +7100,10 @@ void ggml_compute_forward_argsort(
|
||||
{
|
||||
ggml_compute_forward_argsort_f32(params, dst);
|
||||
} break;
|
||||
|
|
@ -195,10 +195,10 @@ index 607ded85..53b02634 100644
|
|||
+ }
|
||||
}
|
||||
diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu
|
||||
index d027271f..4abd01d7 100644
|
||||
index 2c55d214..90d95d32 100644
|
||||
--- a/ggml/src/ggml-cuda/cpy.cu
|
||||
+++ b/ggml/src/ggml-cuda/cpy.cu
|
||||
@@ -38,6 +38,13 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||
@@ -41,6 +41,13 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
|
|
@ -212,7 +212,7 @@ index d027271f..4abd01d7 100644
|
|||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
@@ -68,6 +75,44 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const in
|
||||
@@ -71,6 +78,44 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const in
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
|
|
@ -257,7 +257,7 @@ index d027271f..4abd01d7 100644
|
|||
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||||
@@ -633,6 +678,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
@@ -643,6 +688,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
|
|
@ -266,7 +266,7 @@ index d027271f..4abd01d7 100644
|
|||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
@@ -688,6 +735,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
@@ -698,6 +745,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
|
||||
|
|
@ -134,10 +134,10 @@ index 5fd379f6..04812990 100644
|
|||
|
||||
static void free_buffers(ggml_backend_buffer_t ** buffers, const size_t * n_buffers) {
|
||||
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
|
||||
index 0ce73a99..be335e8c 100644
|
||||
index e8694e5c..36f11537 100644
|
||||
--- a/ggml/src/ggml-backend.cpp
|
||||
+++ b/ggml/src/ggml-backend.cpp
|
||||
@@ -1629,6 +1629,16 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
|
||||
@@ -1637,6 +1637,16 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
|
||||
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
|
||||
}
|
||||
|
||||
|
|
@ -24,10 +24,10 @@ index 74e46716..a880df33 100644
|
|||
size_t memory_total;
|
||||
enum ggml_backend_dev_type type;
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index cb0d8528..4c829153 100644
|
||||
index b6cca93f..09ce299c 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -2884,6 +2884,7 @@ struct ggml_backend_cuda_device_context {
|
||||
@@ -2939,6 +2939,7 @@ struct ggml_backend_cuda_device_context {
|
||||
int device;
|
||||
std::string name;
|
||||
std::string description;
|
||||
|
|
@ -35,7 +35,7 @@ index cb0d8528..4c829153 100644
|
|||
};
|
||||
|
||||
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
|
||||
@@ -2896,6 +2897,11 @@ static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t
|
||||
@@ -2951,6 +2952,11 @@ static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t
|
||||
return ctx->description.c_str();
|
||||
}
|
||||
|
||||
|
|
@ -47,7 +47,7 @@ index cb0d8528..4c829153 100644
|
|||
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
@@ -2910,6 +2916,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
|
||||
@@ -2965,6 +2971,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
|
||||
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_cuda_device_get_name(dev);
|
||||
props->description = ggml_backend_cuda_device_get_description(dev);
|
||||
|
|
@ -55,7 +55,7 @@ index cb0d8528..4c829153 100644
|
|||
props->type = ggml_backend_cuda_device_get_type(dev);
|
||||
ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
|
||||
@@ -3458,6 +3465,32 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
@@ -3535,6 +3542,32 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
|
||||
dev_ctx->description = prop.name;
|
||||
|
||||
|
|
@ -89,10 +89,10 @@ index cb0d8528..4c829153 100644
|
|||
/* .iface = */ ggml_backend_cuda_device_interface,
|
||||
/* .reg = */ ®,
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
|
||||
index 1b56f858..ee4f2dcb 100644
|
||||
index 74fd6654..ea2d6218 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.m
|
||||
@@ -5703,6 +5703,7 @@ static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backen
|
||||
@@ -5985,6 +5985,7 @@ static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backen
|
||||
static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_metal_device_get_name(dev);
|
||||
props->description = ggml_backend_metal_device_get_description(dev);
|
||||
|
|
@ -8,10 +8,10 @@ Subject: [PATCH] temporary prevent rocm+cuda mixed loading
|
|||
1 file changed, 10 insertions(+), 2 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index 4e67d243..8f49f084 100644
|
||||
index 5b004d6d..2a3cdf18 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -573,8 +573,16 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
@@ -578,8 +578,16 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
|
||||
ggml_backend_load_best("blas", silent, dir_path);
|
||||
ggml_backend_load_best("cann", silent, dir_path);
|
||||
|
|
@ -1,169 +0,0 @@
|
|||
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
||||
From: Georgi Gerganov <ggerganov@gmail.com>
|
||||
Date: Thu, 19 Jun 2025 08:05:21 +0300
|
||||
Subject: [PATCH] metal : add mean kernel (#14267)
|
||||
|
||||
* metal : add mean kernel
|
||||
|
||||
ggml-ci
|
||||
|
||||
* cont : dedup implementation
|
||||
|
||||
ggml-ci
|
||||
---
|
||||
