fixed converter
This commit is contained in:
parent
b6f769ae60
commit
29a2d6d931
|
|
@ -6,54 +6,84 @@ import (
|
|||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type ropeScaling struct {
|
||||
Factor float32 `json:"factor"`
|
||||
OriginalMaxPositionEmbeds uint32 `json:"original_max_position_embeddings"`
|
||||
AttentionFactor float32 `json:"attention_factor"`
|
||||
BetaFast float32 `json:"beta_fast"`
|
||||
BetaSlow float32 `json:"beta_slow"`
|
||||
RopeType string `json:"rope_type"`
|
||||
ExtrapolationFactor float32 `json:"extrapolation_factor"`
|
||||
}
|
||||
|
||||
type olmoModel struct {
|
||||
ModelParameters
|
||||
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
ClampKQV float32 `json:"f_clamp_kqv"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
LayerTypes []string `json:"layer_types"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling *ropeScaling `json:"rope_scaling"`
|
||||
ClampKQV float32 `json:"f_clamp_kqv"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
LayerTypes []string `json:"layer_types"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*olmoModel)(nil)
|
||||
|
||||
func (p *olmoModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "olmo"
|
||||
kv["olmo.block_count"] = p.NumHiddenLayers
|
||||
kv["olmo.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["olmo.embedding_length"] = p.HiddenSize
|
||||
kv["olmo.feed_forward_length"] = p.IntermediateSize
|
||||
kv["olmo.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["olmo.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
kv["general.architecture"] = "olmo2"
|
||||
kv["olmo2.block_count"] = p.NumHiddenLayers
|
||||
kv["olmo2.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["olmo2.embedding_length"] = p.HiddenSize
|
||||
kv["olmo2.feed_forward_length"] = p.IntermediateSize
|
||||
kv["olmo2.attention.head_count"] = p.NumAttentionHeads
|
||||
kv["olmo2.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
|
||||
if p.RopeTheta > 0 {
|
||||
kv["olmo.rope.freq_base"] = p.RopeTheta
|
||||
kv["olmo2.rope.freq_base"] = p.RopeTheta
|
||||
} else {
|
||||
kv["olmo.rope.freq_base"] = float32(10000.0)
|
||||
kv["olmo2.rope.freq_base"] = float32(10000.0)
|
||||
}
|
||||
|
||||
if p.RopeScaling != nil {
|
||||
if p.RopeScaling.Factor > 0 {
|
||||
kv["olmo2.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||
}
|
||||
if p.RopeScaling.OriginalMaxPositionEmbeds > 0 {
|
||||
kv["olmo2.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeds
|
||||
}
|
||||
if p.RopeScaling.AttentionFactor > 0 {
|
||||
kv["olmo2.rope.scaling.attn_factor"] = p.RopeScaling.AttentionFactor
|
||||
}
|
||||
if p.RopeScaling.RopeType != "" {
|
||||
kv["olmo2.rope.scaling.type"] = p.RopeScaling.RopeType
|
||||
}
|
||||
}
|
||||
|
||||
if p.RMSNormEPS > 0 {
|
||||
kv["olmo.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
kv["olmo2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
}
|
||||
|
||||
if p.ClampKQV > 0 {
|
||||
kv["olmo.attention.clamp_kqv"] = p.ClampKQV
|
||||
kv["olmo2.attention.clamp_kqv"] = p.ClampKQV
|
||||
}
|
||||
|
||||
if p.SlidingWindow > 0 {
|
||||
kv["olmo.attention.sliding_window"] = p.SlidingWindow
|
||||
kv["olmo2.attention.sliding_window"] = p.SlidingWindow
|
||||
}
|
||||
|
||||
if len(p.LayerTypes) > 0 {
|
||||
kv["olmo.attention.layer_types"] = p.LayerTypes
|
||||
slidingPattern := make([]bool, len(p.LayerTypes))
|
||||
for i, layerType := range p.LayerTypes {
|
||||
slidingPattern[i] = (layerType == "sliding_attention")
|
||||
}
|
||||
kv["olmo2.attention.sliding_window_pattern"] = slidingPattern
|
||||
}
|
||||
|
||||
return kv
|
||||
|
|
|
|||
Loading…
Reference in New Issue