cleanup + add tokenizer hash

This commit is contained in:
Grace Guo 2025-12-10 17:05:51 -08:00
parent e2f8845f1c
commit 5584bf1e19
4 changed files with 10 additions and 71 deletions

View File

@ -147,8 +147,8 @@ func (p *mistralLarge3Model) KV(t *Tokenizer) ggml.KV {
kv["deepseek2.spatial_merge_size"] = p.VisionEncoder.SpatialMergeSize
}
// Set tokenizer type - use default for Mistral models
kv["tokenizer.ggml.pre"] = "tekken" // Let it use the default tokenizer preprocessing
// Set tokenizer type - use tekken preprocessing (now supported!)
kv["tokenizer.ggml.pre"] = "tekken"
return kv
}

View File

@ -101,6 +101,8 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
t.Pre = "deepseek-coder"
case "1ff7f41064896984db5d1bb6ff64fa4bc29007d08c1b439e505b7392777a319e":
t.Pre = "qwen2"
case "1d64a9a8eaf9f1bd80331984d81fdd514e7feafe8df83a525dd31472f275699a":
t.Pre = "tekken"
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
// noop, empty pretokenizer
default:

View File

@ -216,7 +216,6 @@ type Layer struct {
}
func (t *Layer) Forward(ctx ml.Context, hiddenStates, positions, attentionScales, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
fmt.Println("[LAYER] In the new engine")
residual := hiddenStates
hiddenStates = t.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = t.Attention.Forward(ctx, hiddenStates, positions, attentionScales, cache, opts)
@ -249,8 +248,11 @@ type Model struct {
}
func New(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
fmt.Printf("[MODEL DEBUG] Creating model with %d layers\n", c.Uint("block_count"))
// layers := make([]Layer, c.Uint("block_count"))
// fmt.Printf("[MODEL DEBUG] Creating model with %d layers\n", c.Uint("block_count"))
layers := make([]Layer, 4)
fmt.Printf("[MODEL DEBUG] Creating model with %d layers\n", 4)
firstDenseLayerIndex := int(c.Uint("leading_dense_block_count"))
for i := range layers {
@ -269,7 +271,6 @@ func New(c fs.Config) (model.Model, error) {
valueLength := int(cmp.Or(c.Uint("attention.value_length_mla"), c.Uint("attention.value_length")))
var pre []string
fmt.Println("[TOKENIZER] Using tokenizer", c.String("tokenizer.ggml.pre"))
switch c.String("tokenizer.ggml.pre") {
case "deepseek-v3":
pre = []string{
@ -279,7 +280,6 @@ func New(c fs.Config) (model.Model, error) {
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
}
case "tekken":
fmt.Println("[TOKENIZER] Using Tekken tokenizer")
pre = []string{
"[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
@ -303,24 +303,7 @@ func New(c fs.Config) (model.Model, error) {
tokenTypes := c.Ints("tokenizer.ggml.token_type")
merges := c.Strings("tokenizer.ggml.merges")
fmt.Printf("[TOKENIZER DEBUG] Loading vocabulary:\n")
fmt.Printf("[TOKENIZER DEBUG] - Tokens count: %d\n", len(tokens))
fmt.Printf("[TOKENIZER DEBUG] - Token types count: %d\n", len(tokenTypes))
fmt.Printf("[TOKENIZER DEBUG] - Merges count: %d\n", len(merges))
fmt.Printf("[TOKENIZER DEBUG] - BOS token ID: %d\n", c.Uint("tokenizer.ggml.bos_token_id"))
fmt.Printf("[TOKENIZER DEBUG] - EOS token ID: %d\n", c.Uint("tokenizer.ggml.eos_token_id"))
fmt.Printf("[TOKENIZER DEBUG] - Add BOS: %v\n", c.Bool("tokenizer.ggml.add_bos_token", true))
fmt.Printf("[TOKENIZER DEBUG] - Add EOS: %v\n", c.Bool("tokenizer.ggml.add_eos_token", false))
if len(tokens) > 0 {
maxShow := 10
if len(tokens) < maxShow {
maxShow = len(tokens)
}
fmt.Printf("[TOKENIZER DEBUG] First %d tokens: %v\n", maxShow, tokens[:maxShow])
} else {
fmt.Printf("[TOKENIZER DEBUG] ERROR: No tokens loaded from GGUF!\n")
}
// Debug output removed for performance
m := Model{
BytePairEncoding: model.NewBytePairEncoding(