ggml/src/ggml-metal/ggml-metal.m | 33 ++++++++++++++++---
|
||||
ggml/src/ggml-metal/ggml-metal.metal | 48 ++++++++++++++++++++++------
|
||||
2 files changed, 67 insertions(+), 14 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
|
||||
index ee4f2dcb..f20f5615 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.m
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.m
|
||||
@@ -489,6 +489,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_COS,
|
||||
GGML_METAL_KERNEL_TYPE_NEG,
|
||||
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
|
||||
+ GGML_METAL_KERNEL_TYPE_MEAN,
|
||||
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
|
||||
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARGMAX,
|
||||
@@ -1436,6 +1437,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NEG, neg, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
|
||||
+ GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MEAN, mean, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32, pool_2d_max_f32, true);
|
||||
@@ -1634,6 +1636,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
|
||||
case GGML_OP_LOG:
|
||||
return false; // TODO: implement
|
||||
case GGML_OP_SUM_ROWS:
|
||||
+ case GGML_OP_MEAN:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
|
||||
@@ -2362,11 +2365,30 @@ static bool ggml_metal_encode_node(
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_SUM_ROWS:
|
||||
+ case GGML_OP_MEAN:
|
||||
{
|
||||
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||
|
||||
- id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
|
||||
+ id<MTLComputePipelineState> pipeline = nil;
|
||||
+
|
||||
+ switch (dst->op) {
|
||||
+ case GGML_OP_SUM_ROWS:
|
||||
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
|
||||
+ break;
|
||||
+ case GGML_OP_MEAN:
|
||||
+ pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MEAN].pipeline;
|
||||
+ break;
|
||||
+ default:
|
||||
+ GGML_ABORT("fatal error");
|
||||
+ }
|
||||
+
|
||||
+ int nth = 32; // SIMD width
|
||||
+
|
||||
+ while (nth < ne00 && nth < (int) pipeline.maxTotalThreadsPerThreadgroup) {
|
||||
+ nth *= 2;
|
||||
+ }
|
||||
|
||||
+ nth = MIN(nth, ne00);
|
||||
|
||||
ggml_metal_kargs_sum_rows args = {
|
||||
/*.ne00 =*/ ne00,
|
||||
@@ -2396,11 +2418,12 @@ static bool ggml_metal_encode_node(
|
||||
};
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
- [encoder setBytes:&args length:sizeof(args) atIndex:2];
|
||||
+ [encoder setBytes:&args length:sizeof(args) atIndex:0];
|
||||
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
||||
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
+ [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
||||
|
||||
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
{
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
index 9cfddf45..08e8d807 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.metal
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
@@ -956,31 +956,61 @@ kernel void kernel_neg(
|
||||
dst[tpig] = -src0[tpig];
|
||||
}
|
||||
|
||||
+template <bool norm>
|
||||
kernel void kernel_sum_rows(
|
||||
+ constant ggml_metal_kargs_sum_rows & args,
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
- constant ggml_metal_kargs_sum_rows & args,
|
||||
- uint3 tpig[[thread_position_in_grid]]) {
|
||||
- int64_t i3 = tpig.z;
|
||||
- int64_t i2 = tpig.y;
|
||||
- int64_t i1 = tpig.x;
|
||||
+ threadgroup float * shmem_f32 [[threadgroup(0)]],
|
||||
+ uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
+ ushort3 tpitg[[thread_position_in_threadgroup]],
|
||||
+ ushort sgitg[[simdgroup_index_in_threadgroup]],
|
||||
+ ushort tiisg[[thread_index_in_simdgroup]],
|
||||
+ ushort3 ntg[[threads_per_threadgroup]]) {
|
||||
+ int64_t i3 = tgpig.z;
|
||||
+ int64_t i2 = tgpig.y;
|
||||
+ int64_t i1 = tgpig.x;
|
||||
|
||||
if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
+ if (sgitg == 0) {
|
||||
+ shmem_f32[tiisg] = 0.0f;
|
||||
+ }
|
||||
+
|
||||
device const float * src_row = (device const float *) ((device const char *) src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03);
|
||||
device float * dst_row = (device float *) ((device char *) dst + i1*args.nb1 + i2*args.nb2 + i3*args.nb3);
|
||||
|
||||
- float row_sum = 0;
|
||||
+ float sumf = 0;
|
||||
|
||||
- for (int64_t i0 = 0; i0 < args.ne00; i0++) {
|
||||
- row_sum += src_row[i0];
|
||||
+ for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
|
||||
+ sumf += src_row[i0];
|
||||
}
|
||||
|
||||
- dst_row[0] = row_sum;
|
||||
+ sumf = simd_sum(sumf);
|
||||
+
|
||||
+ threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
+
|
||||
+ if (tiisg == 0) {
|
||||
+ shmem_f32[sgitg] = sumf;
|
||||
+ }
|
||||
+
|
||||
+ threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
+
|
||||
+ sumf = shmem_f32[tiisg];
|
||||
+ sumf = simd_sum(sumf);
|
||||
+
|
||||
+ if (tpitg.x == 0) {
|
||||
+ dst_row[0] = norm ? sumf / args.ne00 : sumf;
|
||||
+ }
|
||||
}
|
||||
|
||||
+typedef decltype(kernel_sum_rows<false>) kernel_sum_rows_t;
|
||||
+
|
||||
+template [[host_name("kernel_sum_rows")]] kernel kernel_sum_rows_t kernel_sum_rows<false>;
|
||||
+template [[host_name("kernel_mean")]] kernel kernel_sum_rows_t kernel_sum_rows<true>;
|
||||
+
|
||||
template<typename T>
|
||||
kernel void kernel_soft_max(
|
||||
device const char * src0,
|
||||
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue