removed olmo1 support
This commit is contained in:
parent
57569274ec
commit
494284770d
|
|
@ -78,13 +78,15 @@ func (p *olmoModel) Replacements() []string {
|
|||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"model.norm", "output_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
|
|
|
|||
|
|
@ -30,13 +30,10 @@ type Model struct {
|
|||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
layerTypes []string
|
||||
|
||||
Options
|
||||
}
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
var processor model.TextProcessor
|
||||
vocabulary := model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
|
|
@ -51,27 +48,21 @@ func New(c fs.Config) (model.Model, error) {
|
|||
),
|
||||
}
|
||||
|
||||
switch c.String("tokenizer.ggml.model") {
|
||||
case "gpt2":
|
||||
var pretokenizers []string
|
||||
switch c.String("tokenizer.ggml.pre") {
|
||||
case "default":
|
||||
default:
|
||||
pretokenizers = []string{
|
||||
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
}
|
||||
}
|
||||
processor = model.NewBytePairEncoding(&vocabulary, pretokenizers...)
|
||||
case "llama":
|
||||
processor = model.NewSentencePiece(&vocabulary)
|
||||
default:
|
||||
if c.String("tokenizer.ggml.model") != "gpt2" {
|
||||
return nil, model.ErrUnsupportedTokenizer
|
||||
}
|
||||
|
||||
var pretokenizers []string
|
||||
if c.String("tokenizer.ggml.pre") != "default" {
|
||||
pretokenizers = []string{
|
||||
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||
}
|
||||
}
|
||||
processor := model.NewBytePairEncoding(&vocabulary, pretokenizers...)
|
||||
|
||||
m := Model{
|
||||
TextProcessor: processor,
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
layerTypes: c.Strings("attention.layer_types"),
|
||||
Options: Options{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
|
|
@ -98,11 +89,13 @@ func New(c fs.Config) (model.Model, error) {
|
|||
}
|
||||
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
QNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
||||
KNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
|
|
@ -111,15 +104,20 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tenso
|
|||
ropeDim := cmp.Or(opts.ropeDim, headDim)
|
||||
|
||||
query := sa.Query.Forward(ctx, hiddenState)
|
||||
if sa.QNorm != nil {
|
||||
query = sa.QNorm.Forward(ctx, query, opts.eps)
|
||||
}
|
||||
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
|
||||
key := sa.Key.Forward(ctx, hiddenState)
|
||||
if sa.KNorm != nil {
|
||||
key = sa.KNorm.Forward(ctx, key, opts.eps)
|
||||
}
|
||||
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
value := sa.Value.Forward(ctx, hiddenState)
|
||||
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
// Apply RoPE (Rotary Position Embeddings) - OLMo uses NeoX-style rotation
|
||||
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
|
||||
|
||||
|
|
@ -144,18 +142,15 @@ func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml
|
|||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
// Layer represents a single transformer layer in OLMo
|
||||
type Layer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *SelfAttention
|
||||
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *MLP
|
||||
SelfAttention *SelfAttention
|
||||
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
||||
MLP *MLP
|
||||
PostFFWNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
||||
}
|
||||
|
||||
func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, opts)
|
||||
|
||||
if outputs != nil {
|
||||
|
|
@ -164,12 +159,18 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tenso
|
|||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
if l.PostAttentionNorm != nil {
|
||||
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
}
|
||||
|
||||
residual = hiddenState
|
||||
|
||||
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
if l.PostFFWNorm != nil {
|
||||
hiddenState = l.PostFFWNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
}
|
||||
|
||||
return hiddenState.Add(ctx, residual)
|
||||
return hiddenState
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
|
|
@ -180,14 +181,6 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
|||
for i, layer := range m.Layers {
|
||||
m.Cache.SetLayer(i)
|
||||
|
||||
if wc, ok := m.Cache.(*kvcache.WrapperCache); ok && len(m.layerTypes) > i {
|
||||
if m.layerTypes[i] == "full_attention" {
|
||||
wc.SetLayerType(1)
|
||||
} else {
|
||||
wc.SetLayerType(0)
|
||||
}
|
||||
}
|
||||
|
||||
var outputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
outputs = batch.Outputs
|
||||
|
|
|
|||
Loading…
Reference in New Issue