View File

@ -213,7 +213,6 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
func calculateLogprobs(logits []float32, selectedToken int32, topK int, textProcessor model.TextProcessor) []llm.Logprob {
decoder := func(tokenID int) string {
text, _ := textProcessor.Decode([]int32{int32(tokenID)})
fmt.Printf("[TOKENIZER] Decoded token %d to: %q\n", tokenID, text)
return text
}
return common.CalculateLogprobs(logits, int(selectedToken), topK, decoder)
@ -243,52 +242,10 @@ func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input,
for i, part := range parts {
// text - tokenize
fmt.Printf("[TOKENIZER] Encoding text: %q\n", part)
// Debug: Test what token 0 decodes to
token0Text, _ := s.model.(model.TextProcessor).Decode([]int32{0})
fmt.Printf("[TOKENIZER] Token 0 decodes to: %q\n", token0Text)
// Debug: Test a few other common tokens
for testToken := int32(1); testToken <= 10; testToken++ {
testText, _ := s.model.(model.TextProcessor).Decode([]int32{testToken})
fmt.Printf("[TOKENIZER] Token %d decodes to: %q\n", testToken, testText)
}
// Debug: Test higher token IDs where real vocabulary might be
fmt.Printf("[TOKENIZER] Testing higher token IDs:\n")
testHighTokens := []int32{100, 1000, 10000, 50000, 100000, 131000}
for _, testToken := range testHighTokens {
testText, _ := s.model.(model.TextProcessor).Decode([]int32{testToken})
fmt.Printf("[TOKENIZER] Token %d decodes to: %q\n", testToken, testText)
}
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
if err != nil {
return nil, nil, nil, err
}
fmt.Printf("[TOKENIZER] Encoded to %d tokens: %v\n", len(tokens), tokens)
// Debug: Decode the encoded tokens back to text
if len(tokens) > 0 {
decodedText, _ := s.model.(model.TextProcessor).Decode(tokens)
fmt.Printf("[TOKENIZER] Tokens %v decode back to: %q\n", tokens, decodedText)
// Debug: Show each token individually
fmt.Printf("[TOKENIZER] Individual tokens:\n")
for i, token := range tokens {
singleText, _ := s.model.(model.TextProcessor).Decode([]int32{token})
fmt.Printf("[TOKENIZER] Token %d: %d → %q (hex: %x)\n", i, token, singleText, []byte(singleText))
}
// Debug: Test specific tokens that should be clean
fmt.Printf("[TOKENIZER] Testing specific clean tokens:\n")
testTokens := []int32{8101, 1033, 29706} // hi, !, hello
for _, testToken := range testTokens {
testText, _ := s.model.(model.TextProcessor).Decode([]int32{testToken})
fmt.Printf("[TOKENIZER] Clean test %d → %q (hex: %x)\n", testToken, testText, []byte(testText))
}
}
for _, t := range tokens {
inputs = append(inputs, &input.Input{Token: t})
@ -823,9 +780,6 @@ func (s *Server) computeBatch(activeBatch batchState) {
panic("failed to decode token")
}
// DEBUG: Show what token is being generated
fmt.Printf("[GENERATION] Token %d → %q (hex: %x)\n", token, piece, []byte(piece))
// Calculate logprobs if requested (after EOS check to avoid logprobs for EOS tokens)
if seq.logprobs {
logprobs := calculateLogprobs(logits, token, seq.topLogprobs, s.model.(model.TextProcessor))